Heat and Thermodynamics Course

Total Page:16

File Type:pdf, Size:1020Kb

Heat and Thermodynamics Course Heat and Thermodynamics Introduction Definitions ! Internal energy ! Kinetic and potential energy ! Joules ! Enthalpy and specific enthalpy ! H= U + p x V ! Reference to the triple point ! Engineering unit ! ∆H is the work done in a process ! J, J/kg More Definitions ! Work ! Standard definition W = f x d ! In a gas W = p x ∆V ! Heat ! At one time considered a unique form of energy ! Changes in heat are the same as changes in enthalpy Yet more definitions ! Temperature ! Measure of the heat in a body ! Heat flows from high to low temperature ! SI unit Kelvin ! Entropy and Specific Entropy ! Perhaps the strangest physics concept ! Notes define it as energy loss ! Symbol S ! Units kJ/K, kJ/(kg•k) ! Entropy increases mean less work can be done by the system Sensible and Latent Heat ! Heat transfers change kinetic or potential energy or both ! Temperature is a measure of kinetic energy ! Sensible heat changes kinetic (and maybe potential energy) ! Latent heat changes only the potential energy. Sensible Heat Q = m⋅c ⋅(t f − ti ) ! Q is positive for transfers in ! c is the specific heat capacity ! c has units kJ/(kg•C) Latent Heat Q = m⋅lv Q = m⋅lm ! Heat to cause a change of state (melting or vaporization) ! Temperature is constant Enthalpy Changes Q = m⋅∆h ! Enthalpy changes take into account both latent and sensible heat changes Thermodynamic Properties of H2O Temperature °C Sensible heat Latent heat Saturation temp 100°C Saturated Saturated liquid steam Superheated Steam Wet steam Subcooled liquid Specific enthalpy Pressure Effects Laws of Thermodynamics ! First Law ! Energy is conserved ! Second Law ! It is impossible to convert all of the heat supplied to a heat engine into work ! Heat will not naturally flow from cold to hot ! Disorder increases Heat Transfer Radiation Conduction • • A 4 Q = k ⋅ ⋅∆T QαA⋅T l A T2 T1 l More Heat Transfer Convection Condensation Latent heat transfer Mass Flow • from vapor Q = h⋅ A⋅∆T Dalton’s Law If we have more than one gas in a container the pressure is the sum of the pressures associated with an individual gas. Pc = P1 + P2 + P3 +... Condensing Heat Exchanger Steam In P P=Psaturation T=Tsaturation Coolant Coolant In Out T Water Out Non-Condensables in Heat Exchanger Steam In P P=Psaturation+Pg T=Tsaturation Coolant Coolant In Out T Condenser Appears Subcooled Water Out For You to do HTS Normal Operation Reactor Thermal Power QHT Steam to turbine Feedwater Boiler 2nd stage Reheat Preheater drains Boiler blowdown QP HT pump Bleed cooler Piping loses Feed & bleed Fuel QL bundle/ HTS End shield/shield tank QM Moderator QSC Reactor Power and ∆T ! ∆T is an indicator of reactor power if boiling is not taking place • • Q = m⋅c ⋅∆T ! At boiling ∆T stops changing ! In boiling channels total enthalpy increase must be calculated Fuel Safety ! No overpowering ! Adequate cooling Fuel Heat Transfer Single Nucleate phase Partial film boiling Full film boiling (dryout) boiling convection boiling Saturated Subcooled (bulk) boiling D F Critical heat flux C Log (heat flux) E B A Tcoolant = Tsat Log (T – T ) Tsheath = Tsat sheath coolant Two new terms ! Critical Heat Flux ! CHF ! The maximum heat flux nucleate boiling can transfer ! Dryout ! When dry patches of vapor exist on the fuel sheath Uniform Heating T sheath surface T sat T coolant Coolant Fuel element Single- Subcooled phase nucleate convection boiling Saturated nucleate (bulk) boiling Dryout Inlet Outlet Factors Affecting CHF ! Coolant Sub-cooling ! Vapour Quality ! Coolant Velocity Actual and Critical Heat Flux C HF Channel power Bundles in dryout inlet Actual heat flux Channel distance outlet Critical Channel Power ! CCP ! The minimum channel power that gives dryout ! Varies with coolant conditions ! Varies with flux shape Boiling and Flow Boiling mode 10.4 10.2 Boiling starts 10.0 Pressure MPa(a) 9.8 Non-boiling mode 9.6 Inlet Outlet Channel position Temperature Profile 2800 Fuel melting point 2400 2000 1600 1200 Temperature, ° C Fuel Fuel sheath sheath 800 Coolant Coolant 400 Fuel pellet More Temperature Profiles 2800 Fuel melting point