Description of Sphingomonas Xenophaga Sp. Nov. for Strains BN6T and N,N Which Degrade Xenobiotic Aromatic Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Description of Sphingomonas Xenophaga Sp. Nov. for Strains BN6T and N,N Which Degrade Xenobiotic Aromatic Compounds International Journal of Systematic and Evolutionary Microbiology (2000), 50, 35–41 Printed in Great Britain Description of Sphingomonas xenophaga sp. nov. for strains BN6T and N,N which degrade xenobiotic aromatic compounds Andreas Stolz,1 Christian Schmidt-Maag,2† Ewald B. M. Denner,3 Hans-Ju$ rgen Busse,3,5 Thomas Egli2 and Peter Ka$ mpfer4 Author for correspondence: Andreas Stolz. Tel: ­49 711 6855489. Fax: ­49 711 6855725. e-mail: andreas.stolz!po.uni-stuttgart.de 1 Institut fu$ r Mikrobiologie, The taxonomic position of two bacterial strains, BN6T and N,N, with the ability Universita$ t Stuttgart, to degrade xenobiotic aromatic compounds (naphthalenesulfonates or N,N- Allmandring 31, 70569 Stuttgart, Germany dimethylaniline) was investigated. The 16S rRNA gene sequence, the GMC content of the DNA (62–63 mol%) and the detection of ubiquinone Q-10, 2- 2 Swiss Federal Institute for Water Resources and hydroxymyristic acid and the sphingoglycolipid present clearly placed the two Water Pollution Control, strains into the genus Sphingomonas. Both strains are representatives of one Swiss Federal Institute of species according to the level of DNA relatedness (70<7%). The strains could be Technology, 8600 Du$ bendorf, Switzerland separated from all validly described taxa of the genus Sphingomonas, according to the 16S rRNA gene sequence (the highest sequence similarity 3 Institut fu$ r Mikrobiologie und Genetik, Universita$ t observed was 96% to Sphingomonas yanoikuyae), the pattern of the polar Wien, Dr Bohr-Gasse 9, lipids and physiological characteristics. Therefore, the new species Sphingomonas A-1030 Vienna, Austria xenophaga is proposed to accommodate strains BN6T (¯ DSM 6383T) and 4 Institut fu$ r Angewandte N,N (¯ DSM 8566). Mikrobiologie, Justus- Liebig-Universita$ t Giessen, Senckenbergstr. 3, 35390 Giessen, Germany Keywords: Sphingomonas xenophaga sp. nov., taxonomy, degradation, naphthalenesulfonate, dimethylaniline 5 Institut fu$ r Bakteriologie, Mykologie und Hygiene, Veterina$ rmedizinische Universita$ t Wien, Veterina$ rplatz 1, A-1210 Vienna, Austria INTRODUCTION can be expected. Therefore, a reliable taxonomic description of known Sphingomonas strains is urgently The genus Sphingomonas is becoming increasingly needed. interesting because it contains various xenobiotic- T degrading bacterial isolates. Members of this genus are The bacterial isolate ‘Pseudomonas’ sp. BN6 has been able to degrade compounds such as biphenyl, naph- studied intensively because of its ability to degrade thalene and pyrene (Balkwill et al., 1997; Khan et al., naphthalenesulfonates. The strain was isolated from 1996; Ye et al., 1996), diphenylether and dibenzo-p- the River Elbe as a member of a bacterial consortium which completely degraded 6-aminonaphthalene-2- dioxin (Schmidt et al., 1992; Moore et al., 1993), T herbicides and pesticides (Feng et al., 1997; Nagata et sulfonate. It was found that strain BN6 oxidized a al., 1997; Nickel et al., 1997), polyethylene glycols wide range of (substituted) naphthalenesulfonates (Takeuchi et al., 1993) and chlorinated phenols to the corresponding (substituted) salicylates (Karlson et al., 1995; Nohynek et al., 1995, 1996). (No$ rtemann et al., 1986). Different enzymes of the Because of the high physiological versatility within degradative pathway for naphthalenesulfonates have members of the genus Sphingomonas, the isolation of been purified and characterized (No$ rtemann et al., new Sphingomonas strains with interesting properties 1994; Kuhm et al., 1991, 