Repair, Regeneration, and Fibrosis Gregory C

Total Page:16

File Type:pdf, Size:1020Kb

Repair, Regeneration, and Fibrosis Gregory C 91731_ch03 12/8/06 7:33 PM Page 71 3 Repair, Regeneration, and Fibrosis Gregory C. Sephel Stephen C. Woodward The Basic Processes of Healing Regeneration Migration of Cells Stem cells Extracellular Matrix Cell Proliferation Remodeling Conditions That Modify Repair Cell Proliferation Local Factors Repair Repair Patterns Repair and Regeneration Suboptimal Wound Repair Wound Healing bservations regarding the repair of wounds (i.e., wound architecture are unaltered. Thus, wounds that do not heal may re- healing) date to physicians in ancient Egypt and battle flect excess proteinase activity, decreased matrix accumulation, Osurgeons in classic Greece. The liver’s ability to regenerate or altered matrix assembly. Conversely, fibrosis and scarring forms the basis of the Greek myth involving Prometheus. The may result from reduced proteinase activity or increased matrix clotting of blood to prevent exsanguination was recognized as accumulation. Whereas the formation of new collagen during the first necessary event in wound healing. At the time of the repair is required for increased strength of the healing site, American Civil War, the development of “laudable pus” in chronic fibrosis is a major component of diseases that involve wounds was thought to be necessary, and its emergence was not chronic injury. appreciated as a symptom of infection but considered a positive sign in the healing process. Later studies of wound infection led The Basic Processes of Healing to the discovery that inflammatory cells are primary actors in the repair process. Although scurvy (see Chapter 8) was described in Many of the basic cellular and molecular mechanisms necessary the 16th century by the British navy, it was not until the 20th for wound healing are found in other processes involving dynamic century that vitamin C (ascorbic acid) was found to be necessary tissue changes, such as development and tumor growth. Three for the function of prolyl hydroxylase, an enzyme required for key cellular mechanisms are necessary for wound healing: proper folding and stabilization of collagen into a triple helix. • Cellular migration The study of wound healing now encompasses a complex • Extracellular matrix organization and remodeling environment containing many cell types, matrix proteins, growth factors, and cytokines, which regulate and modulate the • Cell proliferation repair process. Nearly every stage in the repair process is redundantly controlled, and there is no single rate-limiting step, Migration of Cells Initiates Repair with the possible exception of the ingress of inflammatory cells. Successful healing maintains tissue function and repairs tissue barriers, Cells That Migrate to the Wound preventing blood loss and infection, but is usually accomplished Ingress of cells into a wound and activation of local cells are ini- through collagen deposition or scarring (fibrosis). Advances in our tiated by mediators that are either released de novo by resident understanding of growth factors, extracellular matrix and stem cells or from reserves stored in the granules of platelets and cell biology are improving healing, and offer the possibility of basophils. The contents of these granules include cytokines, regenerating tissues to their normal architecture and of chemoattractants, proteases, and mediators of inflammation, engineering replacement tissues. which together (1) control vascular delivery, (2) degrade dam- Successful repair relies upon a crucial balance between the aged tissue, and (3) initiate the repair cascade. Platelets are ac- yin of matrix deposition and the yang of matrix degradation. tivated when bound to collagen exposed at sites of endothelial Regenerative processes are favored when the matrix composition and damage, and their ensuing aggregation, in combination with 71 91731_ch03 12/8/06 7:33 PM Page 72 72 Pathology fibrin cross-linking, limits blood loss. Activated platelets release fingerlike membrane protrusions labeled filopodia. Cell polar- platelet-derived growth factor (PDGF) and other molecules ization and membrane extensions are initiated by growth factors that facilitate adhesion, coagulation, vasoconstriction, repair, or chemokines, which trigger a response by binding to their and clot resorption. Mast cells are bone marrow-derived cells specific receptors on the cell surface. Actin fibrils polymerize whose granules contain high concentrations of heparin. They and form a network at the membrane’s leading edge, thereby reside in connective tissue near small blood vessels and respond propelling lamellipodia and filopodia forward, with traction to foreign antigens by releasing the contents of their granules, provided via attachments to the extracellular