Gawharshad Institute of Higher Education Faculty of Computer Science Information Technology Essentials Chapter # 1 2017

Total Page:16

File Type:pdf, Size:1020Kb

Gawharshad Institute of Higher Education Faculty of Computer Science Information Technology Essentials Chapter # 1 2017 Gawharshad Institute of Higher Education Faculty of Computer Science Information Technology Essentials Chapter # 1 2017 Welcome Welcome to the Information Technology (IT) Essentials course. The goal of this course is to introduce you to computer hardware and software, as well as operating systems, networking concepts, mobile devices, IT security, and troubleshooting. These online course materials will assist you in developing the skills necessary to work as a technician in the field of IT. The specific skills covered in each chapter are described at the start of each chapter. You can use your smart phone, tablet, laptop, or desktop to access the course, participate in discussions with your instructor, view your grades, read or review text, and test your understanding using interactive media. You can also take quizzes and exams on your mobile device. Download Cisco Packet Tracer Mobile to complete Packet Tracer Activities found throughout the course. Education and Certifications In this course, you will gain the specialized technical skills needed to install, maintain, secure, and repair computers. Earning an industry-standard certification provides confidence and increases your opportunities in IT. This course will prepare you to take the CompTIA A+ Certification exams. This course is only an introduction into the world of IT. A technician can continue to study and earn the following certifications: CCNA - Cisco Certified Networking Associate CCNP - Cisco Certified Networking Professional CCIE - Cisco Certified Internetworking Expert CISSP - Certified Information Systems Security Professional MCP - Microsoft Certified Professional MCSA - Microsoft Certified Systems Administrator MCSE - Microsoft Certified Systems Engineer Network+ - CompTIA Network Certification Linux+ - CompTIA Linux Certification You can use IT certifications as credits for some university and college degrees in areas such as computer science and telecommunications. Chapter 1: Introduction to the Personal Computer A computer is an electronic machine that performs calculations based on a set of instructions. The first computers were huge, room-sized machines that took teams of people to build, manage, and maintain. The computer systems of today are exponentially faster and only a fraction of the size of those original computers. A computer system consists of hardware and software components. Hardware is the physical equipment. It includes the case, keyboard, monitor, cables, storage drives, speakers, and printers. Software includes the operating system and programs. The operating system manages computer operations such as identifying, accessing, and processing information. Programs or applications perform different functions. Programs vary widely depending on the type of information that is accessed or generated. For example, instructions for balancing a check book are different from instructions for simulating a virtual reality world on the Internet. Cases The case of a desktop computer houses the internal components such as the power supply, motherboard, central processing unit (CPU), memory, disk drives, and assorted adapter cards. Cases are typically made of plastic, steel, or aluminum and provide the framework to support, protect, and cool the internal components. A device form factor refers to its physical design and look. Desktop computers are available in a variety of form factors including: Horizontal case – These were popular with early computer systems. The computer case was horizontally oriented on the user desk with the monitor positioned on top. This form factor is no longer popular. Power Supplies Electricity from wall outlets is provided in alternating current (AC). However, all components inside a computer require direct current (DC) power. To obtain DC power, computers use a power supply, as shown in Figure 1, to convert AC power into a lower voltage DC power. The following describes the various computer desktop power supply form factors that have evolved over time: Advanced Technology (AT) – This is the original power supply for legacy computer systems now considered obsolete. AT Extended (ATX) – This is the updated version of the AT but still considered to be obsolete. ATX12V – This is the most common power supply on the market today. It includes a second motherboard connector to provide dedicated power to the CPU. There are several versions of ATX12V available. EPS12V – This was originally designed for network servers but is now commonly used in high-end desktop models. A power supply includes several different connectors, as shown in Figure 2. These connectors are used to power various internal components such as the motherboard and disk drives. The connectors are “keyed” which means that they are designed to be inserted in only one orientation. The table in Figure 3 describes common power supply connectors. The different connectors also provide different voltages. The most common voltages supplied are 3.3 volts, 