Alternative Splicing and 174:5 R225–R238 Review Others Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Alternative Splicing and 174:5 R225–R238 Review Others Diabetes J Juan-Mateu, O Villate and Alternative splicing and 174:5 R225–R238 Review others diabetes MECHANISMS IN ENDOCRINOLOGY Alternative splicing: the new frontier in diabetes research Jona` s Juan-Mateu*, Olatz Villate* and De´ cio L Eizirik Correspondence should be addressed to Medical Faculty, ULB Center for Diabetes Research and Welbio, Universite´ Libre de Bruxelles (ULB), Route de Lennik, D L Eizirik or J Juan-Mateu 808 – CP618, B-1070 Brussels, Belgium Email *(J Juan-Mateu and O Villate contributed equally to this work) [email protected] or [email protected] Abstract Type 1 diabetes (T1D) is a chronic autoimmune disease in which pancreatic b cells are killed by infiltrating immune cells and by cytokines released by these cells. This takes place in the context of a dysregulated dialogue between invading immune cells and target b cells, but the intracellular signals that decide b cell fate remain to be clarified. Alternative splicing (AS) is a complex post- transcriptional regulatory mechanism affecting gene expression. It regulates the inclusion/exclusion of exons into mature mRNAs, allowing individual genes to produce multiple protein isoforms that expand the proteome diversity. Functionally related transcript populations are co-ordinately spliced by master splicing factors, defining regulatory networks that allow cells to rapidly adapt their transcriptome in response to intra and extracellular cues. There is a growing interest in the role of AS in autoimmune diseases, but little is known regarding its role in T1D. In this review, we discuss recent findings suggesting that splicing events occurring in both immune and pancreatic b cells contribute to the pathogenesis of T1D. Splicing switches in Tcells and in lymph node stromal cells are involved in the modulation of the immune response against b cells, while b cells exposed to pro-inflammatory cytokines activate complex splicing networks that modulate b cell viability, expression of neoantigens and susceptibility to immune-induced stress. Unveiling the role of AS in b cell functional loss and death will increase our understanding of T1D pathogenesis and may open new avenues for disease prevention and therapy. European Journal of Endocrinology European Journal of Endocrinology (2016) 174, R225–R238 Introduction Pre-mRNA alternative splicing (AS) is a key post-transcrip- into mature mRNA molecules, allowing single genes to tional regulatory mechanism that affects gene expression, produce multiple, structurally distinct mRNA and protein acting as a major generator of proteomic diversity. It isoforms that may have different biological properties (1). regulates the incorporation of alternative sets of exons This tightly regulated process provides cells with the Invited Author’s profile Decio L Eizirik, M.D, PhD, is Full Professor and Director of the ULB Center for Diabetes Research, Medical Faculty, Universite Libre de Bruxells (ULB), Belgium. He has published over 300 full papers and has received several prestigious awards. Prof Eizirik’s research focuses on the molecular mechanisms regulating insulitis and b cell apoptosis in type 1 diabetes and on the search for novel approaches to prevent the progressive loss of b cell mass in diabetes. www.eje-online.org Ñ 2016 European Society of Endocrinology Published by Bioscientifica Ltd. DOI: 10.1530/EJE-15-0916 Printed in Great Britain Downloaded from Bioscientifica.com at 09/28/2021 10:47:41PM via free access Review J Juan-Mateu, O Villate and Alternative splicing and 174:5 R226 others diabetes ability to rapidly adapt their transcriptome and proteome usage of alternative exons and other components of the in response to intra and extracellular cues. Nearly 95% transcribed mRNA that are either included or excluded of human genes undergo AS, producing on average six from the final mRNA isoform (Fig. 1A). This requires the alternative isoforms per gene, thus explaining the dis- recognition of exons through the identification of a crepancy between the predicted 22 000 protein-coding complex code of cis-acting elements within the pre- genes of the human genome and the observed O200 000 mRNA molecule (Fig. 1B). The catalytic reactions that protein isoforms (2, 3). The prevalence and extent