1993a, b). Different extradiol dioxygenases from this strain have also been studied ................................................................................................................................................. (Heiss et al., 1995, 1997; Riegert et al., 1998). † Present address: AB Biotechnologie, TU Hamburg-Harburg, 21071 T Hamburg, Germany. Furthermore, strain BN6 reduced the azo bond of Abbreviation: DMA, dimethylaniline. sulfonated azo dyes under anaerobic conditions and 01075 # 2000 IUMS 35 A. Stolz and others has been used in an anaerobic}aerobic process for the Physiological and biochemical characterization. The two mineralization of sulfonated azo compounds (Haug strains were characterized on the basis of 66 biochemical and et al., 1991; Keck et al., 1997; Kudlich et al., 1996, physiological characteristics as described previously 1997). (Ka$ mpfer et al., 1997). During a comparative study with different Sphingo- G­C content. Isolation of genomic DNA and spectro- monas et al photometric determination of the G­C content were carried strains, Nohynek . (1996) demonstrated out according to Auling et al. (1986). that strain BN6T belongs to the genus Sphingomonas, according to its 16S rRNA gene sequence. They DNA reassociation experiments. Genomic DNA was isolated suggested that strain BN6T represents a yet un- by chromatography on hydroxyapatite by the procedure of described species within the genus Sphingomonas.A Cashion et al. (1977). DNA–DNA hybridization studies T were carried out by using the thermal renaturation method taxonomic description of strain BN6 was hampered (Yassin et al., 1993). by the fact that only this single isolate of the presumed new species was available. Schmidt (1994) isolated another Sphingomonas strain (designated N,N), after RESULTS enrichment with N,N-dimethylaniline (N,N-DMA) as Morphological and cultural characteristics sole source of carbon and energy, which resembled T strain BN6T in many aspects. Therefore, we compared Cells of strains BN6 and N,N were aerobic Gram- these strains and suggest that strain BN6T and strain negative, non-spore-forming rods (1±3–4±0 µmin N,N belong to a new species of the genus Sphingo- length and 0±7–1±2 µm in diameter). Both strains monas for which we propose the name Sphingomonas formed intense yellow colonies on solid medium. No xenophaga sp. nov. growth was observed at 4 or 42 mC on agar plates. After reaching the stationary growth phase in liquid METHODS cultures, both strains rapidly lost the ability to form colonies on solid medium. Bacterial strains. Strain BN6T was isolated from the River Elbe as a member of a 6-aminonaphthalene-2-sulfonate- degrading mixed bacterial culture (No$ rtemann et al., 1986). DNA reassociation It has been deposited at the Deutsche Sammlung von According to the 16S rDNA gene sequence, strain Mikroorganismen und Zellkulturen (DSMZ), Braun- T schweig, Germany, as DSM 6383T. Strain N,N was BN6 showed the highest degree of similarity to obtained from a mixed sample from wastewater treatment Sphingomonas yanoikuyae (96% similarity) (Nohynek et al., 1996). Therefore, DNA reassociation studies plants, contaminated soil, river sediments and rotten wood T after a continuous enrichment with a simultaneous supply of were performed with strains BN6 , N,N and S. " T 2,4-, 2,5- and 2,6-DMA and N,N-DMA (50 mg l− each). yanoikuyae DSM 7462 . The level of DNA relatedness T The strain was isolated from the enrichment culture after between strains BN6 and N,N was 70±7%. In con- plating on agar plates with N,N-DMA as sole source of trast, the level of DNA relatedness between strain T T carbon, nitrogen and energy. Repeated transfers to liquid BN6 and S. yanoikuyae DSM 7462 was only 40±0%. cultures with N,N-DMA and solid complex media resulted These results suggested that strains