matrix substrate. many of which are angiogenic. Resident macrophages, tissue- Actin-related proteins stimulate actin assembly, and numerous fixed mesenchymal cells, and epithelial cells release mediators actin-binding proteins act like molecular tinker toys, rapidly that not only contribute to the early response, but also perpet- constructing, stabilizing and destabilizing actin networks. uate it. Their numbers are increased through proliferation and The leading edge of the cell membrane impinges upon the extracel- recruitment to the site of injury (Fig. 3-1). The following are char- lular matrix and adheres to it through transmembrane adhesion acteristic of skin wounds: receptors termed integrins (see Chapter 2). These molecules are • Leukocytes arrive at the wound site early and migrate highly redundant, and many different integrin heterodimer rapidly by forming small focal adhesions (focal contacts). A combinations recognize the same matrix components (e.g., family of small peptide chemoattractants (chemokines), are collagen, laminin, fibronectin). Focal contacts develop through capable of restricted or broad recruitment of particular the adherence of the integrin extracellular domain to the leukocytes (see Chapter 2). connective tissue matrix. Focal adhesions form under the cell body, whereas smaller focal contacts form at the leading edge of • Polymorphonuclear leukocytes are rapidly recruited from migrating cells. The focal contact anchors the actin stress fibers, the bone marrow and invade the wound site within the first against which myosins pull to extend or contract the cell body. day. They degrade and destroy nonviable tissue by releasing As the cell moves forward, older adhesions at the rear are their granular contents. weakened or destabilized, allowing the trailing edge to retract. • Macrophages arrive shortly after neutrophils but persist for More than 50 proteins have been associated with the forma- days or longer. They phagocytose debris and orchestrate the tion of adhesion plaques. The cytoplasmic domain of integrins is developing granulation tissue by the release of cytokines and the foundation of a protein cascade that acts to anchor actin stress chemoattractants. fibers. The Rho-family of GTPases (Rho, Rac, and Cdc42) act as • Fibroblasts, myofibroblasts, pericytes, and smooth muscle molecular switches that interact with surface receptors to regulate cells are recruited by growth factors and matrix degradation matrix assembly, generate focal adhesions, and organize the actin products, arriving in a skin wound by day 3 or 4. These cells are cytoskeleton. responsible for fibroplasia, synthesis of connective tissue Importantly, the integrins transmit intracellular signals to cells matrix, tissue remodeling, wound contraction, and wound that also regulate cellular survival, proliferation, and differentiation. strength. These functional properties are also affected by other cell • Endothelial cells form nascent capillaries by responding to activators (e.g., cytokines) by signaling through cytoplasmic tails growth factors and are visible in a skin wound beyond day 3. of integrins from inside the cell to the outside matrix. In this The development of capillaries is necessary for the exchange manner, cytokines can also influence the organization and of gases, the delivery of nutrients, and the influx of inflam- tension in matrix and tissue. Thus, growth factors and integrins matory cells. share several common signaling pathways, but integrins are unique in their ability to organize and anchor the cytoskeleton. • Epithelial cells in the epidermis move across the surface of a Cytoskeletal connections are involved in cell-cell and cell-matrix skin wound, penetrate the provisional matrix (see below), connections and determine the shape and differentiation of ep- and migrate upon stromal collagen, which is coated with ithelial, endothelial, and other cells. plasma glycoproteins, fibrinogen, and fibronectin. The pro- cess of reepithelialization is delayed if the migrating epithelial cells must reconstitute a damaged basement membrane. In Extracellular Matrix Sustains the Repair Process addition, the phenotype of the epithelial layer is altered in the Three types of extracellular matrix contribute to the organization, absence of basement membrane. physical properties, and function of tissue: • Stem cells from bone marrow, the bulb of the hair follicle, • Basement membrane and the basal epidermal layer provide a renewable source of • Provisional matrix epidermal and dermal cells capable of differentiation, prolif- eration, and migration. Under appropriate conditions, these • Connective tissue (interstitial matrix or stroma) cells form new blood vessels and new epithelium and regen- erate skin structures, such as hair follicles and sebaceous Basement Membranes glands.