5 volts, and 12 volts. The 3.3- and 5-volts are typically used by digital circuits, while the 12-volt is used to run motors in disk drives and fans. The table in Figure 4 highlights the different voltages provided by a power supply. Power supplies can also be single rail, dual rail, or multi rail. A rail is the printed circuit board (PCB) inside the power supply to which the external cables are connected. A single rail has all of the connectors connected to the same PCB while a multi rail PCB has separate PCBs for each connector. A computer can tolerate slight fluctuations in power, but a significant deviation can cause the power supply to fail. Power Supply Wattage Power supply specifications are typically expressed in watts (W). To understand what a watt is, refer to the table in Figure 1 which describes the four basic units of electricity that a computer technician must know. A basic equation, known as Ohm's Law, expresses how voltage is equal to the current multiplied by the resistance: V = IR. In an electrical system, power is equal to the voltage multiplied by the current: P = VI. Computers normally use power supplies ranging from 250W to 800W output capacity. However, some computers need 1200W and higher capacity power supplies. When building a computer, select a power supply with sufficient wattage to power all components. Each component inside the computer uses a certain amount of power. Obtain the wattage information from the manufacturer’s documentation. When deciding on a power supply, make sure to choose one that has more than enough power for the current components. A power supply with a higher wattage rating has more capacity; therefore, it can handle more devices. On the back of some power supplies is a small switch called the voltage selector switch, as shown in Figure 2. This switch sets the input voltage to the power supply to either 110V / 115V or 220V / 230V. A power supply with this switch is called a dual voltage power supply. The correct voltage setting is determined by the country where the power supply is used. Setting the voltage switch to the incorrect input voltage could damage the power supply and other parts of your computer. If a power supply does not have this switch, it automatically detects and sets the correct voltage. CAUTION: Do not open a power supply. Electronic capacitors located inside of a power supply, shown in Figure 3, can hold a charge for extended periods of time. For more information about power supplies, click here. Lab - Ohm’s Law In this lab, you will answer questions based on electricity and Ohm’s Law. Lab - Ohm’s Law Motherboards The motherboard, also known as the system board or the main board, is the backbone of the computer. As shown in Figure 1, a motherboard is a printed circuit board (PCB) that contains buses, or electrical pathways, that interconnect electronic components. These components may be soldered directly to the motherboard, or added using sockets, expansion slots, and ports. These are some connections on the motherboard where computer components can be added, as shown in Figure 2: Central Processing Unit (CPU) - This is considered the brain of the computer. Random Access Memory (RAM) - This is a temporary location to store data and applications. Expansion slots - These provide locations to connect additional components. Chipset - This consists of the integrated circuits on the motherboard that control how system hardware interacts with the CPU and motherboard. It also establishes how much memory can be added to a motherboard and the type of connectors on the motherboard. Basic input/output system (BIOS) chip and Unified Extensible Firmware Interface (UEFI) chip - BIOS is used to help boot the computer and manage the flow of data between the hard drive, video card, keyboard, mouse, and more. Recently the BIOS has been enhanced by UEFI. UEFI specifies a different software interface for boot and runtime services but still relies on the traditional BIOS for system configuration, power- on self test (POST), and setup. Figure 3 displays a motherboard with some additional components installed. Most chipsets consist of the following two types: Northbridge – Controls high speed access to the RAM and video card. It also controls the speed at which the CPU communicates with all of the other components in the computer. Video capability is sometimes integrated into the Northbridge. Southbridge – Allows the CPU to communicate with slower speed devices including hard drives, Universal Serial Bus (USB) ports, and expansion slots. Figure 4 illustrates how a motherboard connects various components. The form factor of motherboards pertains to the size and shape of the board. It also describes the physical layout of the different components and devices on the motherboard. There have been many variations of motherboards developed over the years. There are three common motherboard form factors: Advanced Technology eXtended (ATX) - This is the most common motherboard form factor. The ATX case accommodates the integrated I/O ports on the standard ATX motherboard. The ATX power supply connects to the motherboard via a single 20-pin connector. Micro-ATX – This is a smaller form factor that is designed to be backward-compatible with ATX.