of AS occur during the splicing process are mediated by the correlates with organismal complexity, suggesting that stepwise assembly of a large and dynamic ribonucleopro- AS plays a key role for the development of complex tein (RNP) complex called the spliceosome. The spliceo- phenotypic traits during evolution (4, 5). AS regulation some is composed by five small nuclear RNP particles plays an important role in virtually all biological (snRNP), U1, U2, U4/U6 and U5, and around 200 proteins processes, including cell growth and death, development (9). The snRNP spliceosomal particles recognize the core stage, pluripotency, differentiation, circadian rhythms, splicing signals (50 splice site, branch site and polypyr- response to stimuli and disease (6, 7, 8). imidine tract-30 splice site) that are essential to carry out the splicing reaction. Core splicing signals are short and degenerate (i.e. not completely conserved) sequences that Regulation of AS: the splicing code and the coupling alone are insufficient to define intron–exon boundaries. with the transcription machinery Thus, they require the presence of additional cis-acting The splicing process involves the retention of exons and regulatory sequences to achieve fidelity in the splicing removal of introns from the pre-mRNA. This is not a rigid process. AS is accurately regulated by the interplay process, showing instead a wide variation by the different between these cis-acting regulatory elements and their A Alternative cassette exon Alternative 5′ splice site Alternative tandem cassette exons Alternative 3′ splice site European Journal of Endocrinology Mutually exclusive cassette exons Retained intron B SR proteins hnRNP U1 U2 U2AF65 35 ++– YNYURAY YYYYYYNAGG AGGURAGU Branch site 3′ splice siteESE ESS 5′ splice site ISE ISE ISS Figure 1 Regulation of alternative splicing (AS). (A) Major types of AS point, polypyrimidine tract-30 splice site) in the pre-mRNA events. Exons are represented by boxes and introns by solid molecule. Additional cis-acting regulatory sequences that lines; constitutive exons are shown in yellow while alternative regulate splice site selection in exons and introns are also exons are shown in red or blue; dashed lines represent different shown. ESE, exonic splicing enhancer; ESS, exonic splicing splicing events. (B) Schematic representation of snRNP spliceo- silencer; ISE, intronic splicing enhancer; ISS, intronic splicing somal particles bound to splicing signals (50 splice site, branch silencer. Adapted from reference (124). www.eje-online.org Downloaded from Bioscientifica.com at 09/28/2021 10:47:41PM via free access Review J Juan-Mateu, O Villate and Alternative splicing and 174:5 R227 others diabetes cognate trans-acting splicing factors, the so-called ‘splicing family of apoptotic regulators, such as Bcl2–l1, Mcl1 and code’, that either promotes or represses the recognition of BID, produce both pro- and anti-apoptotic isoforms core splicing signals (Fig. 1B). Regulatory sequences through AS, and changes in the relative ratios of these present in both exons and introns, termed splicing splice variants may lead to cancer or neurodegenerative enhancers or silencers, work as binding sites for splicing diseases by modulating cell death (23). AS can lead to factors that either enhance or repress splicing depending changes on protein localisation, enzymatic activity and on their activity and binding position (2, 10). These interaction with ligands (24). It can also modulate protein- splicing regulators are RNA-binding proteins (RBPs) of the binding properties, modifying interactions with other serine/arginine (SR)-rich proteins and heterogeneous proteins, nucleic acids or membranes. In some cases, nuclear RNPs (hnRNP) families, as well as other cell-, specific protein domains are regulated by AS, modifying stage- or tissue-specific proteins such as the NOVA, protein structure and functions. For instance, AS changes in RBFOX, CELF or MBLN families. These families establish transcriptions factors can alter the transactivation or DNA- the splicing code and determine in a combinatorial binding domains inducing negative or positive effects on fashion which splice site is selected in specific tissues (for transcription; changes on channel proteins can modify instance, NOVA1 is only expressed in brain and pancreatic their electrophysiological properties; and gene function b