Energy Use in Refrigeration Systems

Total Page:16

File Type:pdf, Size:1020Kb

Energy Use in Refrigeration Systems 2012 Rocky Mountain ASHRAE Technical Conference EnergyEnergy UseUse inin RefrigerationRefrigeration SystemsSystems PRESENTED BY: Scott Martin, PE, LEED AP BD+C Objectives • Understand mechanical refrigeration terms • Describe how heat is transferred and what methods are primarily used in the refrigeration cycle • Describe the 4 principles of the refrigeration process • Explain the function of the 4 system components • Explain refrigerant properties Section 1 – Introduction Definition of Refrigeration re·frig·er·a·tion (n.) Mechanical refrigeration is the process of using a volatile fluid to absorb heat from a lower temperature place, raising the fluid’s pressure and temperature so it can be rejected to a higher temperature place Section 1 – Introduction Basic Principals • Heat is a form of energy • First law of thermodynamics: Energy can neither be created or destroyed • Heat flows from a higher temperature to a lower temperature • Heat energy can move by one of three methods of heat transfer Three Types of Heat Transfer Conduction – Transfer by contact Convection – May be natural or forced transfer by density currents and fluid motion Radiation – Transfer by electromagnetic waves Mechanical refrigeration uses the first two. Section 2 – Basic Principles Two Forms of Heat Energy • Sensible Heat – Associated with molecular movement – Measured with a thermometer • Latent Heat – Change of state • Latent heat of fusion (solid to liquid) • Latent heat of vaporization (liquid to gas) • Latent heat of sublimation (solid to gas) Sensible Heat of Water 212 132 100 42 Temperature °F 32 0 0 10 100 180 Enthalpy (Btu/lb) Section 2 – Basic Principles Latent Heat TotalTotal HeatHeat (Enthalpy)(Enthalpy) == SensibleSensible HeatHeat ++ LatentLatent HeatHeat 212°F liquid 212°F gas Latent heat cannot be measured on a thermometer Change of State Section 2 – Basic Principles Change of State Latent Heat of Fusion Latent Heat of Vaporization 1 lb ice 32° F 970 Btu/lb 32° F 144 Btu/lb Section 2 – Basic Principles Temperature-Enthalpy Plot Example: R-718 (water) 1 pound at standard barometric pressure 212 Latent Heat of d Latent heat i Vaporization iqu of fusion L Temperature °F 970 Btu 32 e Ic Subcooled Solid -176 -1440 180 1150 Enthalpy (Btu/lb) (Sensible + Latent Heat) Section 2 – Basic Principles Superheat Saturated Vapor Pressure is constant @ 212 F @14.7 psia Superheated Vapor @ 242 F 212° F Water Superheat t2 –t1 = 30 F Section 2 – Basic Principles Temperature-Enthalpy Plot 242 Superheated r Saturated o Liquid Vapor ap V 212 Latent Heat of d Saturated i Vaporization Vapor Subcooled iqu Liquid L Condensation Evaporation Temperature °F 32 e c 1 Btu/lb 970 Btu/lb 0.45 I Btu/lb -176-144 0 180 1150 1160 Enthalpy (Btu/lb) NOTE: THERE IS NO TIME ON THIS SCALE Section 2 – Basic Principles Rate of heat transfer Btu is a measure of quantity Btuh is a measure of quantity per unit of time (hour) 288,000 Btu 1 Day 1 “Ton” = 12,000 Btu 1 hour 1 Ton of Ice 12,000 Btuh 200 Btu 1 Min Latent heat of fusion 144144 BtuBtu 20002000 lblb == 288,000288,000 BtuBtu Section 2 – Basic Principles Four Laws of System Operation No Flow 70 70 Heat only moves from S higher temperature to om e a lower temperature 70 Flow Mor 32 e The greater the difference 21270 Flow the greater the flow 70 Section 2 – Basic Principles Four Laws of System Operation 1. Heat only moves from a Sensible Heat higher temperature to a lower temperature 71 F 70 F 1 Btu / lb Section 2 – Basic Principles Four Laws of System Operation 1. Heat only moves from a Latent Heat higher temperature to a lower temperature Saturated Vapor 2. A large amount of energy 212 F is required to change the Change of state of matter state occurs at a constant temperature 212 F 970 Btu/lb Section 2 – Basic Principles Four Laws of System Operation 1. Heat only moves from a higher temperature to a lower temperature 2. A large amount of energy is required to change the state of matter 3. The temperature and energy required to change state are a function of pressure Section 2 – Basic Principles Pressure Affects the Boiling Point 0 psig 5 psig 50 psig 212° F 227° F 