The Isopods of Abyssal Depths in the Atlantic Ocean

Total Page:16

File Type:pdf, Size:1020Kb

The Isopods of Abyssal Depths in the Atlantic Ocean The Isopods of Abyssal Depths in the Atlantic Ocean by ROBERT J. MENZIES Department of Biology, University of Southern California SUMMARY 83 23. Haploniscus polaris, n.sp. 105 24. Haploniscus telus, n.sp. 105 INTRODUCTION 84 25. Haploniscus tricornoides, n.sp. 106 Materials and Methods 84 26. Haploniscus tropicalis, n.sp. 106 Definition of the Area Sampled 85 27. Haploniscus rugosus, n.sp. 106 History of Previous Work 85 28. Haploniscus ovalis, n.sp. 106 3. Genus: Antennuloniscus, n.gen. 107 LIST OF ISOPODS FROM DEPTHS GREATER THAN 2000 METERS A Key to the Species of Antennuloniscus 107 BY REGION 87 29. Antennuloniscus dimeroceras (Barnard) 107 30. Antennuloniscus armatus, n.sp. 108 SYSTEMATICS 89 31. Antennuloniscus rostratus, n.sp. 109 Suborder: Gnathiidea Monod 89 32. Antennuloniscus ornatus, n.sp. 109 A Key to the Fourteen Described Species of Gnathiidea 4. Genus: Hydroniscus Hansen 109 Known from Depths of 500 Meters and Greater 89 A Key to the Species of Hydroniscus 109 1. Genus: Gnathia Leach 90 33. Hydroniscus ornatus, n.sp. 109 1. Gnathia vemae, n.sp. 90 34. Hydroniscus quadrifrons, n.sp. 109 2. Gnathia caeca Richardson 90 35. Hydroniscus abyssi Hansen 110 3. Gnathia stygia (G. O. Sars) 90 Family: Ischnomesidae 111 4. Gnathia albescenoides, n.sp. 92 A Key to the Genera of the Ischnomesidae 111 Suborder: Quatuordecapoda (Isopoda, sensu strictu) 92 5. Genus: Ischnomesus Richardson 111 Tribe: Asellota 92 A Key to the Species of Ischnomesus 111 A Key to the Subtribes of the Tribe Asellota 92 36. Ischnomesus profundus Hansen 112 A Key to the Families of the Tribe Asellota, Subtribe 37. Ischnomesus bispinosus (G. O. Sars) 112 Paraselloidea 94 38. Ischnomesus armatus Hansen 113 Family: Haploniscidae 94 39. Ischnomesus caribbicus, n.sp. 113 2. Genus: Haploniscus Richardson 94 40. Ischnomesus simplissimus, n.sp. 113 A Key to the Species of Haploniscus 95 41. Ischnomesus multispinis, n.sp. 113 5. Haploniscus bicuspis (G. O. Sars) 96 42. Ischnomesus wolffi, n.sp. 113 6. Haploniscus unicornis Menzies 96 43. Ischnomesus magnificus, n.sp. 114 7. Haploniscus excisus Richardson 96 44. Ischnomesus bidens, n.sp. 115 8. Haploniscus spinifer Hansen 98 45. Ischnomesus paucispinis, n.sp. 116 9. Haploniscus minutus, n.sp. 99 46. Ischnomesus decemspinosus, n.sp. 117 10. Haploniscus spatulifrons, n.sp. 99 47. Ischnomesus elegans, n.sp. 117 11. Haploniscus tuberculatus, n.sp. 99 6. Genus: Haplomesus Richardson 117 12. Haploniscus tridens, n.sp. 99 A Key to the Species of Haplomesus 117 13. Haploniscus elevatus, n.sp. 99 48. Haplomesus angustus Hansen 119 14. Haploniscus quadrifrons, n.sp. 100 49. Haplomesus modestus Hansen 119 15. Haploniscus princeps, n.sp. 101 50. Haplomesus quadrispinosus (G. O. Sars) 119 16. Haploniscus percavix, n.sp. 101 51. Haplomesus tenuispinis Hansen 119 17. Haploniscus tricornis, n.sp. 101 52. Haplomesus tropicalis, n.sp. 120 