Recommended publications
  • Computer Service Technician- CST Competency Requirements
    Computer Service Technician- CST Competency Requirements This Competency listing serves to identify the major knowledge, skills, and training areas which the Computer Service Technician needs in order to perform the job of servicing the hardware and the systems software for personal computers (PCs). The present CST COMPETENCIES only address operating systems for Windows current version, plus three older. Included also are general common Linux and Apple competency information, as proprietary service contracts still keep most details specific to in-house service. The Competency is written so that it can be used as a course syllabus, or the study directed towards the education of individuals, who are expected to have basic computer hardware electronics knowledge and skills. Computer Service Technicians must be knowledgeable in the following technical areas: 1.0 SAFETY PROCEDURES / HANDLING / ENVIRONMENTAL AWARENESS 1.1 Explain the need for physical safety: 1.1.1 Lifting hardware 1.1.2 Electrical shock hazard 1.1.3 Fire hazard 1.1.4 Chemical hazard 1.2 Explain the purpose for Material Safety Data Sheets (MSDS) 1.3 Summarize work area safety and efficiency 1.4 Define first aid procedures 1.5 Describe potential hazards in both in-shop and in-home environments 1.6 Describe proper recycling and disposal procedures 2.0 COMPUTER ASSEMBLY AND DISASSEMBLY 2.1 List the tools required for removal and installation of all computer system components 2.2 Describe the proper removal and installation of a CPU 2.2.1 Describe proper use of Electrostatic Discharge
    [Show full text]
  • Comptia A+ Complete Study Guide A+ Essentials (220-601) Exam Objectives
    4830bperf.fm Page 1 Thursday, March 8, 2007 10:03 AM CompTIA A+ Complete Study Guide A+ Essentials (220-601) Exam Objectives OBJECTIVE CHAPTER Domain 1.0 Personal Computer Components 1.1 Identify the fundamental principles of using personal computers 1 1.2 Install, configure, optimize and upgrade personal computer components 2 1.3 Identify tools, diagnostic procedures and troubleshooting techniques for personal computer components 2 1.4 Perform preventative maintenance on personal computer components 2 Domain 2.0 Laptops and Portable Devices 2.1 Identify the fundamental principles of using laptops and portable devices 3 2.2 Install, configure, optimize and upgrade laptops and portable devices 3 2.3 Identify tools, basic diagnostic procedures and troubleshooting techniques for laptops and portable devices 3 2.4 Perform preventative maintenance on laptops and portable devices 3 Domain 3.0 Operating Systems 3.1 Identify the fundamentals of using operating systems 4 3.2 Install, configure, optimize and upgrade operating systems 5 3.3 Identify tools, diagnostic procedures and troubleshooting techniques for operating systems 6 3.4 Perform preventative maintenance on operating systems 6 Domain 4.0 Printers and Scanners 4.1 Identify the fundamental principles of using printers and scanners 7 4.2 Identify basic concepts of installing, configuring, optimizing and upgrading printers and scanners 7 4.3 Identify tools, basic diagnostic procedures and troubleshooting techniques for printers and scanners 7 Domain 5.0 Networks 5.1 Identify the fundamental
    [Show full text]
  • Overclocking Assistant for the Intel® Desktop Board DZ87KLT-75K
    Overclocking Assistant for the Intel® Desktop Board DZ87KLT-75K June 2013 Overclocking Assistant for the Intel® Desktop Board DZ87KLT-75K WARNING Altering clock frequency and/or voltage may (i) reduce system stability and useful life of the system and processor; (ii) cause the processor and other system components to fail; (iii) cause reductions in system performance; (iv) cause additional heat or other damage; and (v) affect system data integrity. Intel has not tested and does not warranty the operation of the processor beyond its specifications. WARNING Altering PC memory frequency and/or voltage may (i) reduce system stability and useful life of the system, memory and processor; (ii) cause the processor and other system components to fail; (iii) cause reductions in system performance; (iv) cause additional heat or other damage; and (v) affect system data integrity. Intel assumes no responsibility that the memory included, if used with altered clock frequencies and/or voltages, will be fit for any particular purpose. Check with the memory manufacturer for warranty and additional details. INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.
    [Show full text]
  • Temperature Adaptive Computing in a Real PC
    TEAPC: Temperature Adaptive Computing in a Real PC Augustus K. Uht and Richard J. Vaccaro University of Rhode Island Microarchitecture Research Institute Department of Electrical and Computer Engineering 4 East Alumni Ave. Kingston, RI 02864, USA {[email protected], [email protected]} Abstract* Herein we present an adaptive prototype, TEAPC, based on the standard IBM/Intel PC architecture and TEAPC is an IBM/Intel-standard PC realization realizing underclocking, that is, operating the system of a CPU temperature-adaptive feedback-control greatly below its specified frequency. We have system. The control system adjusts the CPU frequency implemented the entire TEAPC control system in and/or voltage to maintain a constant set-point software, in a Windows application. It runs in a temperature. TEAPC dynamically adapts to changing normal application mode on Windows 2000, CPU computation loads, as well as any other system multitasking normally with other applications. CPU phenomenon that affects the CPU temperature. For frequency and core voltage are changed dynamically, example, with the specific TEAPC hardware, should based on the output of a feedback control system using the CPU cooling fan fail, the control system detects the CPU chip temperature as its input. The control the increase in CPU temperature and automatically loop and underclocking models should be usable for reduces the CPU frequency and voltage to keep the any PC to be built, as well as many that already exist. CPU from overheating. In such a circumstance the This paper’s contributions are as follows: system continues to operate. All of the adaptation is Demonstration of temperature control of a COTS done dynamically, at runtime, on an unmodified (Commercial Off-The-Shelf) based PC via a modern standard operating system (Windows 2000) with a feedback control system; On-demand reliability and purely software-implemented feedback-control system.