cells) (11, 12, 13, 14).TheregulationofASis may change from dominant negative to constitutively accomplished by the relative expression levels of the active through AS (24). By regulating the inclusion/exclu- different RBPs, determining how efficiently different splice sion of exons harbouring a stop codon or introducing a sites are used to generate specific mRNA isoforms in frameshift change, AS is often coupled with the nonsense- different cells and tissues. In addition to the splicing code, mediated mRNA decay (NMD), a quality control process defined by RBPs, regulation of AS is also influenced by that eliminates transcripts containing premature termin- other mechanisms. For instance, cis-acting RNA–RNA base ation codons, indirectly regulating mRNA expression pairing and RNA secondary structures can control the (mRNA expression results from the balance between splice site choice in some genes (15, 16, 17). Splicing mRNA
Recommended publications
  • Transcriptional Integration of Mitogenic and Mechanical Signals by Myc and YAP
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION rum-mediated and growth factor-mediated cell cycle Transcriptional integration entry (Kelly et al. 1983; Armelin et al. 1984; Roussel of mitogenic and mechanical et al. 1991; Barone and Courtneidge 1995; de Alboran et al. 2001; Trumpp et al. 2001; Perna et al. 2012). This signals by Myc and YAP function of Myc stems from its ability to control the ex- pression of a large fraction of genes involved in cell activa- Ottavio Croci,1,5 Serena De Fazio,1,5 1,5 1,4,5 tion and proliferation. Francesca Biagioni, Elisa Donato, When ectopically expressed in quiescent cells, Myc is Marieta Caganova,1 Laura Curti,1 Mirko Doni,2 able to drive cell cycle progression in the absence of serum Silvia Sberna,1 Deborah Aldeghi,1 (Eilers et al. 1991; Pelengaris et al. 1999). This effect of Chiara Biancotto,1 Alessandro Verrecchia,2 Myc is context-dependent, however, since not all cells or tissues respond to Myc by entering the cell cycle (Jack- Daniela Olivero,3 Bruno Amati,1,2 1 son et al. 1990; Xiao et al. 2001; Murphy et al. 2008). This and Stefano Campaner suggests that a full proliferative response may require the engagement of other TFs, which may respond to different 1Center for Genomic Science of IIT@SEMM (Istituto Italiano di regulatory signals, such as metabolic or mechanical cues. Tecnologia at European School of Molecular Medicine), Recently, YAP has emerged as a key TF in the control of Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, cell growth and organ size in response to a variety of Italy; 2Department of Experimental Oncology, European signals such as cell adhesion, apico–basolateral polarity, Institute of Oncology (IEO), 20139 Milan, Italy; 3Laboratorio di cytoskeletal tension, and mitogens.
    [Show full text]
  • Your Genes, Your Choices
    Your Genes, Your Choices: Exploring the Issues Raised by Genetic Research by Catherine Baker Table of Contents Acknowledgments . 6 Introduction . 7 Chapter 1 Martin Needs Medical Treatment (or does he?) . 9 Chapter 2 Priya Should Find Out if She Has Inherited a Fatal Disease (or should she?) . 14 Chapter 3 Howard’s Health Is Up to Him (or is it?) . 26 Chapter 4 Carlos and Mollie Can Have a Perfectly Healthy Baby (or can they?) . 35 Chapter 5 Donita Should Cooperate with the Police (or should she?) . 45 Chapter 6 John and Elsa Will Profit from Biotech Farming (or will they?) . 52 Chapter 7 Dr. Lu’s Patients Have the Right to Be Tall (or do they?) . 62 Chapter 8 Mrs. Fister Can Replace Her Dying Son (or can she?) . 70 Glossary . 81 References . 89 Credits . 81 Science + Literacy for Health Human Genome Project Advisory Board . 93 5 Acknowledgments I am not a science writer by trade. In order to write this book, I first had to study up on genetics and the issues involved. Then I had to try to explain them in a way that other newcomers to the subject could understand, without making terrible errors. It was a difficult task! I am therefore indebted to the members of the AAAS Advisory Panel (listed on page 82). At an all-day meeting in the spring of 1995, they steered my away from my original outline toward the book you find here. Many months later, several panel members provided very useful reviews of the manuscript. For this, I would like to thank Ruth Allen, Jeffrey Botkin, Ron Cole-Turner, Robert Cook-Deegan, and Joan Weiss.