18. Haploniscus nondescriptus, n.sp. 102 53. Haplomesus insignis Hansen 121 19. Haploniscus acutus, n.sp. 103 54. Haplomesus ornatus, n.sp. 121 20. Haploniscus parallelus, n.sp. 103 55. Haplomesus bifurcatus, n.sp. 121 21. Haploniscus capensis, n.sp. 103 7. Genus: Heteromesus Richardson 121 22. Haploniscus trituberculatus, n.sp. 103 A Key to the Species of Heteromesus 121 80 ROBERT J. MENZIES 56. Heteromesus longiremis Hansen 122 102. Storthyngura magnispinis (Richardson) 147 57. Heteromesus bifurcatus, n.sp. 122 103. Storthyngura triplispinosa, n.sp. 149 58. Heteromesus granulatus Richardson 122 104. Storthyngura symmetrica, n.sp. 149 59. Heteromesus spinescens Richardson 123 105. Storthyngura vemae, n.sp. 149 60. Heteromesus similis Richardson 123 106. Storthyngura birsteini, n.sp. 149 8. Genus: Stylomesus Wolff 123 107. Storthyngura snanoi, n.sp. 149 A Key to the Species of Stylomesus 123 13. Genus: Syneurycope Hansen 150 61. Stylomesus inermis (Vanhoffen) 123 A Key to the Species of Syneurycope 151 62. Stylomesus granulosus, n.sp. 124 108. Syneurycope heezeni, n.sp. 151 63. Stylomesus spinulosus, n.sp. 125 109. Syneurycope parallela Hansen 151 64. Stylomesus elegans, n.sp. 126 110. Syneurycope hanseni Menzies 151 65. Stylomesus regularis, n.sp. 126 111. Syneurycope multispina, n.sp. 152 66. Stylomesus simplex, n.sp. 126 14. Genus: Acanthocope Beddard 152 67. Stylomesus productus, n.sp. 127 A Key to the Species of Acanthocope 153 68. Stylomesus simulans, n.sp. 127 112. Acanthocope'argentinae, n.sp. 154 Family: Macrostylidae 127 113. Acanthocope unicornis, n.sp. 155 9. Genus: Macrostylis G. O. Sars 128 114. Acanthocope annulalus, n.sp. 155 A Key to the Species of Macrostylis 128 Family: Ilyarachnidae 155 69. Macrostylis truncatex, n.sp. 128 15. Genus: Ilyarachna G. O. Sars 156 70. Macrostylis abyssicola Hansen 129 115. Ilyarachna abyssorum Richardson 156 71. Macrostylis setifer, n.sp. 130 116. Ilyarachna bicornis Hansen 156 72. Macrostylis hirsuticaudis, n.sp. 131 117. Ilyarachna spinosissima Hansen 157 73. Macrostylis caribbicus, n.sp. 131 118. Ilyarachna longicornis G. O. Sars 157 74. Macrostylis vemae, n.sp. 131 119. Ilyarachna derjugini Gurjanova 158 75. Macrostylis bifurcatus, n.sp. 131 120. Ilyarachna nodifronoides, n.sp. 158 76. A4acrostylis minutus, n.sp. 131 121. Ilyarachna qfricana, n.sp. 159 77. Macrostylis bipunctatus, n.sp. 132 122. Ilyarachna spinoajricana, n.sp. 160 Family: Nannoniscidae 133 123. Ilyarachna simplex, n.sp. 160 A Key to the Genera of Nannonisridae 1 33 124. Ilyarachna multispinosa, n.sp. 160 10. Genus: Nannoniscnides Hansen 133 125. Ilyarachna argentinae, n.sp. 160 78. Nannoniscoides hinutus. n.sp. 133 126. Ilyarachna gurjanovae, n.sp. 160 1 1. Genus: Nannoniscus G. O. Sars 133 127. Ilyaiachna identijrons, n.sp. 161 A Key to the Species of Nannoniscus 1 34 128. Ilyaiachna tiiangulaia, n.sp. 161 79. Nannoniscus inermis Hansen 13 > 129. Ilyarachna scotia, n.sp. 162 80. Nannoniscus nrmatus Hansen 135 family: Desmosomidae 162 81. Nannoniscus analis Hansen 135 