    [Show full text]
  • Comptia A+ Certification Exam Prep
    Course 445 CompTIA A+ Certification Exam Prep 445/CN/H.3/709/H.2 Acknowledgments The author would like to thank the following people for their valuable help with this course: Teresa Shinn Carl Waldron Tim Watts Esteban Delgado Dave O’Neal Shirley Auguste Alicia Richardson © Learning Tree International, Inc. All rights reserved. Not to be reproduced without prior written consent. © LEARNING TREE INTERNATIONAL, INC. All rights reserved. All trademarked product and company names are the property of their respective trademark holders. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or translated into any language, without the prior written permission of the publisher. Copying software used in this course is prohibited without the express permission of Learning Tree International, Inc. Making unauthorized copies of such software violates federal copyright law, which includes both civil and criminal penalties. Introduction and Overview Course Objectives The main objective of this course is to Prepare you to pass the CompTIA A+ 220-901 and 220-902 exams To accomplish this goal, you will learn how to Safely disassemble and reassemble a complete PC system Install and configure common PC motherboards and adapter cards Use an organized strategy to identify and troubleshoot common PC problems Select and install the correct type of RAM memory needed to upgrade a PC system Install and configure data storage systems, including hard disks, solid state drives (SSD), CD, and DVD-ROM drives Identify fundamental components of laptops and mobile devices and describe how to troubleshoot common problems © Learning Tree International, Inc.
    [Show full text]
  • Error Handling and Energy Estimation Framework for Error Resilient Near-Threshold Computing Rengarajan Ragavan
    Error Handling and Energy Estimation Framework For Error Resilient Near-Threshold Computing Rengarajan Ragavan To cite this version: Rengarajan Ragavan. Error Handling and Energy Estimation Framework For Error Resilient Near- Threshold Computing. Embedded Systems. Rennes 1, 2017. English. tel-01636803 HAL Id: tel-01636803 https://hal.inria.fr/tel-01636803 Submitted on 17 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre : ANNÉE 2017 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Bretagne Loire pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Traitement du Signal et Télécommunications École doctorale MATISSE présentée par Rengarajan RAGAVAN préparée à l’unité de recherche UMR6074 IRISA Institut de recherche en informatique et systèmes aléatoires - CAIRN École Nationale Supérieure des Sciences Appliquées et de Technologie Thèse soutenue à Lannion le 22 septembre 2017 devant le jury composé de : Edith BEIGNÉ Error Handling and Directrice de Recherche à CEA Leti / rapporteur Energy Estimation Patrick GIRARD Directrice de Recherche à CNRS, LIRMM / rappor- teur Framework For Lorena ANGHEL Error Resilient Professeur à Grenoble INP, TIMA / examinateur Daniel MÉNARD Near-Threshold Professeur à INSA Rennes, IETR / examinateur Olivier SENTIEYS Computing Professeur à l’Université de Rennes 1 / directeur de thèse Cédric KILLIAN Maître de Conférences à l’Université de Rennes 1 / co-directeur de thèse To My Parents, My Brother, and My Teachers iii Acknowledgements I sincerely express my gratitude to my thesis supervisor Prof.