    [Show full text]
  • Structure and Mechanism of the RNA Polymerase II Transcription Machinery
    Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Structure and mechanism of the RNA polymerase II transcription machinery Allison C. Schier and Dylan J. Taatjes Department of Biochemistry, University of Colorado, Boulder, Colorado 80303, USA RNA polymerase II (Pol II) transcribes all protein-coding ingly high resolution, which has rapidly advanced under- genes and many noncoding RNAs in eukaryotic genomes. standing of the molecular basis of Pol II transcription. Although Pol II is a complex, 12-subunit enzyme, it lacks Structural biology continues to transform our under- the ability to initiate transcription and cannot consistent- standing of complex biological processes because it allows ly transcribe through long DNA sequences. To execute visualization of proteins and protein complexes at or near these essential functions, an array of proteins and protein atomic-level resolution. Combined with mutagenesis and complexes interact with Pol II to regulate its activity. In functional assays, structural data can at once establish this review, we detail the structure and mechanism of how enzymes function, justify genetic links to human dis- over a dozen factors that govern Pol II initiation (e.g., ease, and drive drug discovery. In the past few decades, TFIID, TFIIH, and Mediator), pausing, and elongation workhorse techniques such as NMR and X-ray crystallog- (e.g., DSIF, NELF, PAF, and P-TEFb). The structural basis raphy have been complemented by cryoEM, cross-linking for Pol II transcription regulation has advanced rapidly mass spectrometry (CXMS), and other methods. Recent in the past decade, largely due to technological innova- improvements in data collection and imaging technolo- tions in cryoelectron microscopy.
    [Show full text]
  • "The Genecards Suite: from Gene Data Mining to Disease Genome Sequence Analyses". In: Current Protocols in Bioinformat
    The GeneCards Suite: From Gene Data UNIT 1.30 Mining to Disease Genome Sequence Analyses Gil Stelzer,1,5 Naomi Rosen,1,5 Inbar Plaschkes,1,2 Shahar Zimmerman,1 Michal Twik,1 Simon Fishilevich,1 Tsippi Iny Stein,1 Ron Nudel,1 Iris Lieder,2 Yaron Mazor,2 Sergey Kaplan,2 Dvir Dahary,2,4 David Warshawsky,3 Yaron Guan-Golan,3 Asher Kohn,3 Noa Rappaport,1 Marilyn Safran,1 and Doron Lancet1,6 1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 2LifeMap Sciences Ltd., Tel Aviv, Israel 3LifeMap Sciences Inc., Marshfield, Massachusetts 4Toldot Genetics Ltd., Hod Hasharon, Israel 5These authors contributed equally to the paper 6Corresponding author GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It au- tomatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. Var- Elect’s capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses.
    [Show full text]
  • The General Transcription Factors of RNA Polymerase II
    Downloaded from genesdev.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The general transcription factors of RNA polymerase II George Orphanides, Thierry Lagrange, and Danny Reinberg 1 Howard Hughes Medical Institute, Department of Biochemistry, Division of Nucleic Acid Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635 USA Messenger RNA (mRNA) synthesis occurs in distinct unique functions and the observation that they can as- mechanistic phases, beginning with the binding of a semble at a promoter in a specific order in vitro sug- DNA-dependent RNA polymerase to the promoter re- gested that a preinitiation complex must be built in a gion of a gene and culminating in the formation of an stepwise fashion, with the binding of each factor promot- RNA transcript. The initiation of mRNA transcription is ing association of the next. The concept of ordered as- a key stage in the regulation of gene expression. In eu- sembly recently has been challenged, however, with the karyotes, genes encoding mRNAs and certain small nu- discovery that a subset of the GTFs exists in a large com- clear RNAs are transcribed by RNA polymerase II (pol II). plex with pol II and other novel transcription factors. However, early attempts to reproduce mRNA transcrip- The existence of this pol II holoenzyme suggests an al- tion in vitro established that purified pol II alone was not ternative to the paradigm of sequential GTF assembly capable of specific initiation (Roeder 1976; Weil et al. (for review, see Koleske and Young 1995).