298° F 970 Btu/lb 960 Btu/lb 912 Btu/lb If we control the pressure, we control the boiling point Section 2 – Basic Principles Measuring Pressure Absolute Pressure Scales Compared psia in. Hg Abs 14.696 psia 29.921 in. Hg (sea level) 12.23 psia 24.9 in. Hg (5000 ft above sea level) PRESSURE PRESSURE 0 psia 0 in. Hg (no atmosphere) 0 psig = 14.696 psia MERCURY Section 2 – Basic Principles Refrigerant Boiling Points Water 212° F HFC-134a -15° F HCFC-22 -41° F -40 F HFC-410A -62° F Section 2 – Basic Principles Four Laws of System Operation 1. Heat only moves from a higher temperature to a lower temperature 2. A large amount of energy is required to change the state of matter 3. The temperature and energy required to change state are a function of pressure 4. Fluid flow only occurs if a pressure difference exists Section 2 – Basic Principles Pressure Difference Creates Flow Flow may be caused by: • Static pressure difference • Pressure difference • Mechanical work Static Suction Pressure Vapor Section 2 – Basic Principles Four Laws of System Operation 1. Heat only moves from a higher temperature to a lower temperature 2. A large amount of energy is required to change the state of matter 3. The temperature and energy required to change state are a function of pressure 4. Fluid flow only occurs if a pressure difference exists Section 2 – Basic Principles The Mechanical Refrigeration Cycle Four Components Are Required 3. Heat rejecting section 4. Pressure/ flow control 2. Vapor valve pump 1. Heat absorbing section Section 3 – The Mechanical Refrigeration Cycle An Open Cycle Refrigerant Under Pressure 14.7 R I psia A R410a -60.8°F Section 3 – The Mechanical Refrigeration Cycle The Closed Cycle Metering Device Evaporator Condenser Compressor Section 3 – The Mechanical Refrigeration Cycle 2-Pressure Zone Typical conditions 120° F / 431.6 psia at peak load for: 120° F / 274.7 psia HCFC-22 Condenser HFC-410A (Rejects Heat) Hot Gas Line Compressor High Side Metering Low Side Device Evaporator (Absorbs Heat) Suction Line 45° F / 90.8 psia 45° F / 144.5 psia Section 3 – The Mechanical Refrigeration Cycle Pressure-Enthalpy Diagram Refrigeration Cycle Saturated Condensing Pc . R T O A P S A V . D LIFT T I A U S Q I L PRESSURE Saturated Suction Ps RE ENTHALPY Section 2 – Basic Refrigeration Cycle The Evaporator Absorbs Heat 60° F Liquid and Vapor R All Vapor AI 80° F Section 3 – The Mechanical Refrigeration Cycle Basic System Components Every system has four basic components Evaporator Absorbs the heat from the space or the load Mostly liquid refrigerant boils (evaporators) in the tubes as the heat load is absorbed, Air out: 59.7° F db / 57.3° F wb changing to vapor often Cold with some superheat Mixture 55° F 45° F 90.8 psia 90.8 psia SET Cold Evaporator Vapor Air in: 80° F db / 67° F wb Section 3 – The Mechanical Refrigeration Cycle Pressure-Enthalpy Diagram Refrigeration Cycle Saturated Condensing Pc . R T O A P S A V . D LIFT T I A U S Q I L PRESSURE Saturated Suction Ps RE ENTHALPY Section 2 – Basic Refrigeration Cycle Basic System Components Hot Vapor Every system has four 120° F basic components 274.7 psia SDT Evaporator Compressor Compressor Raises the pressure from the evaporator SST pressure to the condensing temperature and creates a pressure differential to Air out: 59.7° F db / 57.3° F wb cause refrigerant flow 55° F 45° F 90.8 psia 90.8 psia SET Cold Evaporator Vapor Air in: 80° F db / 67° F wb Section 3 – The Mechanical Refrigeration Cycle Pressure-Enthalpy Diagram Refrigeration Cycle Saturated Condensing Pc . Tc R T O A P S A V . D HEAD T I A U TEMP S LIFT Q I L PRESSURE Saturated Suction Ps Ts RE COMP ENTHALPY Section 2 – Basic Refrigeration Cycle Compressor Suction Suction Line HCFC-22 90.8 psia & 45° F SST CausesCauses flowflow byby 90.8 psia & 55° F actual creatingcreating aa lowlow HFC-410A pressurepressure areaarea 144.5 psia & 45° F SST 144.5 psia & 55° F actual ActualActual isis thethe temperaturetemperature withwith superheatsuperheat Section 3 – The Mechanical Refrigeration Cycle Compressor Discharge Hot Gas Line Suction Line HCFC-22 HCFC-22 274.7 psia & 120° F SDT 90.8 psia & 45° F SST 274.7 psia & 170° F actual 90.8 psia & 55° F actual HFC-410A HFC-410A 431.6 psia & 