BN6T and N,N are in a pure culture of strain N,N (Schmidt, 1994). It has been indeed members of the same species but do not belong deposited as strain DSM 8566. to the species S. yanoikuyae. Cellular fatty acids. Fatty acid methyl esters were extracted and prepared by the standard protocol of the Microbial Identification System (MIDI; Microbial ID). Extracts were G­C content of DNA analysed by using a Hewlett Packard model HP6890A gas The G­C contents of the genomic DNA from strains chromatograph equipped with a flame-ionization detector, T an automatic sampler, an integrator and a computer, as BN6 and N,N were determined to be 62±1³0±2 and described previously (Ka$ mpfer & Kroppenstedt, 1996). 63±3³0±3% mol%, respectively. These values fall within the range observed for members of the genus Polyamines. Polyamines were extracted and analysed ac- cording to Busse & Auling (1988). Sphingomonas (Yabuuchi et al., 1990). Polar lipids and quinones. The quinone system and polar lipids were determined by TLC as described previously Physiological and biochemical characteristics (Tindall, 1990; Auling et al., 1993). The results obtained from further tests demonstrated Extraction and analysis of the pigment. Lyophilized cells that strains BN6T and N,N reacted very similarly to (about 0±5 g) were stirred for 3 h at 4 mC in acetone (5 ml). each other but showed characteristics different from S. Cells were removed by centrifugation and the dissolved T pigment in the supernatant was analysed by UV}visible yanoikuyae. Strains BN6 and N,N did not produce spectroscopy (IMA Gilford Analysentechnik). Spectra were acids from various sugars and sugar alcohols tested recorded between 350 and 520 nm against acetone as under aerobic conditions. Only a limited number of reference. carbohydrates as well as simple organic acids were utilized as sources of carbon and energy (Table 1). Morphology. Gram reaction was tested as described by T Gerhardt et al. (1994). Cell morphologies were observed Distinguishing results between strains BN6 and N,N under a light microscope (1000¬) using cells grown for 3 d were observed in respect to hydrolysis of p- at 30 mC on Nutrient Agar. nitrophenyl-β--xylopyranoside,
Recommended publications
  • Emendation of the Genus Sphingomonas Yabuuchi Et Al
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 1485–1496 DOI: 10.1099/ijs.0.01868-0 Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola 1 Department of Eiko Yabuuchi,1 Yoshimasa Kosako,2 Nagatoshi Fujiwara,3 Microbiology, Gifu 3,4 5 5 University School of Takashi Naka, Isamu Matsunaga, Hisashi Ogura and Medicine, Tsukasa-machi Kazuo Kobayashi3 40, Gifu 500-8705, Japan 2 Japan Collection of Microorganisms, Institute Author for correspondence: Kazuo Kobayashi. Tel: j81 6 6645 3745. Fax: j81 6 6646 3662. of Physical and Chemical e-mail: kobayak!med.osaka-cu.ac.jp Research (RIKEN), Wako- shi, Saitama 351-0198, Japan The 16S rDNA sequence similarities between the type strains of Sphingomonas 3 Department of Host paucimobilis and 32 other Sphingomonas species range from 902to996%. It Defense, Osaka City might be possible to divide the genus into several new genera according to a University Graduate School dendrogram drawn from 16S rDNA sequence similarity. However, the of Medicine, 1-4-3 Asahi- machi, Abeno-ku, Osaka phenotypic and biochemical information needed to define clusters of strains 545-8585, Japan representing distinct genera within this group of organisms was not 4 Institute of Skin Sciences, previously available. Although the cellular lipids of type strains of all 28 Club Cosmetics Co. Ltd, Sphingomonas species tested contained glucuronosyl-(1 ! 1)-ceramide Ikoma-shi, Nara 630-0222, together with 2-hydroxymyristic acid, other molecular species of Japan sphingoglycolipids were distributed randomly.
