Dye-Sensitized Nanostructured and Organic Photovoltaic Cells: Technical Review and Preliminary Tests

Total Page:16

File Type:pdf, Size:1020Kb

Dye-Sensitized Nanostructured and Organic Photovoltaic Cells: Technical Review and Preliminary Tests Janne Halme Dye-sensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests Master's thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology Espoo, February 12, 2002 Supervisor: Professor Peter Lund Instructor: Professor Peter Lund HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF MASTER'S THESIS Department of Engineering Physics and Mathematics Author: Janne Halme Department: Department of Engineering Physics and Mathematics Major subject: Engineering Physics - Advanced Energy Systems Minor subject: Systems and operations research Title: Dye-sensitized nanostructured and organic photovoltaic cells: technical review and preliminary tests Väriaineherkistetyt nanorakenteiset ja orgaaniset aurinkosähkökennot: Title in Finnish: tekninen kirjallisuuskatsaus ja alustavia kokeita Chair: Tfy-56, Advanced Energy Systems Supervisor: Professor Peter Lund Instructor: Professor Peter Lund The solar electricity is presently a rapidly growing but often relatively expensive renewable energy form. Recently however, new molecular photovoltaic (PV) materials have been developed, which could enable a production of low-cost solar cells in the future. The thesis begins with a discussion of the current status of the PV technology and a short introduction to the different PV technologies and to the basics of photovoltaics. The dye-sensitized solar cell (DSSC) is an electrochemical solar cell where light absorption occurs by dye molecules attached to a nanostructured TiO2 electrode. An introduction to the DSSC is given including a short description of the operating principle of the cell and a discussion of the physical and chemical processes behind it. A systematic literature review is done on the materials and most essential preparation methods of the standard DSSC. The performance of the DSSC is reviewed in terms of the energy conversion efficiency and the long- term stability. The important directions of development are the transition from glass substrates to plastic foils and from batch processing to continuous processing as well as the use of solid state electrolytes. The glass-based DSSC technology is on the verge of commercialization and the manufacturing cost estimates for the technology are close to the projected costs of other PV technologies. The purely organic solar cells are discussed individually beginning with the discussion of the fundamentals of organic photovoltaics and an introduction of different types of organic photovoltaic materials including semiconducting polymers, dyes, pigments and liquid crystalline materials. A review is done on the performance results of organic solar cells categorizing the cells by their device architecture. The development of the organic PV materials is still at an early stage and no clearly outperforming materials or cell structures have yet emerged. Experimental results are reported including a demonstration of the dye-sensitization with a natural dye as well as a preparation and testing of a series of ruthenium-dye based DSSCs. An efficiency of 0.6% at about 600 W/m2 solar illumination was obtained for the DSSCs in outdoor measurements. Number of pages: 115 Key words: Solar cell, dye-sensitized solar cell, organic photovoltaic materials Department fills: Approved: Library code: 2 TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ Teknillisen fysiikan ja matematiikan osasto Tekijä: Janne Halme Osasto: Teknillisen fysiikan ja matematiikan osasto Pääaine: Teknillinen fysiikka - Energiateknologiat Sivuaine: Systeemi- ja operaatiotutkimus Työn nimi: Väriaineherkistetyt nanorakenteiset ja orgaaniset aurinkosähkökennot: tekninen kirjallisuuskatsaus ja alustavia kokeita Dye-sensitized nanostructured and organic photovoltaic cells: technical Title in English: review and preliminary tests Professuuri: Tfy-56, Energiateknologiat Työn valvoja: Professori Peter Lund Työn ohjaaja: Professori Peter Lund Aurinkosähkö on tällä hetkellä nopeasti kasvava mutta usein verrattain kallis uusiutuva energiamuoto. Viime aikoina on kuitenkin kehitetty uusia molekulaarisia aurinkosähkömateriaaleja, jotka voivat mahdollistaa tulevaisuudessa halpojen aurinkosähkökennojen tuotannon. Työn alussa käsitellään aurinkosähkön nykytilaa ja luodaan lyhyt katsaus eri aurinkosähköteknologioihin ja aurinkosähkön perusteisiin. Väriaineherkistetty aurinkokenno (väriainekenno) on valosähkökemiallinen aurinkokenno, jossa valon absorptio tapahtuu nanorakenteisen TiO2 -elektrodin pintaan kiinnittyneiden väriainemolekyylien avulla. Työssä esitellään väriainekennon toimintaperiaate ja tarkastellaan sen taustalla olevia fysikaalisia ja kemiallisia prosesseja, sekä tehdään järjestelmällinen kirjallisuuskatsaus perusväriainekennon materiaaleihin ja tärkeimpiin