16. Genus: Desmosoma G. O. Sars 162 82. Nannoniscus oblongus G. O. Sars 136 A Key to the Species of Desmosoma 163 83. Nannoniscus camayae. n.sp. 137 130. Desmosoma giaciltpcs Hansen 163 84. Nannoniscus laevis, n.sp. 138 131. Desmosoma insigne Hansen 163 85. Nannoniscus primiticus, n.sp. 138 132. Desmosoma simile Hansen 164 86. Nannoniscus spinicornis Hansen 138 133. Desmosoma intermedium Hult 165 Family: Kurycopidae 138 134. Desmosoma coarcticum (G. O. Sars) 165 A Key to the Genera of the Kurycopidae 138 135. Desmosoma longispinum Hansen 165 12. Genus: Eurycope G. O. Sars 139 136. Desmosoma striata, n.sp. 165 A Kev to the Abyssal Species of Eurycope 13'' 137. Desmosoma magnispinum, n.sp. 165 87. Eurycope antarctica Vanhoffen 139 138. Desmosoma birsteini, n.sp. 166 88. Eurycope furcata G. O. Sars 140 Family: Dendrotionidae 167 89. Eurycope producta G. O. Sars 141 A Key to the Genera of the Dendrotionidae 167 90. Eurycope vacarius Vanhoffen 141 17. Genus: Dendromunna, n.gen. 167 91. Eurycope complanata Bonnier 141 139. Dendromunna spinipes, n.sp. 167 92. Eurycope murrayi Walker 141 Family: Ianirellidae 167 93. Eurycope parva Bonnier 142 18. Genus: lanirella Bonnier 168 94. Eurycope nodifrons Hansen 143 A Key to the Species of lanirella 168 95. Eurycope hanseni Ohlin 143 140. lanirella lobata Richardson 168 96. Eurycope incisa Gurjanova 143 141. lanirella bifida, n.sp. 168 97. Eurycope acutitelson, n.sp. 143 142. lanirella laevis Hansen 168 98. Eurycope nodosa, n.sp. 145 143. lanirella vemae Menzies 169 99. Eurycope ovaloides, n.sp. 145 144. lanirella magnifrons, n.sp. 169 Genus: Storthyngura Vanhoffen 145 19. Genus: Spinianirella, n.gen. 170 A Key to the Species of Storthyngura 145 145. Spinianirella walfishensis, n.sp. 171 100. Storthyngura digitata, n.sp. 146 20. Genus: Rhacura Richardson 171 101. Storthyngura truncata (Richardson) 146 146. Rhacura pulchra Richardson 172 ABYSSAL ATLANTIC ISOPODS 81 Family: Munnidae 172 Tribe: Flabellifera 186 A Key to the Genera of the Munnidae 173 A Key to the Flabelliferan Subtribes 186 21. Genus: Munna Kroyer 173 Family: Serolidae 186 147. Munna [Munna) acanthi/era Hansen 173 33. Genus: Serolis Leach 186 148. Munna (Munna) argentinae, n.sp. 173 164. Serolis (Serolis) neaera Beddard 186 22. Genus: Acanthomunna Beddard 174 165. Serolis (Serolis) margaretae, n.sp. 187 A Key to the Species of Acanthomunna 175 166. Serolis (Serolis) macdonnellae, n.sp. 188 149. Acanthomunna beddardi, n.sp. 176 167. Serolis (Serolis) vemae, n.sp. 189 23. Genus: Notoxenoides, n.gen. 176 168. Serolis (Serolis) maryannae, n.sp. 189 150. Notoxenoides abyssi, n.sp. 177 34. Genus: Glabroserolis, n.gen. 189 151. Notoxenoides vemae, n.sp. 177 169. Glabroserolis specialis, n.sp. 189 Family: Acanthaspidae, new family 177 Subtribe: Anthuroidea 190 24. Genus: Acanthaspida Stebbing 177 A Key to the Genera of the Anthuroidea Having Abyssal A Key to the Species of Acanthaspidia 177 Species (after Barnard) 190 152. Acanthaspidia bifurcata, n.sp. 177 35. Genus: Pseudanthura Richardson 191 