A Study of the Addition Compounds of Titanium Tetrabromide and Titanium Tetraiodide with 1,4-Dioxane, Tetrahydrofuran, and Tetrahydrqpyran

Total Page:16

File Type:pdf, Size:1020Kb

A Study of the Addition Compounds of Titanium Tetrabromide and Titanium Tetraiodide with 1,4-Dioxane, Tetrahydrofuran, and Tetrahydrqpyran A STUDY OF THE ADDITION COMPOUNDS OF TITANIUM TETRABROMIDE AND TITANIUM TETRAIODIDE WITH 1,4-DIOXANE, TETRAHYDROFURAN, AND TETRAHYDRQPYRAN DISSERTATION Presented in Partial Fulfillment of tha Requirements for the Degree Doctor of Philosphy in the Graduate School of The Ohio State University Robert Fredrick Rolsten, B.S. The Ohio State University 1955 Approved by: D r ACKNOWLEDGEMENTS The author wishes to express appreciation to Dr. Harry H. Sisler for his continued personal interest and guidance throughout the course of the investigation. Appreciation is also extended to Dr. Edward D. Loughran for his cooperation in the use of the infrared spectro­ photometer, to Dr. Preston M. Harris and Mr. Herbert W. Newkirk for contributing to the interpretation of the X-Ray data. The arrangement between Battelle Memorial Institute and the Graduate School of The Ohio State University with regard to tuition is gratefully acknowledged. I fully recognize the sacrifice my children have made in tolerating my necessary absence while attending school and which resulted in my failing of fatherly obligations. I sincerely hope the means has not destroyed the end. ii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ......................................... ...... ii LIST OF ILLUSTRATIONS .......................................... iv LIST OF TABIES ............................................. viii I. INTRODUCTION .................................. 1 II. HISTORICAL ............................................... 3 III. PREPARATION AND PURIFICATION OF REAGENTS ................ 25 IV. PREPARATION OF ADDITION COMPOUNDS ...................... 34 V. X-RAY DIFFRACTION ANALYSIS .............................. 55 VI. NEUTRALIZATION EQUIVALENT WEIGHT ....................... 136 VII. INFRARED ANALYSIS ........................................ 184 VIII. CRYOSCOPIC STUDY ......................................... 208 IX. REACTIONS OF TJ.I4 WITH EPOXY COMPOUNDS .................. 219 X. X-RAY DIFFRACTION ANALYSIS ........................ 232 XI. THEORETICAL DISCUSSION .................................. 255 XU. SUMMARY ................................................... 266 XIII. SUGGESTED RESEARCH PROBLEMS.... ........................... 268 APPENDIX I ..................................................... 269 APPENDIX II .................................................... 275 APPENDIX III ................................................... 278 APPENDIX IV ........ 280 AUTOBIOGRAPHY ................. V ................................ 283 iii LIST OF ILLUSTRATIONS Figure Page 1 Apparatus for Preparation of TiBr4 ........................ 27 2 Reaction Flask for The Preparation of TiBr^,.......... 29 3 Titanium Tetrabromide Storage Ampoules................. 30 4 Apparatus for Preparation of Addition Compounds. ....... 35 5 Purification of the Addition Compound, TiBr4 »C4Hg0 2 . ... 37 6 Photograph of TiBr4 and TiBr4 *C4 Hg0 2 ............ 40 7 Infrared Spectrogram of Tetra hydro fur an ......... 47 8 Infrared Spectrogram of Viscous Liquid As a Result of The Reaction of TiBr4 and Tetra hydro fur an............ 47 9 Infrared Spectrogram of TiBr4 *2Tetrahydrofuran'.in Nujol.. 49 10 Infrared Spectrogram of Water Insoluble Liquid....... 52 11 Infrared Spectrogram of Viscous Liquid After Passing Through a Column of Al2 0 3 »celite..................... 53 12 Geometrical Features of the Debye-Scherrer Technique. ... 