Dye-Sensitized Nanostructured and Organic Photovoltaic Cells: Technical Review and Preliminary Tests
Total Page:16
File Type:pdf, Size:1020Kb
Janne Halme Dye-sensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests Master's thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology Espoo, February 12, 2002 Supervisor: Professor Peter Lund Instructor: Professor Peter Lund HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER'S THESIS Department of Engineering Physics and Mathematics Author: Janne Halme Department: Department of Engineering Physics and Mathematics Major subject: Engineering Physics - Advanced Energy Systems Minor subject: Systems and operations research Title: Dye-sensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests Väriaineherkistetyt nanorakenteiset ja orgaaniset aurinkosähkökennot: Title in Finnish: tekninen kirjallisuuskatsaus ja alustavia kokeita Chair: Tfy-56, Advanced Energy Systems Supervisor: Professor Peter Lund Instructor: Professor Peter Lund The solar electricity is presently a rapidly growing but often relatively expensive renewable energy form. Recently however, new molecular photovoltaic (PV) materials have been developed, which could enable a production of low-cost solar cells in the future. The thesis begins with a discussion of the current status of the PV technology and a short introduction to the different PV technologies and to the basics of photovoltaics. The dye-sensitized solar cell (DSSC) is an electrochemical solar cell where light absorption occurs by dye molecules attached to a nanostructured TiO2 electrode. An introduction to the DSSC is given including a short description of the operating principle of the cell and a discussion of the physical and chemical processes behind it. A systematic literature review is done on the materials and most essential preparation methods of the standard DSSC. The performance of the DSSC is reviewed in terms of the energy conversion efficiency and the long- term stability. The important directions of development are the transition from glass substrates to plastic foils and from batch processing to continuous processing as well as the use of solid state electrolytes. The glass-based DSSC technology is on the verge of commercialization and the manufacturing cost estimates for the technology are close to the projected costs of other PV technologies. The purely organic solar cells are discussed individually beginning with the discussion of the fundamentals of organic photovoltaics and an introduction of different types of organic photovoltaic materials including semiconducting polymers, dyes, pigments and liquid crystalline materials. A review is done on the performance results of organic solar cells categorizing the cells by their device architecture. The development of the organic PV materials is still at an early stage and no clearly outperforming materials or cell structures have yet emerged. Experimental results are reported including a demonstration of the dye-sensitization with a natural dye as well as a preparation and testing of a series of ruthenium-dye based DSSCs. An efficiency of 0.6% at about 600 W/m2 solar illumination was obtained for the DSSCs in outdoor measurements. Number of pages: 115 Key words: Solar cell, dye-sensitized solar cell, organic photovoltaic materials Department fills: Approved: Library code: 2 TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ Teknillisen fysiikan ja matematiikan osasto Tekijä: Janne Halme Osasto: Teknillisen fysiikan ja matematiikan osasto Pääaine: Teknillinen fysiikka - Energiateknologiat Sivuaine: Systeemi- ja operaatiotutkimus Työn nimi: Väriaineherkistetyt nanorakenteiset ja orgaaniset aurinkosähkökennot: tekninen kirjallisuuskatsaus ja alustavia kokeita Dye-sensitized nanostructured and organic photovoltaic cells: technical Title in English: review and preliminary tests Professuuri: Tfy-56, Energiateknologiat Työn valvoja: Professori Peter Lund Työn ohjaaja: Professori Peter Lund Aurinkosähkö on tällä hetkellä nopeasti kasvava mutta usein verrattain kallis uusiutuva energiamuoto. Viime aikoina on kuitenkin kehitetty uusia molekulaarisia aurinkosähkömateriaaleja, jotka voivat mahdollistaa tulevaisuudessa halpojen aurinkosähkökennojen tuotannon. Työn alussa käsitellään aurinkosähkön nykytilaa ja luodaan lyhyt katsaus eri aurinkosähköteknologioihin ja aurinkosähkön perusteisiin. Väriaineherkistetty aurinkokenno (väriainekenno) on valosähkökemiallinen aurinkokenno, jossa valon absorptio tapahtuu nanorakenteisen TiO2 -elektrodin pintaan kiinnittyneiden väriainemolekyylien avulla. Työssä esitellään väriainekennon toimintaperiaate ja tarkastellaan sen taustalla olevia fysikaalisia ja kemiallisia prosesseja, sekä tehdään järjestelmällinen kirjallisuuskatsaus perusväriainekennon