    [Show full text]
  • Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas Sp
    microorganisms Article Characterization of the Aerobic Anoxygenic Phototrophic Bacterium Sphingomonas sp. AAP5 Karel Kopejtka 1 , Yonghui Zeng 1,2, David Kaftan 1,3 , Vadim Selyanin 1, Zdenko Gardian 3,4 , Jürgen Tomasch 5,† , Ruben Sommaruga 6 and Michal Koblížek 1,* 1 Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, 379 81 Tˇreboˇn,Czech Republic; [email protected] (K.K.); [email protected] (Y.Z.); [email protected] (D.K.); [email protected] (V.S.) 2 Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark 3 Faculty of Science, University of South Bohemia, 370 05 Ceskˇ é Budˇejovice,Czech Republic; [email protected] 4 Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 Ceskˇ é Budˇejovice,Czech Republic 5 Research Group Microbial Communication, Technical University of Braunschweig, 38106 Braunschweig, Germany; [email protected] 6 Laboratory of Aquatic Photobiology and Plankton Ecology, Department of Ecology, University of Innsbruck, 6020 Innsbruck, Austria; [email protected] * Correspondence: [email protected] † Present Address: Department of Molecular Bacteriology, Helmholtz-Centre for Infection Research, 38106 Braunschweig, Germany. Abstract: An aerobic, yellow-pigmented, bacteriochlorophyll a-producing strain, designated AAP5 Citation: Kopejtka, K.; Zeng, Y.; (=DSM 111157=CCUG 74776), was isolated from the alpine lake Gossenköllesee located in the Ty- Kaftan, D.; Selyanin, V.; Gardian, Z.; rolean Alps, Austria. Here, we report its description and polyphasic characterization. Phylogenetic Tomasch, J.; Sommaruga, R.; Koblížek, analysis of the 16S rRNA gene showed that strain AAP5 belongs to the bacterial genus Sphingomonas M. Characterization of the Aerobic and has the highest pairwise 16S rRNA gene sequence similarity with Sphingomonas glacialis (98.3%), Anoxygenic Phototrophic Bacterium Sphingomonas psychrolutea (96.8%), and Sphingomonas melonis (96.5%).
    [Show full text]
  • Proposal of Sphingomonadaceae Fam. Nov., Consisting of Sphingomonas Yabuuchi Et Al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov Et Al
    Microbiol. Immunol., 44(7), 563-575, 2000 Proposal of Sphingomonadaceae Fam. Nov., Consisting of Sphingomonas Yabuuchi et al. 1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the Type Genus Sphingomonas Yabuuchi et al. 1990 Yoshimasa Kosako*°', Eiko Yabuuchi2, Takashi Naka3,4, Nagatoshi Fujiwara3, and Kazuo Kobayashi3 'JapanCollection of Microorganis ms,RIKEN (Institute of Physical and ChemicalResearch), Wako, Saitama 351-0198, Japan, 2Departmentof Microbiologyand Immunology , AichiMedical University, Aichi 480-1101, Japan, 'Departmentof Host Defense,Osaka City University, Graduate School of Medicine,Osaka, Osaka 545-8585, Japan, and Instituteof SkinSciences, ClubCosmetics Co., Ltd., Osaka,Osaka 550-0005, Japan ReceivedJanuary 25, 2000; in revisedform, April 11, 2000. Accepted April 14, 2000 Abstract:Based on the results of phylogeneticanalysis of the 16SrDNA sequences and the presence of N- 2'-hydroxymyristoyldihydrosphingosine 1-glucuronic acid (SGL-1)and 2-hydroxymyristicacid (non- hydroxymyristicacid in Zymomonas)in cellular lipids,a new family,Sphingomonadaceae, for Group 4 of the alpha-subclassof the classProteobacteria is hereinproposed and a descriptionof the familyis given.The familyconsists of six genera, Sphingomonas,Erythrobacter, Erythromicrobium, Porphyrobacter, Sandara- cinobacterand Zymomonas.Thus, all the validlypublished and currently known genera in Group 4 of the alpha-subclassof
    [Show full text]
  • Short-Term Rhizosphere Effect on Available Carbon Sources
    Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil François Thomas, Aurélie Cebron To cite this version: François Thomas, Aurélie Cebron. Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil. Fron- tiers in Microbiology, Frontiers Media, 2016, 7, pp.92. 10.3389/fmicb.2016.00092. hal-01780413 HAL Id: hal-01780413 https://hal.univ-lorraine.fr/hal-01780413 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ORIGINAL RESEARCH published: 05 February 2016 doi: 10.3389/fmicb.2016.00092 Short-Term Rhizosphere Effect on Available Carbon Sources, Phenanthrene Degradation, and Active Microbiome in an Aged-Contaminated Industrial Soil François Thomas 1, 2 † and Aurélie Cébron 1, 2* 1 CNRS, LIEC UMR7360, Faculté des Sciences et Technologies, Vandoeuvre-lés-Nancy, France, 2 Université de Lorraine, LIEC UMR7360, Faculté des Sciences et Technologies, Vandoeuvre-lés-Nancy, France Edited by: Dimitrios Georgios Karpouzas, Over the last decades, understanding of the effects of plants on soil microbiomes has University of Thessaly, Greece greatly advanced. However, knowledge on the assembly of rhizospheric communities in Reviewed by: Antonis Chatzinotas, aged-contaminated industrial soils is still limited, especially with regard to transcriptionally Helmholtz Centre for Environmental active microbiomes and their link to the quality or quantity of carbon sources.
