Physics 11 Glossary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glossary Physics (I-Introduction)
1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay. -
Forces Different Types of Forces
Forces and motion are a part of your everyday life for example pushing a trolley, a horse pulling a rope, speed and acceleration. Force and motion causes objects to move but also to stay still. Motion is simply a movement but needs a force to move. There are 2 types of forces, contact forces and act at a distance force. Forces Every day you are using forces. Force is basically push and pull. When you push and pull you are applying a force to an object. If you are Appling force to an object you are changing the objects motion. For an example when a ball is coming your way and then you push it away. The motion of the ball is changed because you applied a force. Different Types of Forces There are more forces than push or pull. Scientists group all these forces into two groups. The first group is contact forces, contact forces are forces when 2 objects are physically interacting with each other by touching. The second group is act at a distance force, act at a distance force is when 2 objects that are interacting with each other but not physically touching. Contact Forces There are different types of contact forces like normal Force, spring force, applied force and tension force. Normal force is when nothing is happening like a book lying on a table because gravity is pulling it down. Another contact force is spring force, spring force is created by a compressed or stretched spring that could push or pull. Applied force is when someone is applying a force to an object, for example a horse pulling a rope or a boy throwing a snow ball. -
Classical Mechanics
Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation . -
Molecular Materials for Nonlinear Optics
RICHARD S. POTEMBER, ROBERT C. HOFFMAN, KAREN A. STETYICK, ROBERT A. MURPHY, and KENNETH R. SPECK MOLECULAR MATERIALS FOR NONLINEAR OPTICS An overview of our recent advances in the investigation of molecular materials for nonlinear optical applications is presented. Applications of these materials include optically bistable devices, optical limiters, and harmonic generators. INTRODUCTION of potentially important optical qualities and capabilities Organic molecular materials are a class of materials such as optical bistability, optical threshold switching, in which the organic molecules retain their geometry and photoconductivity, harmonic generation, optical para physical properties when crystallization takes place. metric oscillation, and electro-optic modulation. A sam Changes occur in the physical properties of individual ple of various applications for several optical materials molecules during crystallization, but they are small com is shown in Table 1. pared with those that occur in ionic or metallic solids. The optical effects so far observed in many organic The energies binding the individual molecules together materials result from the interaction of light with bulk in organic solids are also relatively small, making organic materials such as solutions, single crystals, polycrystal molecular solids mere aggregations of molecules held to line fIlms, and amorphous compositions. In these materi gether by weak intermolecular (van der Waals) forces . als, each molecule in the solid responds identically, so The crystalline structure of most organic molecular solids that the response of the bulk material is the sum of the is more complex than that of most metals or inorganic responses of the individual molecules. That effect sug solids; 1 the asymmetry of most organic molecules makes gests that it may be possible to store and process optical the intermolecular forces highly anisotropic. -
Electromagnetism What Is the Effect of the Number of Windings of Wire on the Strength of an Electromagnet?
TEACHER’S GUIDE Electromagnetism What is the effect of the number of windings of wire on the strength of an electromagnet? GRADES 6–8 Physical Science INQUIRY-BASED Science Electromagnetism Physical Grade Level/ 6–8/Physical Science Content Lesson Summary In this lesson students learn how to make an electromagnet out of a battery, nail, and wire. The students explore and then explain how the number of turns of wire affects the strength of an electromagnet. Estimated Time 2, 45-minute class periods Materials D cell batteries, common nails (20D), speaker wire (18 gauge), compass, package of wire brad nails (1.0 mm x 12.7 mm or similar size), Investigation Plan, journal Secondary How Stuff Works: How Electromagnets Work Resources Jefferson Lab: What is an electromagnet? YouTube: Electromagnet - Explained YouTube: Electromagnets - How can electricity create a magnet? NGSS Connection MS-PS2-3 Ask questions about data to determine the factors that affect the strength of electric and magnetic forces. Learning Objectives • Students will frame a hypothesis to predict the strength of an electromagnet due to changes in the number of windings. • Students will collect and analyze data to determine how the number of windings affects the strength of an electromagnet. What is the effect of the number of windings of wire on the strength of an electromagnet? Electromagnetism is one of the four fundamental forces of the universe that we rely on in many ways throughout our day. Most home appliances contain electromagnets that power motors. Particle accelerators, like CERN’s Large Hadron Collider, use electromagnets to control the speed and direction of these speedy particles. -
Ground Reaction Force Prediction During Weighted Leg Press and Weighted Squat in a Flywheel Exercise Device