57 13 X-ray Spectrometer Data for Ti0 2 - 78 14 X-ray Diffraction Patterns of Ti02 (Anatase)......... 79 15 Determination of Lattice Constant, a0, for Ti02 (Anatase) 80 16 Determination of the Lattice Constant, a0, for TiBr4 . ... 90 17 X-ray Diffraction Pattern of TiBr4 .................... 91 18 X-ray Diffraction Pattern of TiBr4 *Dioxane, Iron Radiation........... 106 19 X-ray Diffraction Pattern of TiBr4 *Dioxane, Cobalt Radiation................ 106 iv LIST OF ILLUSTRATIONS (Continued) Figure Page 20 X-ray Diffraction Pattern of TiBr4 *Dioxane, Copper Radiation. ....................... 106 21 Determination of the Lattice Constant, a0, for TiBr4 *Dioxane... ............................................ 107 22 X-ray Diffraction Pattern of TiBr4 *2Tetrahydropyran. ... 118 23 Determination of the Lattice Constant, a0 , for TiBr4 *2Tetrahydropyran.................. 119 24 Determination of the Lattice Constant a0 , for TiBr4 *Tetrahydrofuran (excess TiBr4 )......... 127 25 X-ray Diffraction Patterns of TiBr4 «2Tetrahydrofuran, Copper Radiation, Excess,TiBr4 ............ ................ 128 26 X-ray Diffraction Patterns of TiBr4 *2Tetrahydrofuran, Copper Radiation, Excess Tetrahydrofuran. ......... 128 27 Determination of the Lattice Constant, aQ, for TiBr4 *2Tetrahydrofuran (excess THF)....................... 134 28 Neutralization curve for TiBr4 (2.0283 grams)........ 152 29 Volume of NaOH versus A pH/0.1 ml.; sample: TiBr4(2.0283 grams). ..................................... 154 30 Neutralization curve for T H 4 (2.1067 grams).......... 156 31 Neutralization Curve for TH 4 (1.6805 grams)............. 158 32 Neutralization Curve for Til4 (2.4927 grams).......... 160 33 Neutralization Curve for TiBr4 »Dioxane (0.4762 grams). 162 34 Neutralization Curve for TiBr4 *Dioxane (0.4102 grams). .. 164 35 Neutralization Curve for TiBr4 *2Tetrahydrofuran (2.3092 grams) Prepared from Excess TiBr4 ................ 166 36 Neutralization Curve for TiBr4 »2Tetrahydrofuran (1.3734 grams) prepared from Excess TiBr4 ................ 168 37 Neutralization Curve for TiBr^*2Tetrahydrofuran (0.1644 grams) prepared from Excess Tetrahydrofuran. ... 170 v LIST OF ILLUSTRATIONS (Continued) Figure Page 38 Neutralization Curve for TiBr4 *2Tetrahydrofuran (0.2872 grams) Prepared from Excess Tetrahydrofuran 172 39 Neutralization Curve for TiBr4 *2Tetrahydropyran (0.3335 grams).............................................. 174 40 Neutralization Curve for TiBr4 *2Tetrahydropyran (0.3826 gram)............................................ 177 41 Neutralization Curve for TiBr4 *2Tetrahydropyran (0.9934 grams)............................................. 179 42 Neutralization Curve for TiBr4 *2Tetrahydropyran (0.6743 grams). ....................................... 181 43 Neutralization Equivalent Weight Apparatus. ............. 182 44 Infrared Spectrogram of Tetrahydrofuran............... 187 45 Infrared Spectrogram of 1,4-Dioxane. ............ 188 46 Infrared Spectrogram of Tetrahydropyran; Cell Thickness, Plate to Plate. .......................... 189 47 Modes of Vibration of the Imaginary CH£ Molecule. ...... 19U 48 Infrared Spectrogram of Nujol; Cell Thickness, Plate to Plate.......... .......... ....................... 194 49 Infrared Spectrogram of TiBr4 «Dioxane Mulled in Nujol; Cell Thickness, Plate to Plata................... 194 50 Infrared Spectrogram of TiBr4 *2Tetrahydropyran Mulled in Nujol; Cell Thickness, Plate to Plate. .......... 195 51 Infrared Spectrogram of TiBr^»2Tetrahydrofuran in Nujol.. 196 52 Freezing Point Cell..................................... 212 53 Typical Cooling Curve............................. 214 54 Molality Versus Molecular Weight of Addition Compound. 216 55 Apparatus for Preparation of Titanium Tetraiodide by Direct Synthesis................................ 