120° F SDT 144.5 psia & 45° F SST 431.6 psia & 170° F actual 144.5 psia & 55° F actual High Side Low Side CompressesCompresses thethe vaporvapor toto raiseraise thethe pressurepressure andand temperaturetemperature aboveabove thethe condensingcondensing temperaturetemperature Section 3 – The Mechanical Refrigeration Cycle Basic System Components Condenser Air out: 115° F db Every system has four 108° F 120° F basic components 274.7 psia 274.7 psia SCT SDT Evaporator Air in: 95° F Compressor Compressor SST Condenser Air out: 59.7° F db / 57.3° F wb Rejects the heat from the load and system losses Highly superheated refrigerant 55° F condenses in the tubes as heat load is 45° F 90.8 psia 90.8 psia SET rejected and changes back to a liquid and is subcooled Evaporator Air in: 80° F db / 67° F wb Section 3 – The Mechanical Refrigeration Cycle Pressure-Enthalpy Diagram Refrigeration Cycle Condenser Saturated Condensing Pc .
Recommended publications
  • RP1008-Climatemaster-Residential-Accessories-Geothermal-Heating-And-Cooling-Product
    ACCESSORIES UNIT AND LOOP ACCESSORIES Accessories Table of Contents Accessory Description .......................................................................3 Loop Accessories ................................................................................18 Accessory Compatability ..................................................................4 Extra Large Loop Accessories .....................................................20 Thermostats and Service Tools ......................................................5 Installation Accessories ....................................................................21 AWC99B01 iGate® Connect, Two-Way Geothermal Loop Pipe ...................................................................22 Communicating Thermostat ............................................................6 Geothermal Fittings ...........................................................................23 ATU3203 iGate® Communicating Thermostat ....................7 Socket Fusion Tools............................................................................25 ATP32U03 Thermostat ......................................................................9 Service Tools ..........................................................................................26 ATP32U04 Thermostat ...................................................................11 Service Parts Kit ..................................................................................26 ATA21U01 Thermostat ...................................................................13
    [Show full text]
  • Chapter 8 and 9 – Energy Balances
    CBE2124, Levicky Chapter 8 and 9 – Energy Balances Reference States . Recall that enthalpy and internal energy are always defined relative to a reference state (Chapter 7). When solving energy balance problems, it is therefore necessary to define a reference state for each chemical species in the energy balance (the reference state may be predefined if a tabulated set of data is used such as the steam tables). Example . Suppose water vapor at 300 oC and 5 bar is chosen as a reference state at which Hˆ is defined to be zero. Relative to this state, what is the specific enthalpy of liquid water at 75 oC and 1 bar? What is the specific internal energy of liquid water at 75 oC and 1 bar? (Use Table B. 7). Calculating changes in enthalpy and internal energy. Hˆ and Uˆ are state functions , meaning that their values only depend on the state of the system, and not on the path taken to arrive at that state. IMPORTANT : Given a state A (as characterized by a set of variables such as pressure, temperature, composition) and a state B, the change in enthalpy of the system as it passes from A to B can be calculated along any path that leads from A to B, whether or not the path is the one actually followed. Example . 18 g of liquid water freezes to 18 g of ice while the temperature is held constant at 0 oC and the pressure is held constant at 1 atm. The enthalpy change for the process is measured to be ∆ Hˆ = - 6.01 kJ.
    [Show full text]
  • A Comprehensive Review of Thermal Energy Storage
    sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources.