Recommended publications
  • Lung, Epithelium, Alveolus – Hyperplasia
    Lung, Epithelium, Alveolus – Hyperplasia 1 Lung, Epithelium, Alveolus – Hyperplasia Figure Legend: Figure 1 Lung, Epithelium, Alveolus - Hyperplasia in a male B6C3F1/N mouse from a chronic study. There is a small proliferation of alveolar epithelial cells with no inflammation. Figure 2 Lung, Epithelium, Alveolus - Hyperplasia in a male F344/N rat from a chronic study. There is no change in the normal alveolar architecture in this focus of alveolar epithelial hyperplasia. Figure 3 Lung, Epithelium, Alveolus - Hyperplasia in a male F344/N rat from a chronic study (higher magnification of Figure 2). The hyperplastic epithelial cells are cuboidal. Figure 4 Lung, Epithelium, Alveolus - Hyperplasia in a male B6C3F1/N mouse from a chronic study. The hyperplastic epithelial cells line slightly thickened alveolar septa. Figure 5 Lung, Epithelium, Alveolus - Hyperplasia in a male F344/N rat from a subchronic study. Alveolar epithelial hyperplasia secondary to inflammation is associated with numerous alveolar macrophages and minimal hemorrhage. Figure 6 Lung, Epithelium, Alveolus - Hyperplasia, Atypical from a male F344/N rat in a chronic study. Atypical cells (arrows) are enlarged with enlarged nuclei. Comment: Alveolar epithelial hyperplasia is a proliferation of type II pneumocytes and may be primary (Figure 1, Figure 2, Figure 3, and Figure 4) or secondary to type I pneumocyte injury or inflammation (Figure 5). Type II pneumocytes are thought to be the progenitors of type I cells. Type I pneumocytes are especially vulnerable to oxidant injury, and proliferation of type II pneumocytes is often seen following injury and loss of type I cells. When alveolar epithelial hyperplasia is secondary to type I pneumocyte damage, it is usually associated with inflammation, as opposed to primary alveolar epithelial hyperplasia, which is typically not associated with inflammation.
    [Show full text]
  • Villous Atrophy with Crypt Hyperplasia in Malignant Histiocytosis of the Nose
    J Clin Pathol: first published as 10.1136/jcp.35.6.606 on 1 June 1982. Downloaded from J Cliii Pathol 1982;35:606-610 Villous atrophy with crypt hyperplasia in malignant histiocytosis of the nose K AOZASA Fronm Osaka University, Faculty oJ Medicine, Departmentt of Pathology, Osaka, Japanl SUMMARY Intestinal changes, mainly in the jejunum, were investigated in 13 cases of malignant histiocytosis at necropsy and who had presented as lethal midline granuloma.Villous atrophy with crypt hyperplasia was observed in all cases, and a proliferation of atypical histiocytes was observed in seven cases. In the remaining cases, histiocytes with normal morphology increased in number. These findings showed that a prolonged abnormal proliferation of histiocytes was present in the smnall intestine of these cases concurrently with the nasal lesions. The term malignant histiocytosis was introduced by from the jejunum were available in all cases. In one Rappaport, for "a systemic, progressive, and case, material from the jejunum was also obtained invasive proliferation of morphologically atypical at operation. Adequate clinical data were available histiocytes and their precursors".' Malignant histio- in II cases. cytosis of the intestine has been described in con- nection with malabsorption and ulcerative jejunitis.2 Results In these cases, peroral jejunal biopsy and surgical resection specimens showed villous atrophy with CLINICAL FINDtNGS crypt hyperplasia even in the jejunum remote from The 13 cases showed progressive and destructive areas of ulceration or frank lymphoma. Villous lesions in the nose and adjacent structures, which atrophy with crypt hyperplasia was suggested as a presented as clinical lethal midline granuloma. Nasal http://jcp.bmj.com/ prolonged cryptic phase of malignant histiocytosis.
    [Show full text]
  • Do Humans Possess the Capability to Regenerate?