220 vi LIST OF ILLUSTRATIONS (Continued) Figure Page 56 Apparatus for Preparation of Titanium Tetraiodide by Disproportionation of Titanium Triiodide. ..... 222 57 Purification of Til4 « .............. 223 58 Apparatus for Preparation of Tilg....................... 226 59 Needles of Titanium Triiodide.............................. 228 6 u Infrared Spectrogram of the Til4 »Tetrahydrofuran oil. Cell thickness: Plate to Plate. ............. 231 61 Determination of the Lattice Constant, a0, for TH 4 . ... 241 62 X-ray Diffraction Patterns of Til4 ................ 242 63 X-ray Diffraction Patterns of Til4 , Iron Radiation. .... 242 64 X-ray Diffraction Patterns of Tilg, Copper Radiation. .. 253 65 X-ray Diffraction Patterns of Tilg, Iron Radiation. 253 66 Determination of Lattice Constant, a 0 for Tilg............ 254 67 Graphical Determination Sf/S^................... 274 68 Mole Fraction of ®r2(j£) -^Br4(j0 as a Function of Temperature (Pressure c 760 mm.). 277 vii LIST OF TABLES Interplaner Spacings (ASTM) for T 3.O2 as Obtained From a G. E. Spectrometer............. .................... 65 Interplaner Spacings for Ti02 as Obtained From a Philips X-ray Spectrometer. ................... ..... 66 Measurement of Ti02 Film, Molybdenum Radiation........... 67 Measurement of Ti02 Film, Copper Radiation. ......... 68 Measurement of Ti02 Film, Copper Radiation. ......... 70 Measurement of Ti02 Film, Copper Radiation. ........... 71 Measurement of Ti02 Film, Iron Radiation. .......... 73 Measurement of Ti02 Film, Iron Radiation. .... 74 Calculation of Absorption Effects for Anatase (Ti02). ...76 Calculation of Absorption Effects for Anatase (Ti02) ao/co B 0.39779... ......... ..................... ...... 77 Interplaner Spacings (ASTM) for TiBr4 .............. ...... 84 Measurement of TiBr4 Film, Iron Radiation. ............. 85 Measurement of TiBr4 Film, Iron Radiation........ 86 Calculation of Absorption Effects for TiBr4 ........ 87 Calculation of Absorption Effects for TiBr4 « .......... 88 Calculation of Absorption Effects for TiBr4 , a 0s 11.292$. 89 Measurement of TiBr4 *Dioxane Film, Cobalt Radiation. ... 95 Measurement of TiBr4 »Dioxane Film, Copper Radiation. ... 97 Measurement of TiBr^Dioxane Film, Copper Radiation. ... 99 Measurement of TiBr4 *Dioxane Film, Iron Radiation. ..... Measurement of TiBr4 *Dioxane
Recommended publications
  • IODINE Its Properties and Technical Applications
    IODINE Its Properties and Technical Applications CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York IODINE Its Properties and Technical Applications ¡¡iiHiüíiüüiütitittüHiiUitítHiiiittiíU CHILEAN IODINE EDUCATIONAL BUREAU, INC. 120 Broadway, New York 5, New York 1951 Copyright, 1951, by Chilean Iodine Educational Bureau, Inc. Printed in U.S.A. Contents Page Foreword v I—Chemistry of Iodine and Its Compounds 1 A Short History of Iodine 1 The Occurrence and Production of Iodine ....... 3 The Properties of Iodine 4 Solid Iodine 4 Liquid Iodine 5 Iodine Vapor and Gas 6 Chemical Properties 6 Inorganic Compounds of Iodine 8 Compounds of Electropositive Iodine 8 Compounds with Other Halogens 8 The Polyhalides 9 Hydrogen Iodide 1,0 Inorganic Iodides 10 Physical Properties 10 Chemical Properties 12 Complex Iodides .13 The Oxides of Iodine . 14 Iodic Acid and the Iodates 15 Periodic Acid and the Periodates 15 Reactions of Iodine and Its Inorganic Compounds With Organic Compounds 17 Iodine . 17 Iodine Halides 18 Hydrogen Iodide 19 Inorganic Iodides 19 Periodic and Iodic Acids 21 The Organic Iodo Compounds 22 Organic Compounds of Polyvalent Iodine 25 The lodoso Compounds 25 The Iodoxy Compounds 26 The Iodyl Compounds 26 The Iodonium Salts 27 Heterocyclic Iodine Compounds 30 Bibliography 31 II—Applications of Iodine and Its Compounds 35 Iodine in Organic Chemistry 35 Iodine and Its Compounds at Catalysts 35 Exchange Catalysis 35 Halogenation 38 Isomerization 38 Dehydration 39 III Page Acylation 41 Carbón Monoxide (and Nitric Oxide) Additions ... 42 Reactions with Oxygen 42 Homogeneous Pyrolysis 43 Iodine as an Inhibitor 44 Other Applications 44 Iodine and Its Compounds as Process Reagents ...