    [Show full text]
  • HVAC TERMINOLOGY.Pdf
    HVAC TERMINOLOGY Abatement Reduction or removal of a contaminant. Absolute Humidity It is the ratio of the mass of water vaporto the unit volume of moist air represented in grams per cubic foot (g/ft3). Absolute Zero Temperature at which all molecular motion ceases (-460 F. and -273 C.). Absorption Refrigerator Refrigerator which creates low temperature by using the cooling effect formed when a refrigerant is absorbed by chemical substance. ACCA Air Conditioning Contractors of America - a leading HVAC/R Association. Acceptable indoor air quality Indoor air that does not contain harmful concentrations of contaminants; air with which at least 80% of building occupants do not express dissatisfaction. Accumulator Storage tank which receives liquid refrigerant from evaporator and prevents it from flowing into suction line before vaporizing. Tank on the suction side of a system that holds excess refrigerant to prevent slugging the compressor with liquid. ACH Air Changes Per Hour. The number of times that air in a house is completely replaced with outdoor air in one hour. Acid Condition In System Condition in which refrigerant or oil in system is mixed with fluids that are acid in nature. ACR Tubing Tubing used in air conditioning and refrigeration. Ends are sealed to keep tubing clean and dry. Activated Carbon Specially processed carbon used as a filter drier ; commonly used to clean air. Actuator That portion of a regulating valve which converts mechanical fluid, thermal energy or insulation energy into mechanical motion to open or close the valve seats. Adiabatic Compression Compressing refrigerant gas without removing or adding heat. Adjustable Grille A grille with linear blades which can be adjusted to vary the direction of the discharged air.
    [Show full text]
  • Dr. Ben's Solar Hot Water Systems Install
    Dr. Ben’s Solar Hot Water Systems Installation Manual By Ben Gravely, PhD Holocene Technologies 1241 Wicker Drive Raleigh, NC 27604 (c) 2012 2 Table of Contents 1. Planning the Installation 1.1 Site Analysis 1.2 Collector Tilt 1.3 Materials 2. Tank Installation 3. Collector Installation and Controls 3.1 Frame and Collector Mounting 3.2 Collector Piping 3.3 Pipe Insulation 3.4 Solar Controls and Wiring 3.5 Collector System Startup 4. Domestic Hot Water 4.1 Piping 4.2 Re-circulator DHW Controls 4.3 DHW System Startup 5. Space Heating 5.1 Forced Air Systems 5.1.1 Solar Controls for Gas/Oil Furnaces 5.1.2 Solar Controls for Heat Pumps (Reverse on Cooling) 5.1.3 Solar Controls for Heat Pumps (Reverse on Heating) 5.1.4 Space Heating Startup and Test 5.2 Radiant Slab Systems 5.3 Radiant Baseboard Systems 6. Pool/Spa 6.1 Pool/Spa Piping 6.2 Pool/Spa Controls 6.3 Pool Startup 7. Manually Fired Wood/Coal Boilers 7.1 Boiler Installation 7.2 Boiler Piping 7.3 Boiler Controls 8. Troubleshooting 8.1 Collector System 8.2 Differential (delta-T) Controllers 8.3 Space Heating System 8.4 Pumps About the Author Holocene Technologies © 2012 3 1. Planning the Installation This manual was written to provide a straight forward procedure for the installation of solar hot water systems. As with any project, a few minutes of planning will save hours of fixing. 1.1 Site Analysis Measure the angle of the collector mounting surface from south with a compass.