153. Acanthaspidia decorata Hansen 178 170. Pseudanthura lateralis Richardson 191 Family: Abyssianiridae Menzies 179 36. Genus: Calathura Norman and Stebbing 191 25. Genus: Abyssianira Menzies 179 171. Calathura brachiata (Stimpson) 191 154. Abyssianira dentifrons, Menzies 179 37. Genus: Anthelura Norman and Stebbing 192 155. Abyssianira argentenensis, n.sp. 179 172. Anthelura truncata (Hansen) 192 26. Genus: Xostylus, n.gen. 179 38. Genus: Ananthura Barnard 193 156. Xostylus parallelus, n.sp. 181 173. Ananthura abyssorum (Norman and Stebbing) Family: Ianiridae 181 193 27. Genus: Ianira Leach 181 39. Genus: Hyssura Norman and Stebbing 193 157. Ianira hanseni, n.sp. 181 174. Hyssura producta Norman and Stebbing 193 28. Genus: Abyssijaera, n.gen. 181 40. Genus: Leptanthura G. O. Sars 193 158. Abyssijaera ocarina, n.sp. 181 Subtribe: Cirolanoidea 194 Family: Echinothambemidae Menzies 183 Tribe: Valvifera 194 29. Genus: Echinothambema Menzies 183 Family: Arcturidae 194 159. Echinothambema ophiuroides Menzies 183 41. Genus: Antarcturus zur Strassen 194 30. Genus: Vemathambema, n.gen. 183 42. Genus: Mesidothea Richardson 195 160. Vemathambema elongata, n.sp.
Recommended publications
  • Global Diversity of Marine Isopods (Except Asellota and Crustacean Symbionts)
    Collection Review Global Diversity of Marine Isopods (Except Asellota and Crustacean Symbionts) Gary C. B. Poore1*, Niel L. Bruce2,3 1 Museum Victoria, Melbourne, Victoria, Australia, 2 Museum of Tropical Queensland and School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia, 3 Department of Zoology, University of Johannesburg, Auckland Park, South Africa known from the supralittoral and intertidal to depths in excess of Abstract: The crustacean order Isopoda (excluding six kilometres. Isopods are a highly diverse group of crustaceans, Asellota, crustacean symbionts and freshwater taxa) with more than 10,300 species known to date, approximately comprise 3154 described marine species in 379 genera 6,250 of these being marine or estuarine. In the groups under in 37 families according to the WoRMS catalogue. The discussion here (about half the species) the vast majority of species history of taxonomic discovery over the last two centuries are known from depths of less than 1000 metres. is reviewed. Although a well defined order with the Peracarida, their relationship to other orders is not yet The Isopoda is one of the orders of peracarid crustaceans, that resolved but systematics of the major subordinal taxa is is, those that brood their young in a marsupium under the body. relatively well understood. Isopods range in size from less They are uniquely defined within Peracarida by the combination than 1 mm to Bathynomus giganteus at 365 mm long. of one pair of uropods attached to the pleotelson and pereopods of They inhabit all marine habitats down to 7280 m depth only one branch. Marine isopods are arguably the most but with few doubtful exceptions species have restricted morphologically diverse order of all the Crustacea.