Overrating without dryout Possible film of 2400 gaseous fission products (on LOCA) Overrating 2000 and dryout 1600 Nominal rating, Light load 1200 normal cooling and dryout Vapour film Temperature, ° C due to dryout 800 400 Fuel pellet Fuel Fuel Coolant Coolant sheath sheath Bad things to do to fuel Low HTS Pressure a) Temperature profile Inlet Outlet T at normal pressure Coolant temperature at sat normal pressure Tsat at reduced pressure Coolant temperature at reduced pressure Coolant temperature Channel position b) Heat flux profile Inlet Outlet CHF at normal pressure Heat flux CHF at reduced flux pressure eat al h Actu Channel position Reduced Flow a) Temperature profile Outlet Inlet Saturation temperature Reduced flow Normal flow Coolant temperature Channel position b) Heat flux profile Inlet Outlet CHF at normal flow Heat flux CHF at reduced flow flux eat al h Actu Dryout zone Channel position Inlet High Temperature a) Temperature profile Inlet Outlet Saturation temperature High inlet temperature Normal inlet temperature Coolant temperature Channel position b) Heat flux profile Inlet Outlet CHF at normal inlet temperature CHF at high inlet Heat flux temperature flux eat al h Actu Channel position Flux Tilt to Outlet a) Temperature profile Inlet Outlet Normal flux Saturation temperature Skewed flux Coolant temperature Channel position b) Heat flux profile Inlet CHF at skewed flux Outlet Dryout zone CHF at normal flux Heat flux x t flu hea mal Nor lux eat f ed h Skew Channel position Flux Tilt to Inlet Inlet a) Temperature profile Saturation temperature Outlet Coolant temperature Skewed flux Normal flux Inlet Channel position b) Heat flux profile CHF at skewed flux Heat flux CHF at normal flux Outlet Normal heat flux Skewed heat flux Channel position Excessive Channel Power a) Temperature profile Inlet Outlet Saturation temperature Excessive channel power Normal channel power Coolant temperature Coolant Channel position b) Heat flux profile Inlet Outlet CHF at normal channel power Dryout zone CHF at excessive channel power Heat flux x t flu hea rmal No Excessive heat flux Channel position For You to do HTS Components HTS Feed & Bleed Bleed Condenser ! Non-condensable gases ! Reduce heat transfer ! Steam pressure rises ! Increased reflux cooling ! Vessel appears sub cooled ! Degassing Orifice Pressurizer Control Boiler Shrink and Swell ! Boilers are probably more correctly called steam generators Steady State Shrink and Swell Rise in Level Rise in Level Zero Load Low Load Full Load Transient Shrink and Swell ! Shrink and swell from short term effects ! Reactor power ⇑ boiler level ⇑ ! Boiling increases ! Boiler Pressure ⇓ boiler level ⇑ ! Water flashes to steam ! Steam expands Effects on the Downcomer ! Water flow into the Cyclone annulus increases Separators ! Water flow out of the annulus Downcomer Annulus Expansion decreases Forces ! Instrumentation sees a level increase Boiler Level Control Swell Margin Constant Level Full Power Level Swell Margin Shrink Shrink Margin Margin Zero Power Level Fixed Level Control Ramped Level Control Improper Level ! Low ! If tubes are uncovered ! Reduce heat transfer ! Time in loss of feedwater events is reduced ! Reactor power automatically reduced ! Setback or stepback and finally a trip ! High ! High vapor content in steam ! Slugs of water to turbine ! Turbine trip Boiler Pressure ! Boiler pressure is the key parameter in matching heat source to sink ! Reactor Leading ! Reactor Lagging Warm-up and Cool-down ! Heat transfer in the boiler • Q = U ⋅ A⋅∆Tm ! A low power levels the HTS is about the same temperature as the boiler Rx for Warm-up ! Put some energy into HTS from pumps and reactor power ! Increase boiler pressure ! Boiler temperature follows (saturated vessel) ! HTS temperature follows that Rx for Cool-down ! Heat sources are pumps and decay heat ! Boiler pressure is ramped down ! Steam energy released is greater that energy input ! Down go temperatures ! Limit around 130-150°C due to huge volume of steam required Ideal Temperature Ramps ! 2.8°C a minute ! This rate minimizes ! Thermal stress ! Probability of delayed hydride cracking ! Feedwater loss For You to do.