    [Show full text]
  • Cryogenicscryogenics Forfor Particleparticle Acceleratorsaccelerators Ph
    CryogenicsCryogenics forfor particleparticle acceleratorsaccelerators Ph. Lebrun CAS Course in General Accelerator Physics Divonne-les-Bains, 23-27 February 2009 Contents • Low temperatures and liquefied gases • Cryogenics in accelerators • Properties of fluids • Heat transfer & thermal insulation • Cryogenic distribution & cooling schemes • Refrigeration & liquefaction Contents • Low temperatures and liquefied gases ••• CryogenicsCryogenicsCryogenics ininin acceleratorsacceleratorsaccelerators ••• PropertiesPropertiesProperties ofofof fluidsfluidsfluids ••• HeatHeatHeat transfertransfertransfer &&& thermalthermalthermal insulationinsulationinsulation ••• CryogenicCryogenicCryogenic distributiondistributiondistribution &&& coolingcoolingcooling schemesschemesschemes ••• RefrigerationRefrigerationRefrigeration &&& liquefactionliquefactionliquefaction • cryogenics, that branch of physics which deals with the production of very low temperatures and their effects on matter Oxford English Dictionary 2nd edition, Oxford University Press (1989) • cryogenics, the science and technology of temperatures below 120 K New International Dictionary of Refrigeration 3rd edition, IIF-IIR Paris (1975) Characteristic temperatures of cryogens Triple point Normal boiling Critical Cryogen [K] point [K] point [K] Methane 90.7 111.6 190.5 Oxygen 54.4 90.2 154.6 Argon 83.8 87.3 150.9 Nitrogen 63.1 77.3 126.2 Neon 24.6 27.1 44.4 Hydrogen 13.8 20.4 33.2 Helium 2.2 (*) 4.2 5.2 (*): λ Point Densification, liquefaction & separation of gases LNG Rocket fuels LIN & LOX 130 000 m3 LNG carrier with double hull Ariane 5 25 t LHY, 130 t LOX Air separation by cryogenic distillation Up to 4500 t/day LOX What is a low temperature? • The entropy of a thermodynamical system in a macrostate corresponding to a multiplicity W of microstates is S = kB ln W • Adding reversibly heat dQ to the system results in a change of its entropy dS with a proportionality factor T T = dQ/dS ⇒ high temperature: heating produces small entropy change ⇒ low temperature: heating produces large entropy change L.
    [Show full text]
  • Maintenance Items N475HM
    02-Jul-2020 Maintenance Items N475HM Make & Model (Serial) Operator Date Hours Landings BEECHCRAFT HAWKER 800XP (258451) Business Jet Access 01-Jul-2020 3997.30 2744 Major Components Component Model (Serial) Hours Cycles Engine 1 TFE731-5BR-1H (P-107444) 3840.90 2656.00 Engine 2 TFE731-5BR-1H (P-107443) 3890.20 2680.00 APU 0 GTCP36-150 (P-522) 3984.00 0.00 ATA / Type / Group Description Compliance Intervals Tolerance TSN/TSO Next Due Remaining 01 1001 INSPECT AIRCRAFT KEY STORAGE UNIT FOR LOCATION AND SECURITY 08-JUN-2020 M: 6 31-DEC-2020 M: 5 D: 29 Airframe Work Order H: 3990.80 INSPECTION Number L: 2741 #2263 June 2020 04 0010 AIRCRAFT PAINT 29-NOV-1999 Airframe H: 0.00 INSPECTION #299 04 0015 AIRCRAFT INTERIOR 29-NOV-1999 Airframe H: 0.00 INSPECTION #1532 04 0500 LUBRICATE ALL AIRCRAFT LOCKS TO INCLUDE MAIN ENTRANCE DOOR AND SERVICE 17-MAR-2020 M: 4 M: 1 31-JUL-2020 M: 0 D: 29 Airframe PANELS H: 3975.50 INSPECTION Work Order Man Hours L: 2726 #483 Number July 2020 0.50 04 100 AIRCRAFT REGISTRATION-FAR 47.40 29-NOV-2019 M: 36 M: 4 30-NOV-2022 M: 28 D: 28 Airframe H: 3962.70 INSPECTION L: 2714 #1803 04 200 REDUCED VERTICAL SEPARATION MINIMUM (RVSM) MONITORING REQUIREMENTS LAST 21-OCT-2019 M: 24 21-OCT-2021 M: 15 D: 19 Airframe FLIGHT OVER AGHME H: 3883.60 INSPECTION L: 2669 #1593 05 0001 PRE-FLIGHT INSPECTION 29-NOV-1999 Airframe H: 0.00 INSPECTION #1675 Maintenance Items Copyright © 2020 Flightdocs, Inc.