    [Show full text]
  • Dynamic Voltage and Frequency Scaling with Multi-Clock Distribution Systems on SPARC Core" (2009)
    Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 5-1-2009 Dynamic voltage and frequency scaling with multi- clock distribution systems on SPARC core Michael Nasri Michael Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Michael, Michael Nasri, "Dynamic voltage and frequency scaling with multi-clock distribution systems on SPARC core" (2009). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Dynamic Voltage and Frequency Scaling with Multi-Clock Distribution Systems on SPARC Core by Michael Nasri Michael A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering Supervised by Dr. Dhireesha Kudithipudi Department of Computer Engineering Kate Gleason College of Engineering Rochester Institute of Technology Rochester, NY May 2009 Approved By: Dr. Dhireesha Kudithipudi Assistant Professor, RIT Department of Computer Engineering Primary Advisor Dr. Ken Hsu Professor, RIT Department of Computer Engineering Dr. Muhammad Shaaban Associate Professor, RIT Department of Computer Engineering Thesis Release Permission Form Rochester Institute of Technology Kate Gleason College of Engineering Title: Dynamic Voltage and Frequency Scaling with Multi-Clock Distribution Systems on SPARC Core I, Michael Nasri Michael, hereby grant permission to the Wallace Memorial Library to reproduce my thesis in whole or part. Michael Nasri Michael Date Dedication To my parents for their pride and encouragement To my brother and sisters for their love and support Acknowledgements Thanks to Dr.
    [Show full text]
  • Geosciences and Climate on Marvell Thunderx2 White Paper
    WHITE PAPER Geosciences and Climate on Marvell ThunderX2 Server Processor Business Unit Marvell June 2019 ABSTRACT Earthquakes and climate change affect everyone on our planet. Increases in computational capability are letting scientists simulate these phenomena with increasingly finer resolution grids and with greater accuracy and urgency. In this white paper, we present why the Marvell® ThunderX2® Arm®-based server processor provides significant value for end users deploying applications in the field of weather modeling and geosciences. Marvell ThunderX2 – Designed for High-Performance Computing Before we dig deeper in to the ThunderX2 architecture, it is important to understand a typical way of categorizing high-performance computing (HPC) deployments. High-performance computing is broadly divided into two categoriesi. Capability computing refers to using a large- scale HPC installation to solve a single problem in the shortest possible time, for example simulating weather models on a Tier-0 HPC system. Capacity computing refers to optimizing system efficiency to solve as many mid-size or smaller problems as possible at the same time at the lowest possible cost, for example automobile manufacturers using rented (on-demand) HPC resources to simulate numerous drive models for their products. It is clear from the definitions above that an HPC customer must incorporate components of cost/CPU, # of CPUs and performance (execution time)/CPU. Thus, the cost of an HPC application can be summarized as cost α CPU hours where CPU hours = #cores x execution time The other important factor driving design decisions of an HPC system is the application suite running on a cluster. Although capability computing targets application runs with the lowest execution time, excessive application scaling may deliver diminishing returns in performance improvement while linearly increasing CPU-hours.
    [Show full text]
  • Error Handling and Energy Estimation for Error Resilient Near-Threshold Computing Rengarajan Ragavan
    Error handling and energy estimation for error resilient near-threshold computing Rengarajan Ragavan To cite this version: Rengarajan Ragavan. Error handling and energy estimation for error resilient near-threshold com- puting. Hardware Architecture [cs.AR]. Université Rennes 1, 2017. English. NNT : 2017REN1S038. tel-01654476 HAL Id: tel-01654476 https://tel.archives-ouvertes.fr/tel-01654476 Submitted on 4 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre : ANNÉE 2017 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Bretagne Loire pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Traitement du Signal et Télécommunications École doctorale MATISSE présentée par Rengarajan RAGAVAN préparée à l’unité de recherche UMR6074 IRISA Institut de recherche en informatique et systèmes aléatoires - CAIRN École Nationale Supérieure des Sciences Appliquées et de Technologie Thèse soutenue à Lannion le 22 septembre 2017 devant le jury composé de : Edith BEIGNÉ Error Handling and Directrice de Recherche à CEA Leti / rapporteur
    [Show full text]
  • Power Management in Tizen and Linux Kernel (Tizen 2.3)
    Power Management in Tizen and Linux Kernel (Tizen 2.3) Minsoo Ryu Real-Time Computing and Communications Lab. Hanyang University [email protected] Real-Time Computing and Communications Lab., Hanyang University http://rtcc.hanyang.ac.kr Outline Introduction ACPI (Advanced Configuration Power Interface) DVFS (Dynamic Voltage Frequency Scaling) Power Management in Tizen Lab Assignment Real-Time Computing and Communications Lab., Hanyang University http://rtcc.hanyang.ac.kr 22 Why Power Management? Battery-operated devices . Smartphones, digital cameras, and laptops use batteries . Power savings and battery run times are paramount Increasing energy use of servers . Servers and data centers in U.S. reached 1.5% of the national electricity consumption in 2006 . The electricity consumption of servers doubled between 2000 and 2006 Real-Time Computing and Communications Lab., Hanyang University http://rtcc.hanyang.ac.kr 33 Power Consumption in Smartphones Real-Time Computing and Communications Lab., Hanyang University http://rtcc.hanyang.ac.kr 44 Power Consumption of Memory In a server system . Memory consumes 19% of system power on average . Some work notes up to 40% of total system power Real-Time Computing and Communications Lab., Hanyang University http://rtcc.hanyang.ac.kr 55 Idle Power Consumption Only 30% of servers in data centers are fully utilized while keeping the other 70% in idle state . Idle servers consume between 60% and 66% of the peak load power consumption Real-Time Computing and Communications Lab., Hanyang University http://rtcc.hanyang.ac.kr 66 Two Dimensions of Power Management Power management when the system is idle . Select the most efficient idle state Power management when the system is active .