    [Show full text]
  • In Presenting This Dissertation As a Partial Fulfillment of The
    In presenting this dissertation as a partial fulfillment of the requirements for an advanced degree from the Georgia Institute of Tech­ nology, I agree that the Library of the Institution shall make it avail­ able for inspection and circulation in accordance with its regulations governing materials of this type. I agree that permission to copy from, or to publish from, this dissertation may be granted by the professor under -whose direction it was written, when such copying or publication is solely for scholarly purposes and does not involve potential financial gain. It is understood that any copying from, or publication of, thie dissertation which involves potential financial gain will not be allowed without written permission. Thomas Grindley AN EVALUATION OF U. S. PATENT LITERATURE PERTAINING TO THE PRODUCTION OF TITANIUM A THESIS Presented to the Faculty of the Graduate Division Georgia Institute of Technology In Partial Fulfillment of the Requirements for the Degree Master of Science in Chemical Engineering By Thomas Grindley June 19£6 pf -* ^r0" > AN EVALUATION OF U.S. PATENT LITERATURE PERTAINING TO THE PRODUCTION OF TITANIUM Approved: n ir~ Date Approved by Chairman: >^^, 3 <••/s"Z ii ACKNOWLEDGMENT The author wishes to thank most heartily, certain members of the staff of the Price-Gilbert Library for their patience in listening to his requests and for their kind assistance in helping him to find material for this thesis. The author felt very much at home in the Library. TABLE OF CONTENTS Chapter Page X. INTRODUCTION 1 H. HISTORICAL Development of Extraction Process Commerical History in . PRESENT PRACTICE IN TITANIUM EXTRACTION 10 Chlorination of the Ore Purification of Crude Titanium Tetrachloride Magnesium Reduction Removal of the Titanium Sponge Vacuum Distillation of Magnesium and Magnesium Chloride Leaching Melting and Ingot Formation IV.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • INTI071 GHS EU English
    INTI071 - TITANIUM TETRAIODIDE, 99.99% on metals basis TITANIUM TETRAIODIDE, 99.99% on metals basis Safety Data Sheet INTI071 Date of issue: 02/04/2015 Revision date: 24/05/2018 Version: 1.2 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Substance Physical state : Solid Substance name : TITANIUM TETRAIODIDE, 99.99% on metals basis Product code : INTI071 Formula : I4Ti2 Synonyms : TETRAIODOTITANIUM Chemical family : METAL COMPOUND 1.2. Relevant identified uses of the substance or mixture and uses advised against 1.2.1. Relevant identified uses Use of the substance/mixture : Chemical intermediate 1.2.2. Uses advised against No additional information available 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com GELEST INC. Fritz-Klatte-Strasse 8 65933 Frankfurt Germany T +49 (0) 69 3535106-500 - F +49 (0) 69 3535106-501 - (M-F): 8:00 AM - 4:00 PM [email protected] - www.gelestde.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification according to Regulation (EC) No. 1272/2008 [CLP] Skin corrosion/irritation, Category 1B H314 Serious eye damage/eye irritation, Category 1 H318 Specific target organ toxicity — Single exposure, Category 3, H335 Respiratory tract irritation Full text of H statements : see section 16 Adverse physicochemical, human health and environmental effects No additional information available 2.2.