    [Show full text]
  • A Critical Review on Thermal Energy Storage Materials and Systems for Solar Applications
    AIMS Energy, 7(4): 507–526. DOI: 10.3934/energy.2019.4.507 Received: 05 July 2019 Accepted: 14 August 2019 Published: 23 August 2019 http://www.aimspress.com/journal/energy Review A critical review on thermal energy storage materials and systems for solar applications D.M. Reddy Prasad1,*, R. Senthilkumar2, Govindarajan Lakshmanarao2, Saravanakumar Krishnan2 and B.S. Naveen Prasad3 1 Petroleum and Chemical Engineering Programme area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei Darussalam 2 Department of Engineering, College of Applied Sciences, Sohar, Sultanate of Oman 3 Sathyabama Institute of Science and Technology, Chennai, India * Correspondence: Email: [email protected]; [email protected]. Abstract: Due to advances in its effectiveness and efficiency, solar thermal energy is becoming increasingly attractive as a renewal energy source. Efficient energy storage, however, is a key limiting factor on its further development and adoption. Storage is essential to smooth out energy fluctuations throughout the day and has a major influence on the cost-effectiveness of solar energy systems. This review paper will present the most recent advances in these storage systems. The manuscript aims to review and discuss the various types of storage that have been developed, specifically thermochemical storage (TCS), latent heat storage (LHS), and sensible heat storage (SHS). Among these storage types, SHS is the most developed and commercialized, whereas TCS is still in development stages. The merits and demerits of each storage types are discussed in this review. Some of the important organic and inorganic phase change materials focused in recent years have been summarized. The key contributions of this review article include summarizing the inherent benefits and weaknesses, properties, and design criteria of materials used for storing solar thermal energy, as well as discussion of recent investigations into the dynamic performance of solar energy storage systems.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,267,713 B2 Zamir (45) Date of Patent: Feb
    US009267713B2 (12) United States Patent (10) Patent No.: US 9,267,713 B2 Zamir (45) Date of Patent: Feb. 23, 2016 (54) TEMPERATURE CONTROL SYSTEM USPC ......................................... 62/235.1; 165/48.2 See application file for complete search history. (75) Inventor: Ofri Zamir, Hogla (IL) (73) Assignee: DZSOLAR LTD, Richmond (GB) (56) References Cited (*) Notice: Subject to any disclaimer, the term of this U.S. PATENT DOCUMENTS patent is extended or adjusted under 35 4.256,475 A 3, 1981 Schafer ........................ 62/235.1 U.S.C. 154(b) by 821 days. 4,285,208 A * 8/1981 Takeshita et al. ............... 62/141 5,177,977 A 1/1993 Larsen (21) Appl. No.: 13/502.923 5,261,251 A * 1 1/1993 Galiyano ..................... 62,176.6 (Continued) (22) PCT Filed: Oct. 20, 2010 FOREIGN PATENT DOCUMENTS (86). PCT No.: PCT/L2O1O/OOO863 AU 2011 100888 A4 2, 2012 S371 (c)(1), CN 26795.62 Y 2, 2005 (2), (4) Date: Apr. 19, 2012 (Continued) (87) PCT Pub. No.: WO2011/048594 OTHER PUBLICATIONS PCT Pub. Date: Apr. 28, 2011 The International Search Report for International Application No. (65) Prior Publication Data PCT/IL2010/000863, three pages, mailed May 12, 2011. US 2012/0204587 A1 Aug. 16, 2012 O O Primary Examiner — Ljiljana Ciric Related U.S. Application Data Assistant Examiner — Alexis Cox (60) Provisional application No. 61/253,573, filed on Oct. (74) Attorney, Agent, or Firm — Vorys, Sater, Seymour & 21, 2009. Pease LLP (51) Int. Cl. F25B 27/00 (2006.01) (57) ABSTRACT F25B I3/00 (2006.01) A temperature control system, including a closed refrigerant (52) U.S.
    [Show full text]
  • Do-It-Yourself HVAC Apprentice Contest Basic Guidelines for Planning an Apprentice Contest
    PHCC Educational Foundation Do-It-Yourself HVAC Apprentice Contest Basic Guidelines for Planning an Apprentice Contest 1. Find volunteers! Members, teachers, technicians and inspectors all make good volunteers. 2. Designate a chairman or coordinator to run the contest. The role of chairman or coordinator can be done by anyone who is willing to volunteer and dedicate the time it takes to plan and administer the contest. He or she should have some HVAC background as well as the ability to answer technical questions about the contest. The chairman/coordinator is responsible for delegating all necessary job tasks. His/her decisions are final. Normally, the chairman/coordinator is the state or local apprenticeship committee chairman or an instructor at an apprentice school. 3. Set up a timeline or schedule of events. 4. Design the test and/or contest you will use. A sample contest has been provided at the end of this book. 5. Make a list of contest rules for the apprentices to follow. Provide this information with the registration form. 6. Make an agenda for the apprentices to follow. Include registration deadlines, time to arrive at the contest site and time of the awards presentation. 7. Find students to compete. Ideally, they should be PHCC apprentices and/or SkillsUSA students. You can have as few as three and as many as you feel you can handle. 8. Find a location for the contest. Some suggestions include outside under a tent, inside an exhibition hall, in a member’s shop or at the apprentice school. If you use an exhibition hall, please note that you may have to obtain a permit from the local fire marshal.