valmistusmenetelmiin. Väriainekennon suorituskykyä tarkastellaan energian konversion hyötysuhteen ja pitkäaikaisstabiilisuuden osalta. Tärkeitä kehityssuuntia ovat siirtyminen lasisubstraateista muovikalvoihin ja vaiheittaisesta valmistusprosessista jatkuvaan prosessiin sekä kiinteiden elektrolyyttien käyttö. Lasisubstraattiin perustuva väriainekennoteknologia on kaupallistumisen kynnyksellä ja sen valmistuskustannusarviot ovat lähellä muiden aurinkosähköteknologioiden kustannusennusteita. Puhtaasti orgaanisia aurinkosähkökennoja tarkastellaan erikseen alkaen orgaanisten aurinkosähkömateriaalien fysikaalisista perusteista. Tämän jälkeen esitellään erilaiset orgaaniset aurinkosähkömateriaalit, joihin kuuluu puolijohtavia polymeerejä, väriaineita, pigmenttejä ja nestekiteisiä materiaaleja, sekä tehdään katsaus orgaanisten kennojen tuloksiin luokitellen kennot niiden rakenteen mukaan. Orgaanisten aurinkosähkömateriaalien kehitys on vielä alkuvaiheessa eikä selkeästi suorituskyvyltään muita parempia materiaaleja ja kennorakenteita ole vielä ilmennyt. Lopuksi esitetään kokeelliset tulokset väriaineherkistyksen havainnollistamisesta luonnon väriaineella sekä ruteeni-väriaineeseen perustuvien väriainekennojen valmistuksesta ja testauksesta. Ulkomittauksissa 600 W/m2 auringonvalossa saavutettiin väriainekennojen hyötysuhteeksi 0.6%. Sivumäärä: 115 Avainsanat: Aurinkokenno, väriaineherkistetty aurinkokenno, orgaaniset aurinkosähkömateriaalit Osasto täyttää: Hyväksytty: Kirjastotunnus: 3 Table of contents ABBREVIATIONS, SYMBOLS AND SYNONYMS........................................................................ 6 FOREWORD........................................................................................................................................ 8 1 INTRODUCTION ...................................................................................................................... 9 2 PHOTOVOLTAICS - GENERAL .......................................................................................... 14 2.1 CURRENT STATUS OF PHOTOVOLTAICS ................................................................................... 14 2.1.1 The photovoltaic market............................................................................................... 14 2.1.2 Viability of photovoltaics.............................................................................................. 14 2.1.3 Cost of solar electricity ................................................................................................ 15 2.1.4 Possibilities for cost reduction of solar cells................................................................ 16 2.2 PHOTOVOLTAIC TECHNOLOGIES ............................................................................................. 19 2.2.1 Single-crystal and polycrystalline silicon solar cells ................................................... 19 2.2.2 Thin film solar cells...................................................................................................... 20 2.2.3 III-V Semiconductors.................................................................................................... 22 2.2.4 Photoelectrochemical solar cells.................................................................................. 22 2.3 BASICS OF PHOTOVOLTAIC ENERGY CONVERSION................................................................... 22 2.3.1 Solar irradiation and availability of solar electricity................................................... 22 2.3.2 Photovoltaic cell performance...................................................................................... 24 2.3.3 Operating principle of the standard silicon solar cell.................................................. 25 3 DYE-SENSITIZED NANOSTRUCTURED SOLAR CELLS.............................................. 29 3.1 OPERATING PRINCIPLE OF THE DYE-SENSITIZED SOLAR CELL.................................................. 29 3.2 THEORETICAL ISSUES OF THE DYE CELL OPERATION ............................................................... 32 3.2.1 Light absorption ........................................................................................................... 33 3.2.2 Charge separation........................................................................................................ 35 3.2.3 Charge transport .......................................................................................................... 36 3.2.4 Recombination.............................................................................................................. 39 3.2.5 Interfacial kinetics........................................................................................................ 40 4 MATERIALS OF THE DYE-SENSITIZED SOLAR CELL
Recommended publications
  • A Review Paper Ondevelopment in Material Used in Solar Pannel As