    [Show full text]
  • Itetall IC BROMIDES AS CATALYSTS in THE
    QUANTITATIVE COMPARISON OF ;itETALL IC BROMIDES AS CATALYSTS IN THE FRIED.liL-CRAFTS KETONE SYNTHESIS i QUANTITATIVE COMPARISON OF MET ALLIC BROMIDES AS CATAL YSTS IN THE FRIEDEL-CRAFTS KETONE SYNTHESIS By Peter Taketoshi M,, ori Bachelor of .Arts Park College Parkville, Missouri 1945 Submitted to the Department of Chemistry Oklahoma Agricultural and Mechanical College In partial fulfillment of the r equirement for t he Degree of Master of Science 194'~ ii \ APPROVED BY: Chairman, Thesis Committee Head of the Department ~he~ ( ~uate~~ School 2174~10 iii ACKNOWLEDGEMENT The author wis hes to express his s i neere gr atitude to Dr . O. C. Dermer under whose guidance t his work has been accomplished . He also wi s hes to express hi s a ppreciation to the Chemi stry Department for t he s uppl y of chemicals used. iv TABLE OF CONTENTS "P age Introduction • • l Historical • • • • 2 Experimental • • • • 5 Procadure • • • • • • • • 9 Table of results . • • • • • • • 12 Discussion of results • .. • • • • • • 15 Summary • • • • • • • • 22 Bibliography • • • • • • • • • • 23 Biography • • • • • • • • • • • 25 1 I NTRODCCT ION T~lis is a continuation of the s t udy of catalystf for the Friedel­ Crafts ketone synt hesis star ted by Wilson ( .38 ), a nd continued by Suguj.­ tan (34), Johnson (17), and Billme ier (4). Ma ny metallic chlorides have been used in t his reacti on, but metallic bromides, as cat alyst s, have been rather neelected . It is the purpose of this work to study the ef fectiveness of some of the metallic bromides by following essentially the experimental pro­ cedure of Billmeier (4). 2 HISTORICAL In 1877, the French chemist Friedel and his American colleague Crafts (12) discovered the f amous Friedel-Crafts reaction, which now has s uch great industrial a pplication (7 , 13, 18, 35).
    [Show full text]
  • An Investigation of Fusion Melted Titanium Rich Alloys
    AN INVESTIGATION OF FUSION MELTED TITANIUM RICH ALLOYS CONTAINING COPPER A THESIS Presented to the Faculty of the Division of Grachate Studies Georgia Institute of Technology In Partial Fulfillment of the Requirements for the Degree Master of Science in Chemical Engineering by James Eugene Curry- April, 1951 p H w 11 (J / at- i/u-vs AN INVESTIGATION CF FUSION MELTED TITANIUM RICH ALLOYS CONTAINING COPPER Approved: L V T /7 Date Approved by.Chairman /i. /fir/ ACKNOWLEDGMENTS The writer wishes to acknowledge his indebtedness to Dr# Robert J. Raudebaugh who suggested this problem and supervised its prosecution. Thanks are also due the Georgia Tech State Engineering Experiment Station for financial assistance. The titanium sponge metal used in these experiments was gener­ ously supplied by The Titanium Alloy Manufacturing Division of the National Lead Company. iv TABLE OF CONTENTS PAGE Approval Sheet • ii Acknowledgments* • • * iii Table of Contents • iv List of Tables vi List of Figures • vii Summary * viii CHAPTER I. INTRODUCTION The Discovery and Occurrence of Titanium •••...••••• 1 Chemistry of Titanium* • ••••••••••...*••••••••••• 3 The Preparation of Ductile Titanium 4 Present and Potential Uses of Titanium 6 Titanium Base Alloys • 8 CHAPTER II. THEORETICAL CONSIDERATIONS Solid Solutions 10 Intermediate Phaseso «••••••••••• •••• 12 The Hume-Rothery Rule 13 The Relative Valency Effect 16 Allotropic Transformations « • ». 16 Evaluation of the Ti-Cu System.• ••••••«. •• 16 CHAPTER III, PRACTICAL CONSIDERATIONS Problems Involved in the Fabrication of Titanium Alloys...... 21 Fabrication of Titanium Alloys 24 Y The Metallography of Titanium • 26 Previous Work on the Titanium-Copper System • ••• 28 CHAPTER IV. EXPERIMENTAL APPARATUS Furnace Design and Equipment.•.••••.•*•*••••••••.••••••••••..