    [Show full text]
  • Changes in Species Composition of Haploniscidae (Crustacea Isopoda)
    Progress in Oceanography 180 (2020) 102233 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Changes in species composition of Haploniscidae (Crustacea: Isopoda) across T potential barriers to dispersal in the Northwest Pacific ⁎ Nele Johannsena,b, Lidia Linsa,b,c, Torben Riehla,b, Angelika Brandta,b, a Goethe University, Biosciences, Institute for Ecology, Evolution und Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany b Senckenberg Research Institute and Natural History Museum, Marine Zoology, Senckenberganlage 25, 60325 Frankfurt am Main, Germany c Ghent University, Marine Biology Research Group, Krijgslaan 281/S8, 9000 Ghent, Belgium ARTICLE INFO ABSTRACT Keywords: Speciation processes as drivers of biodiversity in the deep sea are still not fully understood. One potential driver Hadal for species diversification might be allopatry caused by geographical barriers, such as ridges or trenches, or Ecology physiological barriers associated with depth. We analyzed biodiversity and biogeography of 21 morphospecies of Sea of Okhotsk the deep-sea isopod family Haploniscidae to investigate barrier effects to species dispersal in the Kuril- Deep sea Kamchatka Trench (KKT) area in the Northwest (NW) Pacific. Our study is based on 2652 specimens from three Abyssal genera, which were collected during the German-Russian KuramBio I (2012) and II (2016) expeditions as well as Isopoda Kuril Kamchatka Trench the Russian-German SokhoBio (2015) campaign. The sampling area covered two potential geographical barriers Distribution (the Kuril Island archipelago and the Kuril-Kamchatka Trench), as well as three depth zones (bathyal, abyssal, Northwest Pacific hadal). We found significant differences in relative species abundance between abyssal and hadal depths.
    [Show full text]
  • The Coume Ouarnède System, a Hotspot of Subterranean Biodiversity in Pyrenees (France)
    diversity Article The Coume Ouarnède System, a Hotspot of Subterranean Biodiversity in Pyrenees (France) Arnaud Faille 1,* and Louis Deharveng 2 1 Department of Entomology, State Museum of Natural History, 70191 Stuttgart, Germany 2 Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR7205, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, EPHE, 75005 Paris, France; [email protected] * Correspondence: [email protected] Abstract: Located in Northern Pyrenees, in the Arbas massif, France, the system of the Coume Ouarnède, also known as Réseau Félix Trombe—Henne Morte, is the longest and the most complex cave system of France. The system, developed in massive Mesozoic limestone, has two distinct resur- gences. Despite relatively limited sampling, its subterranean fauna is rich, composed of a number of local endemics, terrestrial as well as aquatic, including two remarkable relictual species, Arbasus cae- cus (Simon, 1911) and Tritomurus falcifer Cassagnau, 1958. With 38 stygobiotic and troglobiotic species recorded so far, the Coume Ouarnède system is the second richest subterranean hotspot in France and the first one in Pyrenees. This species richness is, however, expected to increase because several taxonomic groups, like Ostracoda, as well as important subterranean habitats, like MSS (“Milieu Souterrain Superficiel”), have not been considered so far in inventories. Similar levels of subterranean biodiversity are expected to occur in less-sampled karsts of central and western Pyrenees. Keywords: troglobionts; stygobionts; cave fauna Citation: Faille, A.; Deharveng, L. The Coume Ouarnède System, a Hotspot of Subterranean Biodiversity in Pyrenees (France). Diversity 2021, 1. Introduction 13 , 419. https://doi.org/10.3390/ Stretching at the border between France and Spain, the Pyrenees are known as one d13090419 of the subterranean hotspots of the world [1].
    [Show full text]
  • Redalyc.Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae)
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Bunkley-Williams, Lucy; Williams, Jr., Ernest H.; Bashirullah, Abul K.M. Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii) Revista de Biología Tropical, vol. 54, núm. 3, diciembre, 2006, pp. 175-188 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44920193024 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii) Lucy Bunkley-Williams,1 Ernest H. Williams, Jr.2 & Abul K.M. Bashirullah3 1 Caribbean Aquatic Animal Health Project, Department of Biology, University of Puerto Rico, P.O. Box 9012, Mayagüez, PR 00861, USA; [email protected] 2 Department of Marine Sciences, University of Puerto Rico, P.O. Box 908, Lajas, Puerto Rico 00667, USA; ewil- [email protected] 3 Instituto Oceanografico de Venezuela, Universidad de Oriente, Cumaná, Venezuela. Author for Correspondence: LBW, address as above. Telephone: 1 (787) 832-4040 x 3900 or 265-3837 (Administrative Office), x 3936, 3937 (Research Labs), x 3929 (Office); Fax: 1-787-834-3673; [email protected] Received 01-VI-2006. Corrected 02-X-2006. Accepted 13-X-2006. Abstract: The parasitic isopod fauna of fishes in the southern Caribbean is poorly known. In examinations of 12 639 specimens of 187 species of Venezuelan fishes, the authors found 10 species in three families of isopods (Gnathiids, Gnathia spp.