    SSRG International Journal of Mechanical Engineering Volume 6 Issue 6, 35-41, June 2019 ISSN: 2348–8360 /doi: 10.14445/23488360/IJME-V6I6P107 © 2019 Seventh Sense Research Group® A Review Paper on Development in Material Used in Solar Pannel as Solar Cell Material Ankur Kumar Bansal, Dinesh Kumar, Dr. Mukesh Kumar M.tech Mechanical, AKTU Lucknow, India Abstract electron flow when photons from sunlight absorbed In the present era, While seeing the increasing and ejected electrons, leaving a hole that is further demand for energy and depletion of resources from filled by the surrounding electrons. This phenomenon which we obtained energy, solar energy suggest as is called the photovoltaic effect. The PV cell directs the best alternative energy resource. The light from the electrons in one direction, which gives rise to the the sun is not only a non-vanishing resource of flow of current. The amount of current is directly energy but also it is an Eco- Friendly resource of proportional to the humble of absorbed photons. So it energy(free from the environment pollution and can be easily said that PV cells are a variable current noise). It can easily compensate for the energy source. The first solar cell was built by Charles Fritts requirements fulfilled by the other resources, which in 1883 by the use of a thin layer of gold, and a are depleting and environment challenges, such as coating of selenium formed a junction. In the starting Fossil Fuel and petroleum deposits. era, the PCE was very low, about 1% only, but Basically, we receive solar energy from the further improvements make it increase.
    [Show full text]
  • Encapsulation of Organic and Perovskite Solar Cells: a Review
    Review Encapsulation of Organic and Perovskite Solar Cells: A Review Ashraf Uddin *, Mushfika Baishakhi Upama, Haimang Yi and Leiping Duan School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia; [email protected] (M.B.U.); [email protected] (H.Y.); [email protected] (L.D.) * Correspondence: [email protected] Received: 29 November 2018; Accepted: 21 January 2019; Published: 23 January 2019 Abstract: Photovoltaic is one of the promising renewable sources of power to meet the future challenge of energy need. Organic and perovskite thin film solar cells are an emerging cost‐effective photovoltaic technology because of low‐cost manufacturing processing and their light weight. The main barrier of commercial use of organic and perovskite solar cells is the poor stability of devices. Encapsulation of these photovoltaic devices is one of the best ways to address this stability issue and enhance the device lifetime by employing materials and structures that possess high barrier performance for oxygen and moisture. The aim of this review paper is to find different encapsulation materials and techniques for perovskite and organic solar cells according to the present understanding of reliability issues. It discusses the available encapsulate materials and their utility in limiting chemicals, such as water vapour and oxygen penetration. It also covers the mechanisms of mechanical degradation within the individual layers and solar cell as a whole, and possible obstacles to their application in both organic and perovskite solar cells. The contemporary understanding of these degradation mechanisms, their interplay, and their initiating factors (both internal and external) are also discussed.
    [Show full text]
  • Thin Film Cdte Photovoltaics and the U.S. Energy Transition in 2020
    Thin Film CdTe Photovoltaics and the U.S. Energy Transition in 2020 QESST Engineering Research Center Arizona State University Massachusetts Institute of Technology Clark A. Miller, Ian Marius Peters, Shivam Zaveri TABLE OF CONTENTS Executive Summary .............................................................................................. 9 I - The Place of Solar Energy in a Low-Carbon Energy Transition ...................... 12 A - The Contribution of Photovoltaic Solar Energy to the Energy Transition .. 14 B - Transition Scenarios .................................................................................. 16 I.B.1 - Decarbonizing California ................................................................... 16 I.B.2 - 100% Renewables in Australia ......................................................... 17 II - PV Performance ............................................................................................. 20 A - Technology Roadmap ................................................................................. 21 II.A.1 - Efficiency ........................................................................................... 22 II.A.2 - Module Cost ...................................................................................... 27 II.A.3 - Levelized Cost of Energy (LCOE) ....................................................... 29 II.A.4 - Energy Payback Time ........................................................................ 32 B - Hot and Humid Climates ...........................................................................
