A Dynamic Data Structure for Approximate Range Searching Eunhui Park Department of Computer Science University of Maryland College Park, Maryland
[email protected] Abstract In this paper, we introduce a simple, randomized dynamic data structure for storing multidimensional point sets. Our particular focus is on answering approximate geometric retrieval problems, such as approximate range searching. Our data structure is essentially a partition tree, which is based on a balanced variant of the quadtree data structure. As such it has the desirable properties that it forms a hierarchical decomposition of space into cells, which are based on hyperrectangles of bounded aspect ratio, each of constant combinatorial complexity. In any fixed dimension d, we show that after O(n log n) preprocessing, our data structure can store a set of n points in Rd in space O(n) and height O(log n). It supports insertion in time O(log n) and deletion in time O(log2 n). It also supports ε-approximate spherical range (counting) queries in time 1 d−1 O log n +( ε ) , which is optimal for partition-tree based methods. All running times hold with high probability. Our data structure can be viewed as a multidimensional generalization of the treap data structure of Seidel and Aragon. Keywords: Geometric data structures, dynamic data structures, quadtrees, range searching, approxi- mation algorithms. 1 Introduction Recent decades have witnessed the development of many data structures for efficient geometric search and retrieval. A fundamental issue in the design of these data structures is the balance between efficiency, generality, and simplicity. One of the most successful domains in terms of simple, practical approaches has been the development of linear-sized data structures for approximate geometric retrieval problems involving points sets in low dimensional spaces.