    [Show full text]
  • United States Patent Office Patented Mar
    3,499,882 United States Patent Office Patented Mar. 10, 1970 2 the formula TiXCH-CHTiX3 of the formula 3,499,882 TiXCHTiX. The reaction product DIENE POLYMERIZATION PROCESS AND CATALYST THEREFOR TiXCH-CHTiX3 Walter Nudenberg, West Caldwell, N.J., Dudley B. Merri field, St. Louis, Mo., and Edward Axel Delaney, Dover, 5 is a dimer of the CHTiX free radical while the re N.J., assignors to Texas-U.S. Chemical Company, Port Neches, Tex., a corporation of Delaware action product TiXCHTiX is formed by reaction of the No Drawing. Application June 19, 1963, Ser. No. 288,877, CHTiX"free radical with a TiX"free radical. which is a continuation-in-part of application Ser. No. A feature of this invention involves the use of a C-C6 38,417, June 24, 1960. Divided and this application 10 monoolefin as a component of the solvent mixture in Sept. 13, 1966, Ser. No. 578,995 which the butadiene polymerization is effected. The use of The portion of the term of the patent subsequent C-C monoolefins which have high heat capacity as co to Jan. 28, 1986, has been disclaimed solvents with an aromatic hydrocarbon solvent has the Int, C. C08d 3/08, 1/14 advantage of reducing the solution viscosity with the result U.S. C. 260- 94.3 10 Claims that it is possible to obtain better heat transfer during the 15 polymerization and to continue the polymerization to a This invention relates to a process for polymerizing higher solution solids content. The use of a C-C mono butadient to produce cis-polybutadiene of controlled 1,4 olefin as a cosolvent also results in the formation of cis structure.
    [Show full text]
  • Heat of Formation of Titanium Tetraiodide
    Journal of Research of the National Bureau of Standards- A. Physics and Chemistry Vol. 63A, No. 2, September- Odober 1959 Heat of Formation of Titanium Tetraiodide W. H. Johnson, A. A. Gilliland, and E. 1. Pros en (May 6, 1959) The heat of formation of titanium tetraiodide was determined relative to that of t iLan iu l11 tetrabromide by comparison of t.heir heatf' of hydrolysis in dilute sulfuric acid. The differ­ ence in the heats of formation may be expressed by the equation: Til. (c) + 2Br2(liq) = TiBr. (c) + 212(c), ilH(2 5° C) = -230.91 ± O.75 ki/ mole (- 55.19 ± 0.18 kcal/mole) . By taking the heat of formation of TiBr.(c) as -616.72 ± 4.60 ki/ molc the heat of fo rmal ion of TiI.(c) is calculated to be - 385.81 ± 4.64 ki/mole (- 91.21 ± i.1l kcal/ mole) . The heats of hydrolysis of TiBr. and TiCI. were similarly measured ; the v,\lue obtained for the difference (186.77 ± 1. 34 kjj mole) is in good agreement with t he difference between the c:iirecL ly determined heats of forma tion (187.11 ± 5.35 kj /mo le). 1. Introduction 2. Source and Purity of Samples There are no experimental values available in the The r~i C I ., Ti~r 4' and Ti~ 4 were prepared by the literature for the heat of formation of ti.taniwn tetl'a­ lnorgamc ChemIstry SeetlOn of the Chemistry iodide. Brewer, Bromley, Gilles, and Lofgren [1 ]1 Division. The pmity of the TiCI.