    The Science Journal of the Lander College of Arts and Sciences Volume 12 Number 2 Spring 2019 - 2019 Do Humans Possess the Capability to Regenerate? Chasha Wuensch Touro College Follow this and additional works at: https://touroscholar.touro.edu/sjlcas Part of the Biology Commons, and the Pharmacology, Toxicology and Environmental Health Commons Recommended Citation Wuensch, C. (2019). Do Humans Possess the Capability to Regenerate?. The Science Journal of the Lander College of Arts and Sciences, 12(2). Retrieved from https://touroscholar.touro.edu/sjlcas/vol12/ iss2/2 This Article is brought to you for free and open access by the Lander College of Arts and Sciences at Touro Scholar. It has been accepted for inclusion in The Science Journal of the Lander College of Arts and Sciences by an authorized editor of Touro Scholar. For more information, please contact [email protected]. Do Humans Possess the Capability to Regenerate? Chasha Wuensch A Chasha Wuensch graduated in May 2018 with a Bachelor of Science degree in Biology and will be attending pharmacy school. Abstract Urodele amphibians, including newts and salamanders, are amongst the most commonly studied research models for regenera- tion .The ability to regenerate, however, is not limited to amphibians, and the regenerative process has been observed in mammals as well .This paper discusses methods by which amphibians and mammals regenerate to lend insights into human regenerative mechanisms and regenerative potential .A focus is placed on the urodele and murine digit tip models,
    [Show full text]
  • Clinicopathological Characteristics and KRAS Mutation Status of Endometrial Mucinous Metaplasia and Carcinoma JI-YOUN SUNG 1, YOON YANG JUNG 2 and HYUN-SOO KIM 3
    ANTICANCER RESEARCH 38 : 2779-2786 (2018) doi:10.21873/anticanres.12521 Clinicopathological Characteristics and KRAS Mutation Status of Endometrial Mucinous Metaplasia and Carcinoma JI-YOUN SUNG 1, YOON YANG JUNG 2 and HYUN-SOO KIM 3 1Department of Pathology, Kyung Hee University School of Medicine, Seoul, Republic of Korea; 2Department of Pathology, Myongji Hospital, Goyang, Republic of Korea; 3Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea Abstract. Background/Aim: Mucinous metaplasia of the papillary mucinous metaplasia suggests that papillary endometrium occurs as a spectrum of epithelial alterations mucinous metaplasia may be a precancerous lesion of a ranging from the formation of simple, tubular glands to certain subset of mucinous carcinomas of the endometrium. architecturally complex glandular proliferation with intraglandular papillary projection and cellular tufts. Endometrial metaplasia is defined as epithelial differentiation Endometrial mucinous metaplasia often presents a diagnostic that differs from the conventional morphological appearance challenge in endometrial curettage. Materials and Methods: of the endometrial glandular epithelium (1). Endometrial We analyzed the clinicopathological characteristics and the mucinous metaplasia is particularly relevant as it is mutation status for V-Ki-ras2 Kirsten rat sarcoma viral frequently encountered in endometrial curettage specimens oncogene homolog (KRAS) of 11 cases of endometrial obtained from peri-menopausal or postmenopausal women mucinous metaplasia. Electronic medical record review and (2). Mucinous epithelial lesions of the endometrium present histopathological examination were performed. KRAS a frequent disparity between cytological atypia and mutation status was analyzed using a pyrosequencing architectural alteration, and often present significant technique. Results: Cases were classified histopathologically diagnostic challenges to pathologists.