    [Show full text]
  • Mapping the Diversity of Microbial Lignin Catabolism: Experiences from the Elignin Database
    Applied Microbiology and Biotechnology (2019) 103:3979–4002 https://doi.org/10.1007/s00253-019-09692-4 MINI-REVIEW Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database Daniel P. Brink1 & Krithika Ravi2 & Gunnar Lidén2 & Marie F Gorwa-Grauslund1 Received: 22 December 2018 /Revised: 6 February 2019 /Accepted: 9 February 2019 /Published online: 8 April 2019 # The Author(s) 2019 Abstract Lignin is a heterogeneous aromatic biopolymer and a major constituent of lignocellulosic biomass, such as wood and agricultural residues. Despite the high amount of aromatic carbon present, the severe recalcitrance of the lignin macromolecule makes it difficult to convert into value-added products. In nature, lignin and lignin-derived aromatic compounds are catabolized by a consortia of microbes specialized at breaking down the natural lignin and its constituents. In an attempt to bridge the gap between the fundamental knowledge on microbial lignin catabolism, and the recently emerging field of applied biotechnology for lignin biovalorization, we have developed the eLignin Microbial Database (www.elignindatabase.com), an openly available database that indexes data from the lignin bibliome, such as microorganisms, aromatic substrates, and metabolic pathways. In the present contribution, we introduce the eLignin database, use its dataset to map the reported ecological and biochemical diversity of the lignin microbial niches, and discuss the findings. Keywords Lignin . Database . Aromatic metabolism . Catabolic pathways
    [Show full text]
  • Sequencing and Functional Analysis of a Multi-Component Dioxygenase from PAH-Degrading Sphingomonas Paucimobilis EPA505" (2010)
    Clemson University TigerPrints All Dissertations Dissertations 12-2010 Sequencing and functional analysis of a multi- component dioxygenase from PAH-degrading Sphingomonas paucimobilis EPA505 Renuka Miller Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Microbiology Commons Recommended Citation Miller, Renuka, "Sequencing and functional analysis of a multi-component dioxygenase from PAH-degrading Sphingomonas paucimobilis EPA505" (2010). All Dissertations. 678. https://tigerprints.clemson.edu/all_dissertations/678 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. SEQUENCING AND FUNCTIONAL ANALYSIS OF A MULTI-COMPONENT DIOXYGENASE FROM PAH-DEGRADING SPHINGOMONAS PAUCIMOBILIS EPA505 A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Microbiology by Renuka Persad Miller December 2010 Accepted by: Thomas A. Hughes, Committee Chair Steven Hayasaka Jeremy Tzeng Annel Greene i ABSTRACT Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic organic compounds consisting of two or more fused benzene rings. PAHs derive from many different sources including petroleum refining, wood treatment, and coal coking industries. Because of their structural stability and water insolubility, PAHs are extremely resistant to degradation. These compounds are also believed to have mutagenic, carcinogenic, and teratogenic effects. Therefore, there are currently 16 PAH compounds on the EPA’s list of priority pollutants. Many species of bacteria have the ability to breakdown these persistent pollutants. However, bioremediation strategies using these organisms have many unresolved issues.