    [Show full text]
  • The Mammalian Phenotype Ontology As a Tool for Annotating, Analyzing and Comparing Phenotypic Information
    Open Access Method2004SmithetVolume al. 6, Issue 1, Article R7 The Mammalian Phenotype Ontology as a tool for annotating, comment analyzing and comparing phenotypic information Cynthia L Smith*, Carroll-Ann W Goldsmith*† and Janan T Eppig* Addresses: *The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA. †Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy Manchester, 1260 Elm Street, Manchester, NH 03101, USA. Correspondence: Janan T Eppig. E-mail: [email protected] reviews Published: 15 December 2004 Received: 8 September 2004 Revised: 15 November 2004 Genome Biology 2004, 6:R7 Accepted: 17 November 2004 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2004/6/1/R7 © 2004 Smith et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), reports which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The<p>Thetativeofresearchand phenotypic RatMammalian trait Genome Mammaliangroups, loci knowledge and mutagenesisPhenotypeDatabase strains Phenotype and thatto Ontology flexiblereconsortia, arepresent (MP) used annota asOntology phenotypicand asa tool models tionsbiological for enables to annotating,of data.</p> individual human domain robust biology analyzingexperts. genotypes.annotation and The and disease. It of MP continues comparingmammalian Ontology The MPto phenotypic isdevelop Ontolphenotypes currentlyogy dynamically supportsinformation used in the by thecontext different via Mouse collaborative of levels mutations,Genome and input Da richness quanti-tabase from Abstract deposited research The Mammalian Phenotype (MP) Ontology enables robust annotation of mammalian phenotypes in the context of mutations, quantitative trait loci and strains that are used as models of human biology and disease.
    [Show full text]
  • Identification of a Frameshift Mutation in SON Gene Via Whole Exome
    Identication of a Frameshift Mutation in SON Gene via Whole Exome Sequencing in a Patient With ZTTK Syndrome Fujun Peng Weifang Medical College: Weifang Medical University Lina Zhu Military General Hospital of Beijing PLA Aliated Bayi Children's Hospital: Bayi Children's Hospital Yu Hou Military General Hospital of Beijing PLA Aliated Bayi Children's Hospital: Bayi Children's Hospital Ruijie Gu Military General Hospital of Beijing PLA Aliated Bayi Children's Hospital: Bayi Children's Hospital Yongxia Wang Military General Hospital of Beijing PLA Aliated Bayi Children's Hospital: Bayi Children's Hospital Xiufang Wen Military General Hospital of Beijing PLA Aliated Bayi Children's Hospital: Bayi Children's Hospital Taijiao Jiang Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences Xiuwei Ma ( [email protected] ) Military General Hospital of Beijing PLA Aliated Bayi Children's Hospital: Bayi Children's Hospital https://orcid.org/0000-0001-5326-813X Case report Keywords: SON gene, intellectual disability, ZTTK syndrome, case report Posted Date: February 9th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-191620/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Backgrounds: Since the association between SON gene and Zhu-Tokita-Takenouchi-Kim (ZTTK, OMIM 617140) is formally recognized, the purpose of this study is to detailed report a Chinese girl with clinical features and SON variant. The other aim is to review the previously published papers of ZTTK syndromes to summarize the clinical and genetic characteristics to provide guidance for the ZTTK diagnosis.