materiaaleihin ja tärkeimpiin valmistusmenetelmiin. Väriainekennon suorituskykyä tarkastellaan energian konversion hyötysuhteen ja pitkäaikaisstabiilisuuden osalta. Tärkeitä kehityssuuntia ovat siirtyminen lasisubstraateista muovikalvoihin ja vaiheittaisesta valmistusprosessista jatkuvaan prosessiin sekä kiinteiden elektrolyyttien käyttö. Lasisubstraattiin perustuva väriainekennoteknologia on kaupallistumisen kynnyksellä ja sen valmistuskustannusarviot ovat lähellä muiden aurinkosähköteknologioiden kustannusennusteita. Puhtaasti orgaanisia aurinkosähkökennoja tarkastellaan erikseen alkaen orgaanisten aurinkosähkömateriaalien fysikaalisista perusteista. Tämän jälkeen esitellään erilaiset orgaaniset aurinkosähkömateriaalit, joihin kuuluu puolijohtavia polymeerejä, väriaineita, pigmenttejä ja nestekiteisiä materiaaleja, sekä tehdään katsaus orgaanisten kennojen tuloksiin luokitellen kennot niiden rakenteen mukaan. Orgaanisten aurinkosähkömateriaalien kehitys on vielä alkuvaiheessa eikä selkeästi suorituskyvyltään muita parempia materiaaleja ja kennorakenteita ole vielä ilmennyt. Lopuksi esitetään kokeelliset tulokset väriaineherkistyksen havainnollistamisesta luonnon väriaineella sekä ruteeni-väriaineeseen perustuvien väriainekennojen valmistuksesta ja testauksesta. Ulkomittauksissa 600 W/m2 auringonvalossa saavutettiin väriainekennojen hyötysuhteeksi 0.6%. Sivumäärä: 115 Avainsanat: Aurinkokenno, väriaineherkistetty aurinkokenno, orgaaniset aurinkosähkömateriaalit Osasto täyttää: Hyväksytty: Kirjastotunnus: 3 Table of contents ABBREVIATIONS, SYMBOLS AND SYNONYMS........................................................................ 6 FOREWORD........................................................................................................................................ 8 1 INTRODUCTION ...................................................................................................................... 9 2 PHOTOVOLTAICS - GENERAL .......................................................................................... 14 2.1 CURRENT STATUS OF PHOTOVOLTAICS ................................................................................... 14 2.1.1 The photovoltaic market............................................................................................... 14 2.1.2 Viability of photovoltaics.............................................................................................. 14 2.1.3 Cost of solar electricity ................................................................................................ 15 2.1.4 Possibilities for cost reduction of solar cells................................................................ 16 2.2 PHOTOVOLTAIC TECHNOLOGIES ............................................................................................. 19 2.2.1 Single-crystal and polycrystalline silicon solar cells ................................................... 19 2.2.2 Thin film solar cells...................................................................................................... 20 2.2.3 III-V Semiconductors.................................................................................................... 22 2.2.4 Photoelectrochemical solar cells.................................................................................. 22 2.3 BASICS OF PHOTOVOLTAIC ENERGY CONVERSION................................................................... 22 2.3.1 Solar irradiation and availability of solar electricity................................................... 22 2.3.2 Photovoltaic cell performance...................................................................................... 24 2.3.3 Operating principle of the standard silicon solar cell.................................................. 25 3 DYE-SENSITIZED NANOSTRUCTURED SOLAR CELLS.............................................. 29 3.1 OPERATING PRINCIPLE OF THE DYE-SENSITIZED SOLAR CELL.................................................. 29 3.2 THEORETICAL ISSUES OF THE DYE CELL OPERATION ............................................................... 32 3.2.1 Light absorption ........................................................................................................... 33 3.2.2 Charge separation........................................................................................................ 35 3.2.3 Charge transport .......................................................................................................... 36 3.2.4 Recombination.............................................................................................................. 39 3.2.5 Interfacial kinetics........................................................................................................ 40 4 MATERIALS OF THE DYE-SENSITIZED SOLAR CELL