Recommended publications
  • Chapter 8 and 9 – Energy Balances
    CBE2124, Levicky Chapter 8 and 9 – Energy Balances Reference States . Recall that enthalpy and internal energy are always defined relative to a reference state (Chapter 7). When solving energy balance problems, it is therefore necessary to define a reference state for each chemical species in the energy balance (the reference state may be predefined if a tabulated set of data is used such as the steam tables). Example . Suppose water vapor at 300 oC and 5 bar is chosen as a reference state at which Hˆ is defined to be zero. Relative to this state, what is the specific enthalpy of liquid water at 75 oC and 1 bar? What is the specific internal energy of liquid water at 75 oC and 1 bar? (Use Table B. 7). Calculating changes in enthalpy and internal energy. Hˆ and Uˆ are state functions , meaning that their values only depend on the state of the system, and not on the path taken to arrive at that state. IMPORTANT : Given a state A (as characterized by a set of variables such as pressure, temperature, composition) and a state B, the change in enthalpy of the system as it passes from A to B can be calculated along any path that leads from A to B, whether or not the path is the one actually followed. Example . 18 g of liquid water freezes to 18 g of ice while the temperature is held constant at 0 oC and the pressure is held constant at 1 atm. The enthalpy change for the process is measured to be ∆ Hˆ = - 6.01 kJ.
    [Show full text]
  • A Comprehensive Review of Thermal Energy Storage
    sustainability Review A Comprehensive Review of Thermal Energy Storage Ioan Sarbu * ID and Calin Sebarchievici Department of Building Services Engineering, Polytechnic University of Timisoara, Piata Victoriei, No. 2A, 300006 Timisoara, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-256-403-991; Fax: +40-256-403-987 Received: 7 December 2017; Accepted: 10 January 2018; Published: 14 January 2018 Abstract: Thermal energy storage (TES) is a technology that stocks thermal energy by heating or cooling a storage medium so that the stored energy can be used at a later time for heating and cooling applications and power generation. TES systems are used particularly in buildings and in industrial processes. This paper is focused on TES technologies that provide a way of valorizing solar heat and reducing the energy demand of buildings. The principles of several energy storage methods and calculation of storage capacities are described. Sensible heat storage technologies, including water tank, underground, and packed-bed storage methods, are briefly reviewed. Additionally, latent-heat storage systems associated with phase-change materials for use in solar heating/cooling of buildings, solar water heating, heat-pump systems, and concentrating solar power plants as well as thermo-chemical storage are discussed. Finally, cool thermal energy storage is also briefly reviewed and outstanding information on the performance and costs of TES systems are included. Keywords: storage system; phase-change materials; chemical storage; cold storage; performance 1. Introduction Recent projections predict that the primary energy consumption will rise by 48% in 2040 [1]. On the other hand, the depletion of fossil resources in addition to their negative impact on the environment has accelerated the shift toward sustainable energy sources.
    [Show full text]
  • Dodge Cummins Coolant Bypass
    FPE-2018-06 SUBJECT: DODGE CUMMINS COOLANT BYPASS KIT November, 2020 Page 1 of 6 FITMENT: 2003–2007 Dodge Cummins Manual Transmission Only 2007.5-2018 Dodge Cummins Manual and Automatic Transmissions KIT P/N: FPE-CLNTBYPS-CUMMINS-MAN, FPE-CLNTBYPS-CUMMINS-6.7 ESTIMATED INSTALLATION TIME: 2-3 Hours TOOLS REQUIRED: 16mm ratcheting wrench, 10mm socket, 8mm socket, 6mm Allen, 1” wrench, hammer, 5-gallon clean drain pan, 36” pry bar, Scotch-Brite TM pad (included in kit). KIT CONTENTS: Item Description Qty 1 Coolant bypass hose 1 2 Coolant bypass thermostat housing 1 and O-ring 3 Thermostat riser block and O-ring 1 3 4 4 Coolant bypass hose riser bracket 2 2 5 M8 x 1.25, 20mm socket head cap 2 screw 7 6 6 M6 x 1.00 x 60mm flange head bolt 3 5 7 M12 x 1.75, 40mm flange head bolt 2 8 Scotch-Brite TM pad (not pictured) 1 1 WARNINGS: • Use of this product may void or nullify the vehicle’s factory warranty. • User assumes sole responsibility for the safe & proper use of the vehicle at all times. • The purchaser and end user releases, indemnifies, discharges, and holds harmless Fleece Performance Engineering, Inc. from any and all claims, damages, causes of action, injuries, or expenses resulting from or relating to the use or installation of this product that is in violation of the terms and conditions on this page, the product disclaimer, and/or the product installation instructions. Fleece Performance Engineering, Inc. will not be liable for any direct, indirect, consequential, exemplary, punitive, statutory, or incidental damages or fines cause by the use or installation of this product.