    [Show full text]
  • Regulation of RNA Polymerase II Transcription
    Regulation of RNA polymerase II transcription Ronny Drapkin, Alejandro Merino and Danny Reinberg Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, USA Transcription initiation plays a central role in the regulation of gene expression. Exciting developments in the last year have furthered our understanding of the interactions between general transcription factors and how these factors respond to modulators of transcription. Current Opinion in Cell Biology 1993, 5:469-476 Introduction TFIIJ. Formation of the DAB--polFEHJ complex, in the presence of each of four ribonucleoside triphosphates, Cellular growth and differentiation employ precise mech- enables RNAPII to clear the promoter region and initiate anisms to regulate the expression of various genes. One RNA synthesis from a specific start site [ 51. of the most rudimentary mechanisms for a cell to control The past year has seen intense activity aimed at elucidat- the functional levels of a protein is to modulate the lev- ing the molecular mechanisms underlying transcription els of mRNA encoding that polypeptide. It is therefore not initiation. In particular, the interactions that GTFs can surprising that most of the genetic programs that main- mediate, the GTF requirements for initiation, the role tain the cell in a constant state of flux mediate their effects of RNAPII phosphorylation, and the phenomenon of by impinging on mechanisms that control transcription antirepression in the process of activation have been initiation. the subject of many studies. These most recent develop- In contrast to prokaryotic RNA polymerase, eukaryotic ments are the focus of this review. enzymes require multiple accessory proteins to acquire promoter specificity.
    [Show full text]
  • Gene Mapping and Medical Genetics Human Chromosome 8
    J Med Genet: first published as 10.1136/jmg.25.11.721 on 1 November 1988. Downloaded from Gene mapping and medical genetics Journal of Medical Genetics 1988, 25, 721-731 Human chromosome 8 STEPHEN WOOD From the Department of Medical Genetics, University of British Columbia, 6174 University Boulevard, Vancouver, British Columbia, Canada V6T IWS. SUMMARY The role of human chromosome 8 in genetic disease together with the current status of the genetic linkage map for this chromosome is reviewed. Both hereditary genetic disease attributed to mutant alleles at gene loci on chromosome 8 and neoplastic disease owing to somatic mutation, particularly chromosomal translocations, are discussed. Human chromosome 8 is perhaps best known for its In an era when complete sequencing of the human involvement in Burkitt's lymphoma and as the genome is being proposed, it is appropriate for location of the tissue plasminogen activator gene, medical geneticists to accept the challenge of defining by copyright. PLAT, which has been genetically engineered to the set of loci that have mutant alleles causing provide a natural fibrinolytic product for emergency hereditary disease. The fundamental genetic tool of use in cardiac disease. Since chromosome 8 repre- linkage mapping can now be applied, owing largely sents about 5% of the human genome, we may to progress in defining RFLP markers.3 4 This expect it to carry about 5% of human gene loci. This review will focus on genetic disease associated with would correspond to about 90 of the fully validated chromosome 8 loci and the status ofthe chromosome 8 phenotypes in the MIM7 catalogue.' The 27 genes linkage map.
    [Show full text]
  • Selective Gene Expression in Magnocellular Neurons in Rat Supraoptic Nucleus
    7174 • The Journal of Neuroscience, August 11, 2004 • 24(32):7174–7185 Cellular/Molecular Selective Gene Expression in Magnocellular Neurons in Rat Supraoptic Nucleus Noriko Mutsuga,1 Tal Shahar,1 Joseph G. Verbalis,3 Michael J. Brownstein,2 Charlie C. Xiang,2 Robert F. Bonner,4 and Harold Gainer1 1Laboratory of Neurochemistry, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 2Laboratory of Genetics, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, 3Department of Medicine, Division of Endocrinology and Metabolism, Georgetown University, Washington, DC 20007, and 4Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5772 Oxytocin- and vasopressin-producing magnocellular neurons (MCNs) of the hypothalamo-neurohypophysial system are the only neu- ronal phenotypes present in the rat supraoptic nucleus (SON). Laser microdissection of the SON, extraction and T7-based amplification of its RNAs, and analysis of the resulting cDNAs by hybridization on a 35, 319 element DNA microarray have provided a detailed composite view of the gene expression profile of the MCNs. The genes expressed in the SON were compared with those expressed in a reference tissue consisting of total hypothalamus, and this “expression ratio” indicated which genes were preferentially expressed in the SON. Of the 26,000 unique genes on the array, 1385 were found to be expressed in the SON at levels more than two times greater than in the hypothalamus as a whole. Of these, 123 were expressed Ն3.4-fold higher in the SON versus hypothalamus. Most of these preferentially expressed genes were not previously known to be expressed in the MCNs.