DEGREE PROJECT IN MEDICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2017 Ground Reaction Force Prediction during Weighted Leg Press and Weighted Squat in a Flywheel Exercise Device Estimering av markreaktionskraften vid viktad benpress och viktad knäböj i ett svänghjulsbaserat träningsredskap TOBIAS MUNKHAMMAR KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF TECHNOLOGY AND HEALTH Acknowledgement First of I would like to thank my supervisor, Maria J¨onsson,for guidance and encouragement during the whole project and Lena Norrbrand, who, together with Maria collected all experi- mental data used in this study. Furthermore, my thanks goes to Rodrigo Moreno, Jan H¨ornfeldt, Jonathan Munkhammar and Ola Eiken for proof-reading and general feedback on the report and Elena Gutierrez Farewik, for being a link towards the musculoskeletal software company whenever the licence struggled. Lastly, I would like to thank all people at the Department of Environmental Physiology, for making me feel welcome and showing interest in my work. Abstract When performing a biomechanical analysis of human movement, knowledge about the ground reaction force (GRF) is necessary to compute forces and moments within joints. This is important when analysing a movement and its effect on the human body. To obtain knowledge about the GRF, the gold standard is to use force plates which directly measure all three components of the GRF (mediolateral, anteroposterior and normal). However, force plates are heavy, clunky and expensive, setting constraints on possible experimental setups, which make it desirable to exclude them and instead use a predictive method to obtain the full GRF. Several predictive methods exist. The node model is a GRF predictive method included in a musculoskeletal modeling software. -
Electromagnetism
EINE INITIATIVE DER UNIVERSITÄT BASEL UND DES KANTONS AARGAU Swiss Nanoscience Institute Electromagnetism Electricity and magnetism are two aspects of the same phenomenon: electromagnetism. A moving electric charge (in other words, an electric current) generates a magnetic field. Every electromagnet consists of a coil, which is nothing more than a tightly wound wire. Many electromagnets also have an iron core to make the magnetic field stronger. The more times the wire is wound around the coil, the stronger the magnetic field produced by the same current. Demonstration: Using electric current to create a magnetic field What you’ll need • a large sheet of paper on which to conduct the experiment • a sheet of stiff card or plexiglass • two batteries connected in series • a coil of copper wire • iron filings • crocodile clips (optional) • a small piece of iron (e.g. a screw) to place inside the coil (iron core) Instructions 1. Position the coil so that you can easily access the two ends of the wire and connect them to the battery. I used crocodile clips to attach them to the battery contacts, but you could also use wooden clothes pegs or electrical tape. 2. Connect the two batteries in series (+ - + - ). 3. Place the plexiglass or card over the coil. 4. When the electrical circuit is closed, slowly scatter the iron filings on top. What happens? The iron filings arrange themselves along the magnetic field lines. If you look closely, you can make out a pattern. Turn a screw into an electromagnet What you’ll need • a long iron screw or nail • two pieces of insulated copper wire measuring 15 and 30 cm • two three-pronged thumb tacks • a metal paperclip • a small wooden board • pins or paperclips • a 4.5 V battery Instructions Switch 1. -
THE EARTH's GRAVITY OUTLINE the Earth's Gravitational Field
GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY OUTLINE The Earth's gravitational field 2 Newton's law of gravitation: Fgrav = GMm=r ; Gravitational field = gravitational acceleration g; gravitational potential, equipotential surfaces. g for a non–rotating spherically symmetric Earth; Effects of rotation and ellipticity – variation with latitude, the reference ellipsoid and International Gravity Formula; Effects of elevation and topography, intervening rock, density inhomogeneities, tides. The geoid: equipotential mean–sea–level surface on which g = IGF value. Gravity surveys Measurement: gravity units, gravimeters, survey procedures; the geoid; satellite altimetry. Gravity corrections – latitude, elevation, Bouguer, terrain, drift; Interpretation of gravity anomalies: regional–residual separation; regional variations and deep (crust, mantle) structure; local variations and shallow density anomalies; Examples of Bouguer gravity anomalies. Isostasy Mechanism: level of compensation; Pratt and Airy models; mountain roots; Isostasy and free–air gravity, examples of isostatic balance and isostatic anomalies. Background reading: Fowler §5.1–5.6; Lowrie §2.2–2.6; Kearey & Vine §2.11. GEOPHYSICS (08/430/0012) THE EARTH'S GRAVITY FIELD Newton's law of gravitation is: ¯ GMm F = r2 11 2 2 1 3 2 where the Gravitational Constant G = 6:673 10− Nm kg− (kg− m s− ). ¢ The field strength of the Earth's gravitational field is defined as the gravitational force acting on unit mass. From Newton's third¯ law of mechanics, F = ma, it follows that gravitational force per unit mass = gravitational acceleration g. g is approximately 9:8m/s2 at the surface of the Earth. A related concept is gravitational potential: the gravitational potential V at a point P is the work done against gravity in ¯ P bringing unit mass from infinity to P. -
Surface Regularized Geometry Estimation from a Single Image