    [Show full text]
  • "Philosciidae" (Crustacea: Isopoda: Oniscidea)
    Org. Divers. Evol. 1, Electr. Suppl. 4: 1 -85 (2001) © Gesellschaft für Biologische Systematik http://www.senckenberg.uni-frankfurt.de/odes/01-04.htm Phylogeny and Biogeography of South American Crinocheta, traditionally placed in the family "Philosciidae" (Crustacea: Isopoda: Oniscidea) Andreas Leistikow1 Universität Bielefeld, Abteilung für Zoomorphologie und Systematik Received 15 February 2000 . Accepted 9 August 2000. Abstract South America is diverse in climatic and thus vegetational zonation, and even the uniformly looking tropical rain forests are a mosaic of different habitats depending on the soils, the regional climate and also the geological history. An important part of the nutrient webs of the rain forests is formed by the terrestrial Isopoda, or Oniscidea, the only truly terrestrial taxon within the Crustacea. They are important, because they participate in soil formation by breaking up leaf litter when foraging on the fungi and bacteria growing on them. After a century of research on this interesting taxon, a revision of the terrestrial isopod taxa from South America and some of the Antillean Islands, which are traditionally placed in the family Philosciidae, was performed in the last years to establish monophyletic genera. Within this study, the phylogenetic relationships of these genera are elucidated in the light of phylogenetic systematics. Several new taxa are recognized, which are partially neotropical, partially also found on other continents, particularly the old Gondwanian fragments. The monophyla are checked for their distributional patterns which are compared with those patterns from other taxa from South America and some correspondence was found. The distributional patterns are analysed with respect to the evolution of the Oniscidea and also with respect to the geological history of their habitats.
    [Show full text]
  • REVISÃO TAXONÔMICA DA FAMÍLIA SEROLIDAE Dana, 1853 (CRUSTACEA: ISOPODA) NO OCEANO ATLÂNTICO (45°N – 60°S)
    UNIVERSIDADE DE SÃO PAULO MUSEU DE ZOOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMÁTICA, TAXONOMIA ANIMAL E BIODIVERSIDADE INGRID ÁVILA DA COSTA REVISÃO TAXONÔMICA DA FAMÍLIA SEROLIDAE Dana, 1853 (CRUSTACEA: ISOPODA) NO OCEANO ATLÂNTICO (45°N – 60°S) São Paulo 2017 UNIVERSIDADE DE SÃO PAULO MUSEU DE ZOOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMÁTICA, TAXONOMIA ANIMAL E BIODIVERSIDADE INGRID ÁVILA DA COSTA REVISÃO TAXONÔMICA DA FAMÍLIA SEROLIDAE Dana, 1853 (CRUSTACEA: ISOPODA) NO OCEANO ATLÂNTICO (45°N – 60°S) Tese apresentada ao Programa de Pós-Graduação em Sistemática, Taxonomia Animal e Biodiversidade do Museu de Zoologia da Universidade de São Paulo. Versão corrigida Orientador: Prof. Dr. Marcos Domingos Siqueira Tavares São Paulo 2017 Não autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico. I do not authorize the reproduction and dissemination of this work in part or entirely by any means electronic or conventional. i FICHA CATALOGRÁFICA Costa, Ingrid Ávila da Revisão taxonômica da família Serolidae Dana, 1853 (Crustacea: Isopoda) no Oceano Atlântico (45ºN – 60ºS). Ingrid Ávila da Costa; orientador Marcos Domingos Siqueira Tavares. – São Paulo, SP: 2017. 36 fls. Tese (Doutorado) – Programa de Pós-graduação em Sistemática, Taxonomia Animal e Biodiversidade, Museu de Zoologia, Universidade de São Paulo. Versão corrigida 1. Serolidae Dana, 1853 - taxonomia. 2. Isopoda – Oceano Atlântico. I. Tavares, Marcos Domingos Siqueira (Orient.). II. Título. Banca examinadora Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Prof. Dr.______________________ Instituição: ___________________ Julgamento: ___________________ Assinatura: ___________________ Profa.