    [Show full text]
  • MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities Chi V
    Published OnlineFirst November 2, 2009; DOI: 10.1158/1078-0432.CCR-09-0889 Molecular Pathways MYC-Induced Cancer Cell Energy Metabolism and Therapeutic Opportunities Chi V. Dang, Anne Le, and Ping Gao Abstract Although cancers have altered glucose metabolism, termed the Warburg effect, which describes the increased uptake and conversion of glucose to lactate bycancer cells un- der adequate oxygen tension, changes in the metabolism of glutamine and fatty acid have also been documented. The MYC oncogene, which contributes to the genesis of manyhuman cancers, encodes a transcription factor c-Myc,which links altered cellular metabolism to tumorigenesis. c-Myc regulates genes involved in the biogenesis of ri- bosomes and mitochondria, and regulation of glucose and glutamine metabolism. With E2F1, c-Myc induces genes involved in nucleotide metabolism and DNA replica- tion, and microRNAs that homeostaticallyattenuate E2F1 expression. With the hypoxia inducible transcription factor HIF-1, ectopic c-Myc cooperatively induces a transcrip- tional program for hypoxic adaptation. Myc regulates gene expression either directly, such as glycolytic genes including lactate dehydrogenase A (LDHA), or indirectly, such as repression of microRNAs miR-23a/b to increase glutaminase (GLS) protein expres- sion and glutamine metabolism. Ectopic MYC expression in cancers, therefore, could concurrently drive aerobic glycolysis and/or oxidative phosphorylation to provide suf- ficient energyand anabolic substrates for cell growth and proliferation in the context of the tumor microenvironment. Collectively, these studies indicate that Myc-mediated al- tered cancer cell energymetabolism could be translated for the development of new anticancer therapies. (Clin Cancer Res 2009;15(21):6479–83) MYC Background els (3).
    [Show full text]
  • Primepcr™Assay Validation Report
    PrimePCR™Assay Validation Report Gene Information Gene Name SON DNA binding protein Gene Symbol SON Organism Human Gene Summary The protein encoded by this gene binds to a specific DNA sequence upstream of the upstream regulatory sequence of the core promoter and second enhancer of human hepatitis B virus (HBV). Through this binding it represses HBV core promoter activity transcription of HBV genes and production of HBV virions. The protein shows sequence similarities with other DNA-binding structural proteins such as gallin oncoproteins of the MYC family and the oncoprotein MOS. It may also be involved in protecting cells from apoptosis and in pre-mRNA splicing. Several transcript variants encoding different isoforms have been described for this gene but the full-length nature of only two of them has been determined. Gene Aliases BASS1, C21orf50, DBP-5, FLJ21099, FLJ33914, KIAA1019, NREBP, SON3 RefSeq Accession No. NC_000021.8, NT_011512.11 UniGene ID Hs.517262 Ensembl Gene ID ENSG00000159140 Entrez Gene ID 6651 Assay Information Unique Assay ID qHsaCEP0053105 Assay Type Probe - Validation information is for the primer pair using SYBR® Green detection Detected Coding Transcript(s) ENST00000356577, ENST00000300278, ENST00000381679, ENST00000436227, ENST00000421541, ENST00000290239 Amplicon Context Sequence AAGGTCTAGATCTGTGGGTAGAAGAAGGAGCTTTAGCATTTCCCCAAGCCGCCG CAGCCGCACCCCCAGCCGCCGCAGCCGCACCCCCAGCCGCCGCAGCCGCACC CCCAGCCGCCGCAGCCGCACCCCCAGCCGCCGGAGCCGCACCCCTAGCCGTC GGAGCCGCACCCCAAGCCGCCGGAGAAGATCAAGGTCTGTGGTAAGAAGACGA AGCTTCAGTAT Amplicon
    [Show full text]