    [Show full text]
  • Wound Healing: a Paradigm for Regeneration
    SYMPOSIUM ON REGENERATIVE MEDICINE Wound Healing: A Paradigm for Regeneration Victor W. Wong, MD; Geoffrey C. Gurtner, MD; and Michael T. Longaker, MD, MBA From the Hagey Laboratory for Pediatric Regenerative Medi- CME Activity cine, Department of Surgery, Stanford University, Stanford, Target Audience: The target audience for Mayo Clinic Proceedings is primar- relationships with any commercial interest related to the subject matter ily internal medicine physicians and other clinicians who wish to advance of the educational activity. Safeguards against commercial bias have been CA. their current knowledge of clinical medicine and who wish to stay abreast put in place. Faculty also will disclose any off-label and/or investigational of advances in medical research. use of pharmaceuticals or instruments discussed in their presentation. Statement of Need: General internists and primary care physicians must Disclosure of this information will be published in course materials so maintain an extensive knowledge base on a wide variety of topics covering that those participants in the activity may formulate their own judgments all body systems as well as common and uncommon disorders. Mayo Clinic regarding the presentation. Proceedings aims to leverage the expertise of its authors to help physicians In their editorial and administrative roles, William L. Lanier, Jr, MD, Terry L. understand best practices in diagnosis and management of conditions Jopke, Kimberly D. Sankey, and Nicki M. Smith, MPA, have control of the encountered in the clinical setting. content of this program but have no relevant financial relationship(s) with Accreditation: College of Medicine, Mayo Clinic is accredited by the Accred- industry. itation Council for Continuing Medical Education to provide continuing med- The authors report no competing interests.
    [Show full text]
  • Hyperplasia (Growth Factors
    Adaptations Robbins Basic Pathology Robbins Basic Pathology Robbins Basic Pathology Coagulation Robbins Basic Pathology Robbins Basic Pathology Homeostasis • Maintenance of a steady state Adaptations • Reversible functional and structural responses to physiologic stress and some pathogenic stimuli • New altered “steady state” is achieved Adaptive responses • Hypertrophy • Altered demand (muscle . hyper = above, more activity) . trophe = nourishment, food • Altered stimulation • Hyperplasia (growth factors, . plastein = (v.) to form, to shape; hormones) (n.) growth, development • Altered nutrition • Dysplasia (including gas exchange) . dys = bad or disordered • Metaplasia . meta = change or beyond • Hypoplasia . hypo = below, less • Atrophy, Aplasia, Agenesis . a = without . nourishment, form, begining Robbins Basic Pathology Cell death, the end result of progressive cell injury, is one of the most crucial events in the evolution of disease in any tissue or organ. It results from diverse causes, including ischemia (reduced blood flow), infection, and toxins. Cell death is also a normal and essential process in embryogenesis, the development of organs, and the maintenance of homeostasis. Two principal pathways of cell death, necrosis and apoptosis. Nutrient deprivation triggers an adaptive cellular response called autophagy that may also culminate in cell death. Adaptations • Hypertrophy • Hyperplasia • Atrophy • Metaplasia HYPERTROPHY Hypertrophy refers to an increase in the size of cells, resulting in an increase in the size of the organ No new cells, just larger cells. The increased size of the cells is due to the synthesis of more structural components of the cells usually proteins. Cells capable of division may respond to stress by undergoing both hyperrtophy and hyperplasia Non-dividing cell increased tissue mass is due to hypertrophy.
    [Show full text]
  • Live Imaging and Computational Modelling of Tissue Growth and Tissue Regeneration in Drosophila
    Live Imaging and Computational Modelling of Tissue Growth and Tissue Regeneration in Drosophila Jamie Rickman 19th January 2015 Abstract Wound healing in the epithelium of the Drosophila wing imaginal disc is a regenerative process which is known to proceed via the assembly of a contractile actin cable that circumscribes the wound drawing the leading edge cells together in a characterstic rosette formation. Here we computation- ally explore various other biological and mechanical processes that are involved in tissue repair in Drosophila; the formation of dynamic actin protrusions that pull each other forward to close the wound; the active extrusion of dead cells from the wound site; and the effect of a global tension force operating on the tissue. In silico simulation results, using the vertex model of epithelial tissue, and in vivo data are compared. It is found that patterning of line tensions in wounded cells and cells neighbouring the wound can drive rosette formation and wound closure. Results from simulating a global tension force indicate this could recapitulate the initial expansion phase of wound healing seen in experiment. Contents 1 Introduction 2 1.1 Tissue regeneration . 2 1.2 Regenerative healing in Drosophila wing imaginal discs . 2 1.3 The mechanical drivers of epithelial wound healing in Drosophila . 3 2 The Vertex Model 4 3 Current work and results 5 3.1 Wound closure in vivo ...................................... 5 3.1.1 Wound closure rate . 5 3.1.2 Rosette formation . 5 3.1.3 Inital expansion of wound following ablation . 6 3.2 Wound Closure in silico ..................................... 7 3.2.1 Implementation of the vertex model .