    [Show full text]
  • Optimization of the Design of a Polymer Flat Plate Solar Collector A
    Optimization of the design of a polymer flat plate solar collector A. C. Mintsa Do Ango, Marc Médale, Chérifa Abid To cite this version: A. C. Mintsa Do Ango, Marc Médale, Chérifa Abid. Optimization of the design of a polymer flat plate solar collector. Solar Energy, Elsevier, 2013, 87, pp.64-75. 10.1016/j.solener.2012.10.006. hal- 01459491 HAL Id: hal-01459491 https://hal.archives-ouvertes.fr/hal-01459491 Submitted on 15 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Optimization of the design of a polymer flat plate solar collector A.C. Mintsa Do Ango ⇑, M. Medale, C. Abid Aix-Marseille Universite´, CNRS, IUSTI UMR 7343, 13453 Marseille, France This work presents numerical simulations aimed at optimizing the design of polymer flat plate solar collectors. Solar collectors’ absorbers are usually made of copper or aluminum and, although they offer good performance, they are consequently expensive. In com-parison, using polymer can improve solar collectors economic competitiveness. In this paper, we propose a numerical study of a new design for a solar collector to assess the influence of the design parameters (air gap thickness, collector’s length) and of the operating conditions (mass flow rate, incident solar radiation, inlet temperature) on efficiency.
    [Show full text]
  • Cryogenicscryogenics Forfor Particleparticle Acceleratorsaccelerators Ph
    CryogenicsCryogenics forfor particleparticle acceleratorsaccelerators Ph. Lebrun CAS Course in General Accelerator Physics Divonne-les-Bains, 23-27 February 2009 Contents • Low temperatures and liquefied gases • Cryogenics in accelerators • Properties of fluids • Heat transfer & thermal insulation • Cryogenic distribution & cooling schemes • Refrigeration & liquefaction Contents • Low temperatures and liquefied gases ••• CryogenicsCryogenicsCryogenics ininin acceleratorsacceleratorsaccelerators ••• PropertiesPropertiesProperties ofofof fluidsfluidsfluids ••• HeatHeatHeat transfertransfertransfer &&& thermalthermalthermal insulationinsulationinsulation ••• CryogenicCryogenicCryogenic distributiondistributiondistribution &&& coolingcoolingcooling schemesschemesschemes ••• RefrigerationRefrigerationRefrigeration &&& liquefactionliquefactionliquefaction • cryogenics, that branch of physics which deals with the production of very low temperatures and their effects on matter Oxford English Dictionary 2nd edition, Oxford University Press (1989) • cryogenics, the science and technology of temperatures below 120 K New International Dictionary of Refrigeration 3rd edition, IIF-IIR Paris (1975) Characteristic temperatures of cryogens Triple point Normal boiling Critical Cryogen [K] point [K] point [K] Methane 90.7 111.6 190.5 Oxygen 54.4 90.2 154.6 Argon 83.8 87.3 150.9 Nitrogen 63.1 77.3 126.2 Neon 24.6 27.1 44.4 Hydrogen 13.8 20.4 33.2 Helium 2.2 (*) 4.2 5.2 (*): λ Point Densification, liquefaction & separation of gases LNG Rocket fuels LIN & LOX 130 000 m3 LNG carrier with double hull Ariane 5 25 t LHY, 130 t LOX Air separation by cryogenic distillation Up to 4500 t/day LOX What is a low temperature? • The entropy of a thermodynamical system in a macrostate corresponding to a multiplicity W of microstates is S = kB ln W • Adding reversibly heat dQ to the system results in a change of its entropy dS with a proportionality factor T T = dQ/dS ⇒ high temperature: heating produces small entropy change ⇒ low temperature: heating produces large entropy change L.