SURGE: Surface Regularized Geometry Estimation from a Single Image Peng Wang1 Xiaohui Shen2 Bryan Russell2 Scott Cohen2 Brian Price2 Alan Yuille3 1University of California, Los Angeles 2Adobe Research 3Johns Hopkins University Abstract This paper introduces an approach to regularize 2.5D surface normal and depth predictions at each pixel given a single input image. The approach infers and reasons about the underlying 3D planar surfaces depicted in the image to snap predicted normals and depths to inferred planar surfaces, all while maintaining fine detail within objects. Our approach comprises two components: (i) a four- stream convolutional neural network (CNN) where depths, surface normals, and likelihoods of planar region and planar boundary are predicted at each pixel, followed by (ii) a dense conditional random field (DCRF) that integrates the four predictions such that the normals and depths are compatible with each other and regularized by the planar region and planar boundary information. The DCRF is formulated such that gradients can be passed to the surface normal and depth CNNs via backpropagation. In addition, we propose new planar-wise metrics to evaluate geometry consistency within planar surfaces, which are more tightly related to dependent 3D editing applications. We show that our regularization yields a 30% relative improvement in planar consistency on the NYU v2 dataset [24]. 1 Introduction Recent efforts to estimate the 2.5D layout of a depicted scene from a single image, such as per-pixel depths and surface normals, have yielded high-quality outputs respecting both the global scene layout and fine object detail [2, 6, 7, 29]. Upon closer inspection, however, the predicted depths and normals may fail to be consistent with the underlying surface geometry. -
Physics 101 Today Chapter 5: Newton's Third
Physics 101 Today Chapter 5: Newton’s Third Law First, let’s clarify notion of a force : Previously defined force as a push or pull. Better to think of force as an interaction between two objects. You can’t push anything without it pushing back on you ! Whenever one object exerts a force on a second object, the second object exerts an equal and opposite force on the first. Newton’s 3 rd Law - often called “action-reaction ” Eg. Leaning against a wall. You push against the wall. The wall is also pushing on you, equally hard – normal/support force. Now place a piece of paper between the wall and hand. Push on it – it doesn’t accelerate must be zero net force. The wall is pushing equally as hard (normal force) on the paper in the opposite direction to your hand, resulting in zero Fnet . This is more evident when hold a balloon against the wall – it is squashed on both sides. Eg. You pull on a cart. It accelerates. The cart pulls back on you (you feel the rope get tighter). Can call your pull the “ action ” and cart’s pull the “ reaction ”. Or, the other way around. • Newton’s 3 rd law means that forces always come in action -reaction pairs . It doesn’t matter which is called the action and which is called the reaction. • Note: Action-reaction pairs never act on the same object Examples of action-reaction force pairs In fact it is the road’s push that makes the car go forward. Same when we walk – push back on floor, floor pushes us forward. -
Oscillating Currents
Oscillating Currents • Ch.30: Induced E Fields: Faraday’s Law • Ch.30: RL Circuits • Ch.31: Oscillations and AC Circuits Review: Inductance • If the current through a coil of wire changes, there is an induced emf proportional to the rate of change of the current. •Define the proportionality constant to be the inductance L : di εεε === −−−L dt • SI unit of inductance is the henry (H). LC Circuit Oscillations Suppose we try to discharge a capacitor, using an inductor instead of a resistor: At time t=0 the capacitor has maximum charge and the current is zero. Later, current is increasing and capacitor’s charge is decreasing Oscillations (cont’d) What happens when q=0? Does I=0 also? No, because inductor does not allow sudden changes. In fact, q = 0 means i = maximum! So now, charge starts to build up on C again, but in the opposite direction! Textbook Figure 31-1 Energy is moving back and forth between C,L 1 2 1 2 UL === UB === 2 Li UC === UE === 2 q / C Textbook Figure 31-1 Mechanical Analogy • Looks like SHM (Ch. 15) Mass on spring. • Variable q is like x, distortion of spring. • Then i=dq/dt , like v=dx/dt , velocity of mass. By analogy with SHM, we can guess that q === Q cos(ωωω t) dq i === === −−−ωωωQ sin(ωωω t) dt Look at Guessed Solution dq q === Q cos(ωωω t) i === === −−−ωωωQ sin(ωωω t) dt q i Mathematical description of oscillations Note essential terminology: amplitude, phase, frequency, period, angular frequency. You MUST know what these words mean! If necessary review Chapters 10, 15. -
CS 468 (Spring 2013) — Discrete Differential Geometry 1 the Unit Normal Vector of a Surface. 2 Surface Area
CS 468 (Spring 2013) | Discrete Differential Geometry Lecture 7 Student Notes: The Second Fundamental Form Lecturer: Adrian Butscher; Scribe: Soohark Chung 1 The unit normal vector of a surface. Figure 1: Normal vector of level set. • The normal line is a geometric feature. The normal direction is not (think of a non-orientable surfaces such as a mobius strip). If possible, you want to pick normal directions that are consistent globally. For example, for a manifold, you can pick normal directions pointing out. • Locally, you can find a normal direction using tangent vectors (though you can't extend this globally). • Normal vector of a parametrized surface: E1 × E2 If TpS = spanfE1;E2g then N := kE1 × E2k This is just the cross product of two tangent vectors normalized by it's length. Because you take the cross product of two vectors, it is orthogonal to the tangent plane. You can see that your choice of tangent vectors and their order determines the direction of the normal vector. • Normal vector of a level set: > [DFp] N := ? TpS kDFpk This is because the gradient at any point is perpendicular to the level set. This makes sense intuitively if you remember that the gradient is the "direction of the greatest increase" and that the value of the level set function stays constant along the surface. Of course, you also have to normalize it to be unit length. 2 Surface Area. • We want to be able to take the integral of the surface. One approach to the problem may be to inegrate a parametrized surface in the parameter domain.