    [Show full text]
  • I OPTIMIZATION of ORGANIC SOLAR CELLS a DISSERTATION
    OPTIMIZATION OF ORGANIC SOLAR CELLS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Seung Bum Rim March 2010 i © 2010 by Seung Bum Rim. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/yx656fs6181 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Peter Peumans, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Michael McGehee I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Philip Wong Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract Organic solar cell is a promising technology because the versatility of organic materials in terms of the tunability of their electrical and optical properties and because of their relative insensitivity to film imperfections which potentially allows for very low-cost high-throughput roll-to-roll processing.
    [Show full text]
  • Solar Cells They Rely on Are Notoriously Expensive to Produce
    THE PRESENT PROBLEM WITH SOLAR POWER is price. Ironically, sunlight, which is abundant beyond the energy needs of the entire human race and completely free, is frequently deemed too expensive to harness. Photovoltaic panels, systems to make them compatible with grid electricity, and batteries to squirrel away energy for when it’s cloudy—all these add cost. And while such hardware and installation costs will continue to diminish over time, the standard silicon solar cells they rely on are notoriously expensive to produce. Naturally, the scientific community has taken great interest in identifying alternative materials for solar cells. Solar-harvesting materials under development at Los Alamos and elsewhere include specialized thin films, organic layers, semi- conductor nanodevices, and others. Each has promise, and each has drawbacks. But a new class of challengers emerged a few years ago and has been improving with surprising speed since then. Known as perovskites, they are any crystalline material with the same broad class of chemical structure as a natural mineral of the same name. Perovskite solar cells are generally easy to work with, easy to adjust for improved performance, and very easy to afford. And in recent experi- mentation at Los Alamos, a particular recipe has been shown to reliably generate perovskite crystals that exhibit solar conversion efficiencies comparable to those of silicon. “Silicon solar cells are still the gold standard. They’re reliable and efficient, and they’ve been thoroughly demonstrated in the field,” says Los Alamos materials scientist Aditya Mohite. “I can’t wait to render them obsolete.” Anatomy of a cell A standard solar cell contains an active layer, usually silicon, sandwiched between two electrode layers.
    [Show full text]
  • Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials
    applied sciences Article Thermal Management of Concentrated Multi-Junction Solar Cells with Graphene-Enhanced Thermal Interface Materials Mohammed Saadah 1,2, Edward Hernandez 2,3 and Alexander A. Balandin 1,2,3,* 1 Nano-Device Laboratory (NDL), Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA; [email protected] 2 Phonon Optimized Engineered Materials (POEM) Center, Bourns College of Engineering, University of California, Riverside, CA 92521, USA; [email protected] 3 Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA * Correspondence: [email protected]; Tel.: +1-951-827-2351 Academic Editor: Philippe Lambin Received: 20 May 2017; Accepted: 3 June 2017; Published: 7 June 2017 Abstract: We report results of experimental investigation of temperature rise in concentrated multi-junction photovoltaic solar cells with graphene-enhanced thermal interface materials. Graphene and few-layer graphene fillers, produced by a scalable environmentally-friendly liquid-phase exfoliation technique, were incorporated into conventional thermal interface materials. Graphene-enhanced thermal interface materials have been applied between a solar cell and heat sink to improve heat dissipation. The performance of the multi-junction solar cells has been tested using an industry-standard solar simulator under a light concentration of up to 2000 suns. It was found that the application of graphene-enhanced thermal interface materials allows one to reduce the solar cell temperature and increase the open-circuit voltage. We demonstrated that the use of graphene helps in recovering a significant amount of the power loss due to solar cell overheating. The obtained results are important for the development of new technologies for thermal management of concentrated photovoltaic solar cells.