    [Show full text]
  • Serotonin Signaling Regulates Insulin-Like Peptides for Growth, Reproduction, and Metabolism in the Disease Vector Aedes Aegypti
    Serotonin signaling regulates insulin-like peptides for growth, reproduction, and metabolism in the disease vector Aedes aegypti Lin Linga,b and Alexander S. Raikhela,b,1 aDepartment of Entomology, University of California, Riverside, CA 92521; and bInstitute for Integrative Genome Biology, University of California, Riverside, CA 92521 Contributed by Alexander S. Raikhel, September 6, 2018 (sent for review May 15, 2018; reviewed by Christen Mirth, Michael R. Strand, and Marc Tatar) Disease-transmitting female mosquitoes require a vertebrate individuals have completed adequate growth to enter the next de- blood meal to produce their eggs. An obligatory hematophagous velopmental stage (5, 6). Although other DILPs promote growth, lifestyle, rapid reproduction, and existence of a large number of their specific expression patterns suggest that they might carry out transmittable diseases make mosquitoes the world’s deadliest an- distinct physiological functions (2). In Drosophila larvae, dilps1,-2, imals. Attaining optimal body size and nutritional status is critical -3,and-5 are expressed predominantly in neurosecretory cells for mosquitoes to become reproductively competent and effective (IPCs, insulin producing cells) of the brain; ablation of larval IPCs disease vectors. We report that blood feeding boosts serotonin reduces body size with delayed metamorphosis (7). These DILPs concentration and elevates the serotonin receptor Aa5HT2B regulate growth by means of the canonical insulin/insulin-like (Aedes aegypti 5-hydroxytryptamine receptor, type 2B) transcript growth factor (IGF) pathway. Single gene mutations in insulin/ level in the fat-body, an insect analog of the vertebrate liver and IGF components have been shown to cause a reduction in growth adipose tissue.
    [Show full text]
  • Evidence for the Nonmuscle Nature of The" Myofibroblast" of Granulation Tissue and Hypertropic Scar. an Immunofluorescence Study
    American Journal of Pathology, Vol. 130, No. 2, February 1988 Copyright i American Association of Pathologists Evidencefor the Nonmuscle Nature ofthe "Myofibroblast" ofGranulation Tissue and Hypertropic Scar An Immunofluorescence Study ROBERT J. EDDY, BSc, JANE A. PETRO, MD, From the Department ofAnatomy, the Department ofSurgery, and JAMES J. TOMASEK, PhD Division ofPlastic and Reconstructive Surgery, and the Department of Orthopaedic Surgery, New York Medical College, Valhalla, New York Contraction is an important phenomenon in wound cell-matrix attachment in smooth muscle and non- repair and hypertrophic scarring. Studies indicate that muscle cells, respectively. Myofibroblasts can be iden- wound contraction involves a specialized cell known as tified by their intense staining of actin bundles with the myofibroblast, which has morphologic character- either anti-actin antibody or NBD-phallacidin. Myofi- istics of both smooth muscle and fibroblastic cells. In broblasts in all tissues stained for nonmuscle but not order to better characterize the myofibroblast, the au- smooth muscle myosin. In addition, nonmuscle myo- thors have examined its cytoskeleton and surrounding sin was localized as intracellular fibrils, which suggests extracellular matrix (ECM) in human burn granula- their similarity to stress fibers in cultured fibroblasts. tion tissue, human hypertrophic scar, and rat granula- The ECM around myofibroblasts stains intensely for tion tissue by indirect immunofluorescence. Primary fibronectin but lacks laminin, which suggests that a antibodies used in this study were directed against 1) true basal lamina is not present. The immunocytoche- smooth muscle myosin and 2) nonmuscle myosin, mical findings suggest that the myofibroblast is a spe- components ofthe cytoskeleton in smooth muscle and cialized nonmuscle type of cell, not a smooth muscle nonmuscle cells, respectively, and 3) laminin and 4) cell.