    [Show full text]
  • COOLANT CATALOG We Are Committed to Keeping Trucks on the Road and Moving Forward by Providing Quality Parts to All Who Repair Heavy-Duty Vehicles
    COOLANT CATALOG We are committed to keeping trucks on the road and moving forward by providing quality parts to all who repair heavy-duty vehicles. CONFIDENCE. COVERAGE. COMMITMENT. TABLE OF CONTENTS EXTENDED LIFE COOLANTS . 4 CONVENTIONAL COOLANTS . 6 Parts that keep you moving. Quality that keeps you coming back. EXTENDED LIFE COOLANTS ROAD CHOICE® NOAT EXTENDED LIFE ANTIFREEZE & COOLANT Road Choice NOAT Extended Life Antifreeze & Coolant is formulated for heavy-duty diesel, gasoline and natural gas engine cooling systems . Road Choice NOAT Antifreeze & Coolant uses nitrite with organic additive inhibitors to provide long-term wet sleeve liner cavitation and corrosion protection for 750,000 miles of on-road or 15,000 hours of off-road use . PRODUCT HIGHLIGHTS: • Eliminates the need for SCAs and chemically charged filters • Improves heat transfer capability • Offers outstanding protection against corrosion and cavitation • Nonabrasive formula can improve water pump seal life • Eliminates drop-out and gel, and reduces scale • Provides exceptional long-term elastomer compatibility • Can be mixed with other coolants (to maintain corrosion protection, contamination levels should be kept below 25 percent) MEETS OR EXCEEDS THE NOAT EXTENDED LIFE FOLLOWING SPECIFICATIONS: ASTM D3306 ASTM D6210 TMC RP329 ASTM D4340 TMC RP351 (COLOR) RECOMMENDED FOR USE IN HEAVY-DUTY VEHICLES AND STATIONARY EQUIPMENT, REGARDLESS OF FUEL TYPE, INCLUDING: Caterpillar EC-1 Komatsu Cummins CES 14603 International John Deere H24A1, H24C1 GM Navistar Waukesha PACCAR
    [Show full text]
  • Environmental and Safety Considerations for Solar Heating and Cooling Applications
    IMBSIR 78-1532 Environmental and Safety Con- siderations for Solar Heating and Cooling Applications David Waksman John Holton Solar Criteria and Standards Program Building Economics and Regulatory Technology Division Center for Building Technology National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234 September 1978 Prepared for Department of Energy Office of Conservation and Solar Applications Washington, D.C. and Department of Housing and Urban Development Division of Energy, Building Technology and Standards Washington, D.C. 20410 "OC — 1 100 . U56 tf78-1532 / m faWeffa! Sireal of Stansf&ri* MAY 1 4 1979 NBSIR 78-1532 * »r ENVIRONMENTAL AND SAFETY CON- SIDERATIONS FOR SOLAR HEATING AND COOLING APPLICATIONS David Waksman John Holton Solar Criteria and Standards Program Building Economics and Regulatory Technology Division Center for Building Technology National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234 September 1978 Prepared for Department of Energy Office of Conservation and Solar Applications Washington, D.C. and Department of Housing and Urban Development Division of Energy, Building Technology and Standards Washington, D.C. 20410 ; ; . a.c,: u j\, i \ : V. - - ( X id'..' U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director TABLE OF CONTENTS Page 1. INTRODUCTION 1 2. GENERAL PROVISIONS 1 3. FIRE SAFETY PROVISIONS . 2 3.1 FLAMMABLE MATERIALS 2 3.2 FIRE RESISTANCE OF BUILDING ASSEMBLIES 6 3.3 EMERGENCY ACCESS AND EGRESS 7 A. PROTECTION OF AIR AND POTABLE WATER 8 A. 1 PROTECTION OF POTABLE WATER 9 A.