    [Show full text]
  • Process for Producing Ethylene-Propylene Copolymer Rubber
    Europaisches Patentamt J European Patent Office Publication number: 0 264 169 Office europeen des brevets A1 © EUROPEAN PATENT APPLICATION © Application number: 87305349.0 © int. CM: C08F 210/16 © Date of filing: 16.06.87 ® Priority: 16.06.86 JP 138252/86 © Applicant: TOA NENRYO KOGYO KABUSHIKI 16.06.86 JP 138253/86 KAISHA 16.06.86 JP 138254/86 1-1 Hitotsubashi, 1-Chome Chiyoda-Ku Tokyo 100(JP) © Date of publication of application: 20.04.88 Bulletin 88/16 @ Inventor: Ueki, Satoshi '@_•@« 4-7-301 Tate 2-chome © Designated Contracting States: Shiki-shi Saitama-ken(JP) BE DE FR GB IT NL SE inventor: Furuhashi, Hiroyuki 4-6 Nishitsurugaoka 1-chome Ooi-maci Iruma-gun Saitama-ken(JP) Inventor: Kusano, Yoshihisa 1734-3 Ooaza Takahagi Hidaka-machi Iruma-gun Saitama-ken(JP) Inventor: Fukazawa, Nobuyuki 4-4-436 Nishitsurugaoka 1-chome Ooi-machi Iruma-gun Saitama-ken(JP) Inventor: Maruyama, Kouji 13-8 Chou 2-chome Kamifukuoka-shi Saitama-ken(JP) Inventor: Ueno, Hiroshi 398-1 Ooaza Haneo Namegawa-machi Hiki-gun Saitama-ken(JP) Inventor: Mizukami, Haruo 71 Higashifukai Nagareyama-shi Chiba-ken(JP) © Representative: Dew, Melvyn John et al Exxon Chemical Limited Exxon Chemical Technology Centre P.O. Box 1 Abingdon Oxfordshire, OX13 6BB(GB) ^© Process for producing ethylene-propylene copolymer rubber. C5 The rmm® present invention provides a process for producing an ethylene-propylene copolymer rubber containing 15-90 mol% of ethylene, wherein ethylene and propylene are copolymerized in the presence of a polymerization g catalyst composed of a catalyst component and an organoaiuminum compound, said catalyst component being by ^obtained contacting (A) a metal oxide, (B) a dihydrocarbyl magnesium, and (C) a hydrocarbyloxy group- containing compound with one another, contacting the thus obtained contact product with (D) O a halogen- containing alcohol, and finally contacting the thus obtained contact product with (E) a titanium compound, and Q.
    [Show full text]
  • Titanium Tetraiodide (99+%)
    INTI071 - TITANIUM TETRAIODIDE (99+%) TITANIUM TETRAIODIDE (99+%) Safety Data Sheet INTI071 Date of issue: 04/02/2015 Version: 1.0 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Substance Physical state : Solid Substance name : TITANIUM TETRAIODIDE (99+%) Product code : INTI071 Formula : I4Ti2 Synonyms : TETRAIODOTITANIUM Chemical family : METAL COMPOUND 1.2. Relevant identified uses of the substance or mixture and uses advised against Use of the substance/mixture : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (GHS-US) Skin Corr. 1B H314 Eye Dam. 1 H318 STOT SE 3 H335 Full text of H-phrases: see section 16 2.2. Label elements GHS-US labeling Hazard pictograms (GHS-US) : GHS05 GHS07 Signal word (GHS-US) : Danger Hazard statements (GHS-US) : H314 - Causes severe skin burns and eye damage H318 - Causes serious eye damage H335 - May cause respiratory irritation Precautionary statements (GHS-US) : P280 - Wear protective gloves/protective clothing/eye protection/face protection P260 - Do not breathe dust P264 - Wash hands thoroughly after handling P271 - Use only outdoors or in a well-ventilated area P301+P330+P331 - If swallowed: rinse mouth.