    [Show full text]
  • Benzo[A]Pyrene Co-Metabolism in the Presence of Plant Root Extracts and Exudates: Implications for Phytoremediation
    Environmental Pollution 136 (2005) 477e484 www.elsevier.com/locate/envpol Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation Jeremy A. Rentza, Pedro J.J. Alvarezb, Jerald L. Schnoora,* aCivil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, USA bCivil and Environmental Engineering, Rice University, Houston, TX 77251, USA Received 29 July 2004; accepted 28 December 2004 Bacterial benzo[a]pyrene cometabolism, a plant-microbe interaction affecting polycyclic aromatic hydrocarbon phytoremediation was demonstrated with Sphingomonas yanoikuyae JAR02 that utilized plant root extracts and exudates as primary substrates. Abstract Benzo[a]pyrene, a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) was removed from solution by Sphingomonas yanoikuyae JAR02 while growing on root products as a primary carbon and energy source. Plant root extracts of osage orange (Maclura pomifera), hybrid willow (Salix alba!matsudana), or kou (Cordia subcordata), or plant root exudates of white mulberry (Morus alba) supported 15e20% benzo[a]pyrene removal over 24 h that was similar to a succinate grown culture and an unfed acetonitrile control. No differences were observed between the different root products tested. Mineralization of 14C-7- 14 benzo[a]pyrene by S. yanoikuyae JAR02 yielded 0.2 to 0.3% CO2 when grown with plant root products. Collectively, these observations were consistent with field observations of enhanced phytoremediation of HMW PAH and corroborated the hypothesis that co-metabolism may be a plant/microbe interaction important to rhizoremediation. However, degradation and mineralization was much less for root product-exposed cultures than salicylate-induced cultures, and suggested the rhizosphere may not be an optimal environment for HMW PAH degradation by Sphingomonas yanoikuyae JAR02.
    [Show full text]
  • Sphingomonas Solaris Sp. Nov., Isolated from a Solar Panel in Boston, Massachusetts
    TAXONOMIC DESCRIPTION Tanner et al., Int. J. Syst. Evol. Microbiol. 2020;70:1814–1821 DOI 10.1099/ijsem.0.003977 Sphingomonas solaris sp. nov., isolated from a solar panel in Boston, Massachusetts Kristie Tanner1,2,3,4, Christopher P. Mancuso5,6, Juli Peretó1,4,7, Ahmad S. Khalil3,5,6, Cristina Vilanova1 and Javier Pascual1,* Abstract Solar panel surfaces, although subjected to a range of extreme environmental conditions, are inhabited by a diverse microbial community adapted to solar radiation, desiccation and temperature fluctuations. This is the first time a new bacterial species has been isolated from this environment. Strain R4DWNT belongs to the genus Sphingomonas and was isolated from a solar panel surface in Boston, MA, USA. Strain R4DWNT is a Gram- negative, non-motile and rod- shaped bacteria that tested posi- tive for oxidase and catalase and forms round-shaped, shiny and orange- coloured colonies. It is mesophilic, neutrophilic and non- halophilic, and presents a more stenotrophic metabolism than its closest neighbours. The major fatty acids in this strain are C18:1ω7c/C18:1ω6c, C16:1ω7c/C16:1ω6c, C14:0 2OH and C16:0. Comparison of 16S rRNA gene sequences revealed that the closest type strains to R4DWNT are Sphingomonas fennica, Sphingomonas formosensis, Sphingomonas prati, Sphingomonas montana and Sphingomonas oleivorans with 96.3, 96.1, 96.0, 95.9 and 95.7 % pairwise similarity, respectively. The genomic G+C content of R4DWNT is 67.9 mol%. Based on these characteristics, strain R4DWNT represents a novel species of the genus Sphingomonas for which the name Sphingomonas solaris sp. nov. is proposed with the type strain R4DWNT (=CECT 9811T=LMG 31344T).