    [Show full text]
  • 2224840 Engine Coolant Thermostat Housing Replacement (LUW)
    Service Information 2012 Chevrolet Cruze | Document ID: 2224840 Engine Coolant Thermostat Housing Replacement (LUW) Removal Procedure Caution: Refer to Engine Coolant Thermostat Housing Caution . 1. Open the hood. 2. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle . 3. Place a drain pan below the vehicle. 4. Drain the cooling system. Refer to Cooling System Draining and Filling . 5. Loosen the radiator inlet hose clamp (2). 6. Remove the radiator inlet hose (3) from the engine coolant thermostat (1). 7. Remove the throttle body heater inlet hose (2) from the engine coolant thermostat (1). 8. Remove the heater outlet hose from the engine coolant thermostat housing. Refer to Heater Outlet Hose Replacement . 9. Remove the heater inlet hose from the engine coolant thermostat housing. Refer to Heater Inlet Hose Replacement . 10. Remove the thermostat housing bracket nut. 11. Remove the thermostat housing bracket. 12. Disconnect the engine coolant temperature sensor connector (1). 13. Remove the 2 engine oil cooler pipe bolts (6). Note: Pull the engine oil cooler pipe out of the engine oil cooler. 14. Remove the engine oil cooler pipe (5). 15. Remove the engine oil cooler pipe seals (4, 7). 16. Remove the 4 engine coolant thermostat housing bolts (3). 17. Remove the thermostat housing (2). 18. Remove the thermostat housing seal (8). Installation Procedure 1. Clean sealing surface. 2. Install a NEW engine coolant thermostat housing seal (8). 3. Install the engine coolant thermostat housing (2). Caution: Refer to Fastener Caution . Note: Partially install the 4 bolts until the engine coolant thermostat housing is in contact with the cylinder head.
    [Show full text]
  • A Critical Review on Thermal Energy Storage Materials and Systems for Solar Applications
    AIMS Energy, 7(4): 507–526. DOI: 10.3934/energy.2019.4.507 Received: 05 July 2019 Accepted: 14 August 2019 Published: 23 August 2019 http://www.aimspress.com/journal/energy Review A critical review on thermal energy storage materials and systems for solar applications D.M. Reddy Prasad1,*, R. Senthilkumar2, Govindarajan Lakshmanarao2, Saravanakumar Krishnan2 and B.S. Naveen Prasad3 1 Petroleum and Chemical Engineering Programme area, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei Darussalam 2 Department of Engineering, College of Applied Sciences, Sohar, Sultanate of Oman 3 Sathyabama Institute of Science and Technology, Chennai, India * Correspondence: Email: [email protected]; [email protected]. Abstract: Due to advances in its effectiveness and efficiency, solar thermal energy is becoming increasingly attractive as a renewal energy source. Efficient energy storage, however, is a key limiting factor on its further development and adoption. Storage is essential to smooth out energy fluctuations throughout the day and has a major influence on the cost-effectiveness of solar energy systems. This review paper will present the most recent advances in these storage systems. The manuscript aims to review and discuss the various types of storage that have been developed, specifically thermochemical storage (TCS), latent heat storage (LHS), and sensible heat storage (SHS). Among these storage types, SHS is the most developed and commercialized, whereas TCS is still in development stages. The merits and demerits of each storage types are discussed in this review. Some of the important organic and inorganic phase change materials focused in recent years have been summarized. The key contributions of this review article include summarizing the inherent benefits and weaknesses, properties, and design criteria of materials used for storing solar thermal energy, as well as discussion of recent investigations into the dynamic performance of solar energy storage systems.
    [Show full text]
  • Lecture 11. Surface Evaporation and Soil Moisture (Garratt 5.3) in This
    Atm S 547 Boundary Layer Meteorology Bretherton Lecture 11. Surface evaporation and soil moisture (Garratt 5.3) In this lecture… • Partitioning between sensible and latent heat fluxes over moist and vegetated surfaces • Vertical movement of soil moisture • Land surface models Evaporation from moist surfaces The partitioning of the surface turbulent energy flux into sensible vs. latent heat flux is very important to the boundary layer development. Over ocean, SST varies relatively slowly and bulk formulas are useful, but over land, the surface temperature and humidity depend on interactions of the BL and the surface. How, then, can the partitioning be predicted? For saturated ideal surfaces (such as saturated soil or wet vegetation), this is relatively straight- forward. Suppose that the surface temperature is T0. Then the surface mixing ratio is its saturation value q*(T0). Let z1 denote a measurement height within the surface layer (e. g. 2 m or 10 m), at which the temperature and humidity are T1 and q1. The stability is characterized by an Obhukov length L. The roughness length and thermal roughness lengths are z0 and zT. Then Monin-Obuhkov theory implies that the sensible and latent heat fluxes are HS = ρLvCHV1 (T0 - T1), HL = ρLvCHV1 (q0 - q1), where CH = fn(V1, z1, z0, zT, L)" We can eliminate T0 using a linearized version of the Clausius-Clapeyron equations: q0 - q*(T1) = (dq*/dT)R(T0 - T1), (R indicates a reference temp. near (T0 + T1)/2) HL = s*HS +!LCHV1(q*(T1) - q1), (11.1) s* = (L/cp)(dq*/dT)R (= 0.7 at 273 K, 3.3 at 300 K) This equation expresses latent heat flux in terms of sensible heat flux and the saturation deficit at the measurement level.