    [Show full text]
  • National Survey Report of PV Power Applications in Sweden 2015
    National Survey Report of PV Power Applications in Sweden 2015 Prepared by Johan Lindahl Table of contents Table of contents .................................................................................................................. 1 Foreword ............................................................................................................................... 3 Introduction .......................................................................................................................... 4 1 Installation data .................................................................................................................... 5 1.1 Applications for Photovoltaics ................................................................................. 5 1.2 Total photovoltaic power installed .......................................................................... 5 1.2.1 Method ........................................................................................................ 5 1.2.2 The Swedish PV market ............................................................................... 5 1.2.3 Swedish PV market segments ..................................................................... 9 1.2.4 The geographical distribution of PV in Sweden .......................................... 10 1.2.5 PV in the broader Swedish energy market .................................................. 12 2 Competitiveness of PV electricity ......................................................................................... 13 2.1 Module
    [Show full text]
  • Summary of the High-Efficiency Crystalline Solar Cell Research Forum
    SUMMARY OF THE HIGH-EFFICIENCY CRYSTALLINE SOLAR CELL RESEARCH FORUM UNIVERSITY OF PENNSYLVANIA M. Wolf Session I: OVERVIEW P. Landsberg Some Aspects of the Minority Carrier Lifetime in Silicon. C.T. Sah Review of Recombination Phenomena in Righ- Efficiency Solar Cells. Session 11: EGR EFFICIENCY CONCEPTS n. Wolf Silicon Solar Cell Efficiency Improvement: Status and Outlook. Some Practical Considerattons far Econoaical Back Contact Fovaaaticn on High-Efficiency Solar Cells. High-Efficiency Cell Concepts on Low-Cost Silicon Sheet. R, Swanson High Lifetime Silicon Processing. L. Olsen Silicon HINP Solar Cells. Session 111: SURFACE/INTERFACE EFFECTS D. Chadi Atomic Structure of the Annealed Si (111) Surface. L. Kazaerski Surface and Interface Characteristics, S. Lai Nitridation of SiO2 for Surface Passivatfon. S. Panash Surface Passivation and Junction Formation Using Low-Energy Hydrogen Implants. P, Grunthaner Chemical Structure of Interfaces. PLENARY SESS!ONS Session IV: BULK BPFRCTS E. Sirtl Structural Defects in Crystalline Silicon. C. Pierce Oxygen and Carbon Impurities and Related Defects in Silicon. T. Tan Current Understanding of Point Defects and Diffusion Processes in Silicon. G. Schwuttke Defects in Web Dendrite Silicon Ribbon Crystals and Their Influences on Hinority Carrier Lifetime. J. Hanoka EBLC Characterization and dydrogen Passivation in Silicon Sheet. A. Neugrsschel Measurement of Electrical Parameters and Current Components in the Bulk of Silicon Solar Cells. Session V: MODEL-- I NG - R. Schwartz Current Status of One and Two Dimensional Numer- ical Models: Successes and Limitations. M. Lamorte Application of Closed-Form Solution Using Re- cursion Relationship in Silicon Solar Cells. P. Lindholm PIenomena Simulation for Heavy Doping and Surface ! Recombination Velocity.
    [Show full text]
  • Solar PV Technology Development Report 2020
    EUR 30504 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contact information Name: Nigel TAYLOR Address: European Commission, Joint Research Centre, Ispra, Italy Email: [email protected] Name: Maria GETSIOU Address: European Commission DG Research and Innovation, Brussels, Belgium Email: [email protected] EU Science Hub https://ec.europa.eu/jrc JRC123157 EUR 30504 EN ISSN 2600-0466 PDF ISBN 978-92-76-27274-8 doi:10.2760/827685 ISSN 1831-9424 (online collection) ISSN 2600-0458 Print ISBN 978-92-76-27275-5 doi:10.2760/215293 ISSN 1018-5593 (print collection) Luxembourg: Publications Office of the European Union, 2020 © European Union, 2020 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p.