    [Show full text]
  • 30.12.2003 EN L 341/1 Official Journal of the European Union
    30.12.2003 EN Official Journal of the European Union L 341/1 I (Acts whose publication is obligatory) COUNCIL REGULATION (EC) No 2285/2003 of 22 December 2003 amending Regulation (EC) No 1255/96 temporarily suspending the autonomous common customs tariff duties on certain industrial, agricultural and fishery products THE COUNCIL OF THE EUROPEAN UNION, (4) In view of the large number of amendments coming into force on 1 January 2004, the Annex to Regulation (EC) No 1255/96 should be replaced by a completely new version with effect from that date so as to make it more Having regard to the Treaty establishing the European Com- easily understood by the user. munity, and in particular Article 26 thereof, (5) To take account of the enlargement of the European Community with effect from 1 May 2004, new products Having regard to the proposal from the Commission, will need to be added to the Annex to Regulation (EC) No 1255/96 with effect from that date. Whereas: (6) Regulation (EC) No 1255/96 should be amended accord- ingly. (1) It is in the interest of the Community to suspend (7) Having regard to the economic importance of this partially or totally the autonomous common customs Regulation, it is necessary to rely upon the grounds of tariff duties for a number of new products not listed in urgency provided for in point I.3 of the Protocol annexed the Annex to Council Regulation (EC) No 1255/96 of to the Treaty on European Union and to the Treaties 27 June 1996 temporarily suspending the autonomous establishing the European Communities on the role of common customs tariff duties on certain industrial, national parliaments in the European Union.
    [Show full text]
  • Table of Contents
    TABLE OF CONTENTS 1. Introduction 1 A. Organization 1 B. Goals 1 C. Key Responsibilities 1 D. Facilities 2 2. Objectives 2 3. General Safety Information 3 A. Lab Protocol 3 B. Recommended Lab Techniques 4 4. Emergency Procedures and Equipment 9 Primary Emergency Procedures 10 Special Procedures for Radioactive Hazards 11 C. Special Procedures for Biological Hazards 11 D. Building Evacuation Procedures 12 E. Emergency Equipment 13 5. Hazard Communication Act 15 A. Requirements 15 B. Material Safety Data Sheets 15 6. Chemical Hazards and Control 19 A. Chemical Categories and Use and Storage 19 Flammables 20 Oxidizers 23 Corrosives 25 Reactives 27 Compressed Gas Cylinders 32 B. Personal Protective Clothing 32 C. Chemical Safety Equipment 35 7. Biological Hazards and Control 39 A. Recommended Laboratory Practices 40 B. Laboratory Equipment 37 C. Personal Protective Clothing 43 D. Waste Disposal 43 E. Bloodborne Pathogens 43 F. Laboratory Animals 44 G. Biosafety Levels 45 Biosafety Level 1 45 Biosafety Level 2 47 Biosafety Level 3 49 H. Emergency Procedures 52 8. Radiation Hazards and Control 54 9. Controlled Substances, Precursor Chemicals and Chemical Laboratory Apparatus 55 A. List of Precursor Items 55 B. Responsibility 56 C. Purchase Orders 56 D. Surplus Property 56 E. Security Procedures Governing Use of Controlled Items 56 F. Site Security 56 G. Operational Security 57 H. Inventory and Reporting of Loss 57 I. Designation of a University Liaison 57 10. Chemical Waste 58 A. Hazardous Wastes 58 B. Regulated Wastes 58 C. Gas Cylinders 58 D. Containers 59 E. Broken Glassware 59 F. PCB Light Ballasts 59 G.
    [Show full text]