    [Show full text]
  • Sphingobium Bisphenolivorans Sp
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Repository of Yantai Institute of Coastal Zone Research, CAS TAXONOMIC DESCRIPTION Qin et al., Int. J. Syst. Evol. Microbiol. 2020;70:1822–1829 DOI 10.1099/ijsem.0.003978 Sphingobium estronivorans sp. nov. and Sphingobium bisphenolivorans sp. nov., isolated from a wastewater treatment plant Dan Qin1,2, Cong Ma3, Min Lv4 and Chang- Ping Yu1,5,* ABSTRACT Two Gram- stain- negative, aerobic, motile and rod- shaped bacteria, one designated as strain AXBT, capable of degrading estro- gens, and another, YL23T, capable of degrading estrogen and bisphenol A, were isolated from activated sludge in Xiamen City, PR China. The optimum temperature and pH of both strains were 25–35 °C and pH 7.0–8.0. While strain AXBT could tolerate 3 % (w/v) NaCl, YL23T could only grow between 0–1 % (w/v) NaCl. They contained ubiquinone-10 as the major quinone, spermidine as the major polyamine, summed feature 8 (comprising C18:1ω6c and/or C18:1ω7c) as the major fatty acids and diphosphatidyl- glycerol, phosphatidylcholine, phosphatidyldimethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and sphin- goglycolipid as the major polar lipids. The DNA G+C contents of strains AXBT and YL23T were 63.6 and 63.7 mol%, respectively. Based on the results of 16S rRNA gene sequence analysis, strains AXBT and YL23T belonged to the genus Sphingobium. Strain AXBT was most closely related to Sphingobium chlorophenolicum NBRC 16172T (97.5 %) and Sphingobium chungbukense DJ77T (97.2 %), and strain YL23T was most closely related to S.
    [Show full text]
  • Chapter 4 Results
    University of Pretoria etd – Surridge, A K J (2007) Chapter 4 Results 85 University of Pretoria etd – Surridge, A K J (2007) Results 4.1 Phylogeny of microbial communities from crude oil-polluted soil according to DGGE profiles DGGE with the 16S rDNA PCR product from soil samples 1-8 (Table 1) resulted in a gel displaying a denser (closer spaced and higher number) banded fingerprint pattern with a higher colour intensity in unpolluted soil (lanes 5-7) than in the diesel-polluted soils (lanes1-4 and 8) (Fig. 6). Each band on the gel is assumed to be representative of only one distinct species, which was proved upon sequencing of the band. The gel also revealed a decrease in microbial diversity, i.e. number of bands, in subsoil layers (lanes 2 and 8) in comparison with topsoil. This was to be expected since these two samples should have very low species diversity as few organisms are present 1m and 1.5m deep in soil (Zhou et al. 2002). Of the polluted topsoil samples (lanes 1, 3 and 4), lane 3 DNA, extracted from the rhizosphere of plants growing in the soil, showed the greatest array of bands. This could have been due to plant root exudates enriching the soil around the roots, thus providing a nutrient boost within the polluted soil for microbes growing in the immediate vicinity of the roots. However, lane 4, which was from barren soil, displayed only slightly fewer bands than lane 3. 86 University of Pretoria etd – Surridge, A K J (2007) S 12 3456 78S 16 17 18 2019 21 11 22 12 23 1 24 6 25 7 26 13 2 28 27 14 8 4 29 15 30 3 5 9 10 Figure 6: Denaturing gradient gel fingerprints resulting from assessing bacterial diversity between communities isolated from site 1 in Table 1, using a gradient of 15-55%.