    [Show full text]
  • Lecture 11. Surface Evaporation and Soil Moisture (Garratt 5.3) in This
    Atm S 547 Boundary Layer Meteorology Bretherton Lecture 11. Surface evaporation and soil moisture (Garratt 5.3) In this lecture… • Partitioning between sensible and latent heat fluxes over moist and vegetated surfaces • Vertical movement of soil moisture • Land surface models Evaporation from moist surfaces The partitioning of the surface turbulent energy flux into sensible vs. latent heat flux is very important to the boundary layer development. Over ocean, SST varies relatively slowly and bulk formulas are useful, but over land, the surface temperature and humidity depend on interactions of the BL and the surface. How, then, can the partitioning be predicted? For saturated ideal surfaces (such as saturated soil or wet vegetation), this is relatively straight- forward. Suppose that the surface temperature is T0. Then the surface mixing ratio is its saturation value q*(T0). Let z1 denote a measurement height within the surface layer (e. g. 2 m or 10 m), at which the temperature and humidity are T1 and q1. The stability is characterized by an Obhukov length L. The roughness length and thermal roughness lengths are z0 and zT. Then Monin-Obuhkov theory implies that the sensible and latent heat fluxes are HS = ρLvCHV1 (T0 - T1), HL = ρLvCHV1 (q0 - q1), where CH = fn(V1, z1, z0, zT, L)" We can eliminate T0 using a linearized version of the Clausius-Clapeyron equations: q0 - q*(T1) = (dq*/dT)R(T0 - T1), (R indicates a reference temp. near (T0 + T1)/2) HL = s*HS +!LCHV1(q*(T1) - q1), (11.1) s* = (L/cp)(dq*/dT)R (= 0.7 at 273 K, 3.3 at 300 K) This equation expresses latent heat flux in terms of sensible heat flux and the saturation deficit at the measurement level.
    [Show full text]
  • Heat and Thermodynamics Course
    Heat and Thermodynamics Introduction Definitions ! Internal energy ! Kinetic and potential energy ! Joules ! Enthalpy and specific enthalpy ! H= U + p x V ! Reference to the triple point ! Engineering unit ! ∆H is the work done in a process ! J, J/kg More Definitions ! Work ! Standard definition W = f x d ! In a gas W = p x ∆V ! Heat ! At one time considered a unique form of energy ! Changes in heat are the same as changes in enthalpy Yet more definitions ! Temperature ! Measure of the heat in a body ! Heat flows from high to low temperature ! SI unit Kelvin ! Entropy and Specific Entropy ! Perhaps the strangest physics concept ! Notes define it as energy loss ! Symbol S ! Units kJ/K, kJ/(kg•k) ! Entropy increases mean less work can be done by the system Sensible and Latent Heat ! Heat transfers change kinetic or potential energy or both ! Temperature is a measure of kinetic energy ! Sensible heat changes kinetic (and maybe potential energy) ! Latent heat changes only the potential energy. Sensible Heat Q = m⋅c ⋅(t f − ti ) ! Q is positive for transfers in ! c is the specific heat capacity ! c has units kJ/(kg•C) Latent Heat Q = m⋅lv Q = m⋅lm ! Heat to cause a change of state (melting or vaporization) ! Temperature is constant Enthalpy Changes Q = m⋅∆h ! Enthalpy changes take into account both latent and sensible heat changes Thermodynamic Properties of H2O Temperature °C Sensible heat Latent heat Saturation temp 100°C Saturated Saturated liquid steam Superheated Steam Wet steam Subcooled liquid Specific enthalpy Pressure Effects Laws of Thermodynamics ! First Law ! Energy is conserved ! Second Law ! It is impossible to convert all of the heat supplied to a heat engine into work ! Heat will not naturally flow from cold to hot ! Disorder increases Heat Transfer Radiation Conduction • • A 4 Q = k ⋅ ⋅∆T QαA⋅T l A T2 T1 l More Heat Transfer Convection Condensation Latent heat transfer Mass Flow • from vapor Q = h⋅ A⋅∆T Dalton’s Law If we have more than one gas in a container the pressure is the sum of the pressures associated with an individual gas.
    [Show full text]