    [Show full text]
  • Beyond CPU: Considering Memory Power Consumption of Software
    Beyond CPU: Considering Memory Power Consumption of Software Hayri Acar1, Gülfem I. Alptekin2, Jean-Patrick Gelas3 and Parisa Ghodous1 1LIRIS, University of Lyon, Lyon, France 2Galatasaray University, Istanbul, Turkey 3ENS Lyon, LIP, UMR 5668, Lyon, France Keywords: Power Consumption, Sustainable Software, Energy Efficiency, Green IT. Abstract: ICTs (Information and Communication Technologies) are responsible around 2% of worldwide greenhouse gas emissions (Gartner, 2007). And according to the Intergovernmental Panel on Climate Change (IPPC) recent reports, CO2 emissions due to ICTs are increasing widely. For this reason, many works tried to propose various tools to estimate the energy consumption due to software in order to reduce carbon footprint. However, these studies, in the majority of cases, takes into account only the CPU and neglects all others components. Whereas, the trend towards high-density packaging and raised memory involve a great increased of power consumption caused by memory and maybe memory can become the largest power consumer in servers. In this paper, we model and then estimate the power consumed by CPU and memory due to the execution of a software. Thus, we perform several experiments in order to observe the behavior of each component. 1 INTRODUCTION more possible to obtain accurate and efficient results for energy consumption. However, using these types ICTs (Information and Communication of devices is complicated because it is necessary to Technologies) are responsible around 2% of have these devices and connect them to different worldwide greenhouse gas emissions (Gartner, components. What is more with this method, it is 2007). And according to the Intergovernmental Panel impossible to measure the energy consumed by on Climate Change (IPPC) recent reports, CO2 virtual machines and applications on process.
    [Show full text]
  • TEAPC: Adaptive Computing and Underclocking in a Real PC Augustus K
    From: The Proceedings of the First IBM P=ac2 Conference, October 6-8, 2004,IBM T.J. Watson Research Center, Yorktown Heights, NY, USA. Copyright 2004, A.K. Uht and R.J. Vaccaro. TEAPC: Adaptive Computing and Underclocking in a Real PC Augustus K. Uht and Richard J. Vaccaro University of Rhode Island Microarchitecture Research Institute Department of Electrical and Computer Engineering 4 East Alumni Ave. Kingston, RI 02864, USA {[email protected], [email protected]} real-time internal temperature. Since this is the major Abstract component of variation of timing within an Intel TEAPC is an IBM/Intel-standard PC realization of microprocessor (the CPU’s core voltage is highly the TEAtime performance “maximizing” adaptive regulated and approximately constant), it mirrors the computing algorithm, giving performance beyond original TEAtime philosophy. Further, it is possible worst-case-specifications. TEAPC goes beyond the to base the real-time performance on the real-time TEAtime algorithm by adapting to the current CPU power consumption of the entire PC; the latter is load. It is also the first machine to use extensive partially addressed in this paper. underclocking for disaster tolerance, low power consumption and high reliability. This is all done We have implemented the entire control system in dynamically, at runtime, on an unmodified standard software, in a Windows application. It runs in a operating system (Windows 2000) with a purely normal application mode on Windows 2000, software-implemented feedback-control based multitasking normally with other applications. CPU algorithm. frequency and core voltage are changed dynamically, based on the output of a feedback control system 1 Introduction using the CPU chip temperature as its primary input.
    [Show full text]