    [Show full text]
  • Studies on Wound Healing, with Special Reference to Epithelial Hyperplasia and Its Role in the Process
    STUDIES ON WOUND HEALING, WITH SPECIAL REFERENCE TO EPITHELIAL HYPERPLASIA AND ITS ROLE IN THE PROCESS T,OUIS H. JORSTAII (Fro))&the Iieaearch Lahorntoria of thc Brrr7iaid Free XhirL and Cancer Hospifol, Sciin t Lowis, Missouri) We have been interested in the healing of simple cutaneous wounds for a considerable period of time. Burrows has studied the nature of the healing process in sterile wounds of this type in the tissue culture (1). He and others in the laboratory have studied a large series of simple wounds in the laboratory animal. In some of these experiments precautions were taken in keeping the wound clean or sterile. The great majority of these wounds were made by marking the surface of the skin on the dorsal or ventral surf:tce of the animal by means of a cork borer of one centimeter or less in diameter and removing the skin with sharp curved scissors. Depending upon the nature of the skin folds arid its relation to stress and strain the wound would remain round in contour or become somewhat eliptical in outline after the animal became active following the operative procedure. All of these wounds were made with the animal under anaes- thesia. In addition to observations and measurements of these wounds in the gross, from day to day, many of them were sectioned and studied microscopically. In the tissue culture studies Burrows noted that epithelial cells do not separate from each other in the culture while the con- nective tissue cells separate and disperse. Epithelial membranes appear only from firmly anchored fragments of skin in these cultures.
    [Show full text]
  • Particular Reference to the Development of Theneural
    The role of embryology in teratological research, with particular reference to the development of the neural tube and heart M. H. Kaufman Department ofAnatomy, University of Cambridge, Cambridge CB2 3DY, U.K. Introduction There are many intriguing questions that the experimental embryologist can attempt to answer which could provide insight into the pathogenesis of many of the commoner types of congenital abnormalities that affect the human population. I should like to draw attention to certain areas of embryological interest, and make some general and personal observations on teratological research. I shall concentrate on two particular areas of interest, namely studies into the pathogenesis of neural tube closure defects and cardiovascular anomalies because these are the topics of my special interests. Two quite different, but complementary approaches may be employed in experimental teratological research to investigate how certain agents act on specific organs or tissues of the embryo or fetus to induce their abnormal development. The first approach takes cognizance of the nature and chemical structure of the agent under investigation, in order to determine at the biochemical level what the underlying mechanism and principal sites of action are likely to be. The primary effect of the agent may be to disrupt maternal metabolism, and the effect on the embryo or fetus may be secondary to the effect on the mother. In these latter circumstances it is not uncommon for an embryotoxic effect to be produced before any toxic manifestation becomes apparent in the mother. The second approach takes cognizance of the morphological abnormalities which may be induced by embryonic exposure to a teratogenic agent, in order to determine in the first instance at which stage of gestation the teratogenic insult is likely to have occurred, and, also, its site of action at the cellular and tissue level.
    [Show full text]
  • Collagen in Wound Healing
    bioengineering Review Collagen in Wound Healing Shomita S. Mathew-Steiner, Sashwati Roy and Chandan K. Sen * Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; [email protected] (S.S.M.-S.); [email protected] (S.R.) * Correspondence: [email protected]; Tel.: +1-317-278-2735 Abstract: Normal wound healing progresses through inflammatory, proliferative and remodeling phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in a chronic, non-healing state that typically requires some form of intervention to guide the process back to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation, increased destruction of ECM components caused by elevated metalloproteinases and other enzymes and improper activation of soluble mediators of the wound healing process. Collagen, being central in the regulation of several of these processes, has been utilized as an adjunct wound therapy to promote healing. In this work the significance of collagen in different biological processes relevant to wound healing are reviewed and a summary of the current literature on the use of collagen-based products in wound care is provided. Keywords: extracellular matrix; collagen; signaling; inflammation; wound healing; collagen dressings; engineered collagen Citation: Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound 1. Introduction Healing. Bioengineering 2021, 8, 63. Sophisticated regulation by a number of key factors including the environment of the https://doi.org/10.3390/ wound which is rich in extracellular matrix (ECM) drives the process of wound healing [1,2].
    [Show full text]