    [Show full text]
  • Indoor Air Quality Assessment
    INDOOR AIR QUALITY ASSESSMENT Barnstable United Elementary School 730 Osterville W. Barnstable Road Marstons Mills, Massachusetts Prepared by: Massachusetts Department of Public Health Bureau of Environmental Health Indoor Air Quality Program October 2019 BACKGROUND Building: Barnstable United Elementary School (BUES) formally the Horace Mann Charter School Address: 730 Osterville W. Barnstable Road Marstons Mills, Massachusetts Assessment Requested by: Barnstable Board of Health coordinated via Barnstable Public Schools (BPS) Reason for Request: Mold concerns prompted this recent request; however, over the past year the MDPH has been involved with a collaborative effort to perform general indoor air quality (IAQ) assessments throughout the Barnstable School District. Date of Assessment: September 12 and September 17, 2019 Massachusetts Department of Public Mike Feeney, Director and Cory Health/Bureau of Environmental Health Holmes, Environmental Analyst, (MDPH/BEH) Staff Conducting Assessment: MDPH/IAQ Program Building Description: The BUES is a two-story brick building completed in 1994. The building contains a centralized courtyard, general classrooms, science classrooms, art rooms, music rooms, kitchen, cafeteria, gymnasium, faculty workrooms and office space. Windows: Openable METHODS Please refer to the IAQ Manual and appendices for methods, sampling procedures, and interpretation of results (MDPH, 2015). Note that this building has been visited by the MDPH IAQ Program in June 2012 at the request of the BPS. The report from that visit can be found at: https://www.mass.gov/info-details/indoor-air-quality-reports-cities-and-towns-b (listed as Horace Mann). It is also important to note that the BPS has reportedly created IAQ committees in their school buildings, each with an IAQ liaison/teacher representative that conducts regular walk-throughs to identify on-going and/or potential environmental issues.
    [Show full text]
  • CKM Vacuum Veto System Vacuum Pumping System
    CKM Vacuum Veto System Vacuum Pumping System Technical Memorandum CKM-80 Del Allspach PPD/Mechanical/Process Systems March 2003 Fermilab Batavia, IL, USA TABLE OF CONTENTS 1.0 Introduction 3 2.0 VVS Outgassing Distribution 3 3.0 VVS High Vacuum Pumping System Solutions 4 3.1 Diffusion Pump System for the VVS 3.2 Turbo Molecular Pump System for the VVS 3.3 Turbo Molecular Pump System for the DMS Region 3.4 VVS Cryogenic Vacuum Pumping System 4.0 Roughing System 6 5.0 Summary 6 6.0 References 7 p. 2 1.0 Introduction This technical memorandum discusses two solutions for achieving the pressure specification of 1.0E-6 Torr for the CKM Vacuum Veto System (VVS). The first solution includes the use of Diffusion Pumps (DP’s) for the volume upstream of the Downstream Magnetic Spectrometer (DMS) regions. The second solution uses Turbo Molecular Pumps (TMP’s) for the upstream volume. In each solution, TMP’s are used for each of the four DMS regions. Cryogenic Vacuum Pumping is also considered to supplement the upstream portion of the VVS. The capacity of the Roughing System is reviewed as well. The distribution of the system outgassing is first examined. 2.0 VVS Outgassing Distribution There are several sources of outgassing in the VVS vacuum vessel. These sources are discussed in a previous note [1]. The distribution of the outgassing within the VVS is now considered. The VVS detector total outgassing rate was determined to be 1.0E-2 Torr-L/sec. The upstream portion accounts for 54% of this rate while the downstream side is 46% of the rate.
    [Show full text]