    [Show full text]
  • Water-Splitting As Case Study
    inorganics Review First-Principles View on Photoelectrochemistry: Water-Splitting as Case Study Anders Hellman * and Baochang Wang Competence Centre for Catalysis and the Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Sweden; [email protected] * Correspondence: [email protected]; Tel.: +46-31-72386-9804 Academic Editor: Matthias Bauer Received: 30 March 2017; Accepted: 24 May 2017; Published: 1 June 2017 Abstract: Photoelectrochemistry is truly an interdisciplinary field; a natural nexus between chemistry and physics. In short, photoelectrochemistry can be divided into three sub-processes, namely (i) the creation of electron-hole pairs by light absorption; (ii) separation/transport on the charge carriers and finally (iii) the water splitting reaction. The challenge is to understand all three processes on a microscopic scale and, perhaps even more importantly, how to combine the processes in an optimal way. This review will highlight some first-principles insights to the above sub-processes, in particular as they occur using metal oxides. Based on these insights, challenges and future directions of first-principles methods in the field of photoelectrochemistry will be discussed. Keywords: water splitting; photoelectrochemistry; first-principles 1. Introduction “Water will be the coal of the future” states Cyrus Harding, one of the protagonists in Jules Verne’s novel “The Mysterious Island” [1]. Interestingly this is the conclusion after the protagonists have discussed the fact that the known coal reserves will eventually be depleted. The analogy to today’s crude oil is obvious. Based on the simple fact that it takes millions of years to produce fossil fuel, whereas the extraction, in comparison, is very fast, the depletion of crude oil is certain [2–4], although the exact time remains debatable.
    [Show full text]
  • Hybrid Photoelectrochemical and Photovoltaic Cells for Simultaneous Production of Chemical Fuels and Electrical Power
    ARTICLES https://doi.org/10.1038/s41563-018-0198-y Hybrid photoelectrochemical and photovoltaic cells for simultaneous production of chemical fuels and electrical power Gideon Segev1,2, Jeffrey W. Beeman1,2, Jeffery B. Greenblatt2,3,4 and Ian D. Sharp 1,2,5* Harnessing solar energy to drive photoelectrochemical reactions is widely studied for sustainable fuel production and versatile energy storage over different timescales. However, the majority of solar photoelectrochemical cells cannot drive the overall photosynthesis reactions without the assistance of an external power source. A device for simultaneous and direct production of renewable fuels and electrical power from sunlight is now proposed. This hybrid photoelectrochemical and photovoltaic device allows tunable control over the branching ratio between two high-value products of solar energy conversion, requires relatively simple modification to existing photovoltaic technologies, and circumvents the photocurrent mismatches that lead to significant loss in tandem photoelectrochemical systems comprising chemically stable photoelectrodes. Our proof-of-concept device is based on a transition metal oxide photoanode monolithically integrated onto silicon that possesses both front- and backside photovoltaic junctions. This integrated assembly drives spontaneous overall water splitting with no external power source, while also producing electricity near the maximum power point of the backside photovoltaic junction. The concept that photogenerated charge carriers can be controllably directed to produce electricity and chemical fuel provides an opportunity to significantly increase the energy return on energy invested in solar fuels systems and can be adapted to a variety of architec- tures assembled from different materials. he utilization of solar energy to drive (photo)electrochemical limit considering the solar energy input and the properties of the reactions has been widely studied for sustainable fuel produc- individual components in the system4–8.
    [Show full text]
  • Hybrid Nanocomposite Thin Films for Photovoltaic Applications: a Review
    nanomaterials Review Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review Marcela Socol *,† and Nicoleta Preda *,† National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125 Magurele, Romania * Correspondence: marcela.socol@infim.ro (M.S.); nicol@infim.ro (N.P.) † These authors contributed equally. Abstract: Continuing growth in global energy consumption and the growing concerns regarding climate change and environmental pollution are the strongest drivers of renewable energy deploy- ment. Solar energy is the most abundant and cleanest renewable energy source available. Nowadays, photovoltaic technologies can be regarded as viable pathways to provide sustainable energy genera- tion, the achievement attained in designing nanomaterials with tunable properties and the progress made in the production processes having a major impact in their development. Solar cells involving hybrid nanocomposite layers have, lately, received extensive research attention due to the possibility to combine the advantages derived from the properties of both components: flexibility and process- ability from the organic part and stability and optoelectronics features from the inorganic part. Thus, this review provides a synopsis on hybrid solar cells developed in the last decade which involve composite layers deposited by spin-coating, the most used deposition method, and matrix-assisted pulsed laser evaporation, a relatively new deposition technique. The overview is focused on the hybrid nanocomposite films that can use conducting polymers and metal phthalocyanines as p-type materials, fullerene derivatives and non-fullerene compounds as n-type materials, and semiconductor nanostructures based on metal oxide, chalcogenides, and silicon. A survey regarding the influence of various factors on the hybrid solar cell efficiency is given in order to identify new strategies for Citation: Socol, M.; Preda, N.
    [Show full text]