    [Show full text]
  • Sphingomonas Paucimobilis: an Uncommon Cause of Meningitis Sphingomonas Paucimobilis: Az Rastlanan Bir Menenjit Etkeni
    Case Report / Olgu Sunumu DOI: 10.5578/ced.201734 • J Pediatr Inf 2017; 11(3): e124-e128 Sphingomonas paucimobilis: An Uncommon Cause of Meningitis Sphingomonas paucimobilis: Az Rastlanan Bir Menenjit Etkeni Nazlı Deveci1, Nazlı Gürkan2, Nurşen Belet1, Serpil Uğur Baysal1 1 Department of Pediatrics, Dokuz Eylul University School of Medicine, Izmir, Turkey 2 Department of Medical Microbiology, Dokuz Eylul University School of Medicine, Izmir, Turkey Abstract Özet Sphingomonas paucimobilis is a gram-negative bacillus. It is widespread in Sphingomonas paucimobilis, gram-negatif bir çomaktır. Doğada ve nature and in hospital environments; but it hardly causes life-threatening hastane ortamında yaygın olarak bulunur; pek az olguda hayatı teh- infections. In this report, a case of community- onset bacterial meningitis dit eden enfeksiyonlara yol açmaktadır. Bu bildiride, S. paucimobilis’in in an adolescent patient was presented. A previously healthy, 14-year etken olduğu, bakteriyel menenjit gelişen bir adolesan olgu sunul- old boy attended to our hospital with fever of two days, headache and muştur. Daha önce sağlıklı, 14 yaşında erkek lise öğrencisi, iki gündür vomiting. Based on the patient’s history, physical examination signs süren ateş, baş ağrısı ve kusma yakınmaları ile hastanemize başvurdu. and laboratory results, he was hospitalized with the diagnosis of acute Öykü, fizik muayene ve laboratuvar bulguları temelinde akut bakteri- bacterial meningitis. The aerobic bacterial culture of the CSF yielded yel menenjit tanısı ile servise yatırıldı. Beyin omurilik sıvısı (BOS) ör- yellow pigmented, slow growing, oxidase and catalase positive colonies neğinin aerop kültürü, Columbia koyun kanlı agar plağında 48 saatlik after 48 hours of incubation on Columbia sheep blood agar plates.
    [Show full text]
  • Sphingomonas Alaskensis Sp. Nov., a Dominant Bacterium from a Marine Oligotrophic Environment
    International Journal of Systematic and Evolutionary Microbiology (2001), 51, 73–79 Printed in Great Britain Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment M. Vancanneyt,1 F. Schut,2 C. Snauwaert,1 J. Goris,3 J. Swings1,3 and J. C. Gottschal2 Author for correspondence: M. Vancanneyt. Tel: j32 9 2645115. Fax: j32 9 2645092. e-mail: marc.vancanneyt!rug.ac.be 1,3 BCCM/LMG Bacteria Seven Gram-negative strains, isolated in 1990 from a 106-fold dilution series of Collection, K. L. seawater from Resurrection Bay, a deep fjord of the Gulf of Alaska, were Ledeganckstraat 351 and Laboratorium voor identified in a polyphasic taxonomic study. Analysis of 16S rDNA sequences Microbiology3 , University and DNA-homology studies confirmed the phylogenetic position of all strains of Gent, B-9000 Gent, in the genus Sphingomonas and further indicated that all of the strains Belgium constitute a single homogeneous genomic species, distinct from all validly 2 Department of described Sphingomonas species. The ability to differentiate the species, both Microbiology, University of Groningen, N-9750 AA phenotypically and chemotaxonomically, from its nearest neighbours justifies Haren, The Netherlands the proposal of a new species name, Sphingomonas alaskensis sp. nov., for this taxon. Strain LMG 18877T (l RB2256T l DSM 13593T) was selected as the type strain. Keywords: Sphingomonas alaskensis sp. nov., identification, polyphasic taxonomy, marine ultramicrobacterium INTRODUCTION readily obtained in culture but which mostly belong to a minority of the total community. Microbiologists have been intrigued by the phenom- Culture-independent molecular techniques are now enon of ‘unculturability’ for over half a century, widely used to obtain a thorough understanding of the especially with respect to bacteria in the open ocean identity and nature of the bacteria comprising marine (MacLeod, 1985).
    [Show full text]