    [Show full text]
  • TNP SOK 2011 Internet
    GARDEN ROUTE NATIONAL PARK : THE TSITSIKAMMA SANP ARKS SECTION STATE OF KNOWLEDGE Contributors: N. Hanekom 1, R.M. Randall 1, D. Bower, A. Riley 2 and N. Kruger 1 1 SANParks Scientific Services, Garden Route (Rondevlei Office), PO Box 176, Sedgefield, 6573 2 Knysna National Lakes Area, P.O. Box 314, Knysna, 6570 Most recent update: 10 May 2012 Disclaimer This report has been produced by SANParks to summarise information available on a specific conservation area. Production of the report, in either hard copy or electronic format, does not signify that: the referenced information necessarily reflect the views and policies of SANParks; the referenced information is either correct or accurate; SANParks retains copies of the referenced documents; SANParks will provide second parties with copies of the referenced documents. This standpoint has the premise that (i) reproduction of copywrited material is illegal, (ii) copying of unpublished reports and data produced by an external scientist without the author’s permission is unethical, and (iii) dissemination of unreviewed data or draft documentation is potentially misleading and hence illogical. This report should be cited as: Hanekom N., Randall R.M., Bower, D., Riley, A. & Kruger, N. 2012. Garden Route National Park: The Tsitsikamma Section – State of Knowledge. South African National Parks. TABLE OF CONTENTS 1. INTRODUCTION ...............................................................................................................2 2. ACCOUNT OF AREA........................................................................................................2
    [Show full text]
  • A Survey of Gill and Digestive System Parasites of Brownbanded Bambooshark Chiloscyllium Punctatum from the Gulf of Thailand
    A Survey of Gill and Digestive System Parasites of BrownBanded Bambooshark Chiloscyllium punctatum from the Gulf of Thailand Wiriya Chaiyaroj Faculty of Fisheries, Kasetsart University Abstract The species of benthic shark, BrownBanded Bambooshark (Chiloscyllium punctatum) were collected from Exclusive Economic Zone of the Gulf of Thailand. Fish samples were examined both of external and internal parasite. 15 samples of sharks found only 12 sharks that infected with parasites. Two family of endoparasites, family Onchobothrithriidae and family Phyllobothriidae of phylum platyhelminthes were found highest prevalence and mean intensity at gastrointestinal especially at the intestine that unidentified. Three genus of ectoparasites, Eudactylina Gnathia and Caligus were found at the gill area. They had prevalence and mean intensity follow by intestine and that also unidentified species. Introduction Brownbanded Bambooshark (Chiloscyllium punctatum) is the small benthic shark in family Hemiscyllidae and distributed mainly in Southeast Asian water. This species taken in inshore fisheries in Thailand and utilized for human food. Nowadays, their status recognized as “Near Threaten” (Tassapon et al., 2560) The Gulf of Thailand looks like a basin that is an area of sediment from several rivers makes seabed like mud and sand are spread everywhere. (Department of Marine and Coastal Resources, 2013) and benthic sharks are located in the sand or sand along the coast. (Tassapon et al., 2560). In the Gulf of Thailand, the genus of benthic sharks Chiloscyllium, there are 5 species. Chiloscyllium punctatum is the most abundant species in this genus and found in this cruise of M.V.SEAFDEC 2. (Tassanee et al., 2560) that caught by the trawl.
    [Show full text]
  • Crustacea, Malacostraca)*
    SCI. MAR., 63 (Supl. 1): 261-274 SCIENTIA MARINA 1999 MAGELLAN-ANTARCTIC: ECOSYSTEMS THAT DRIFTED APART. W.E. ARNTZ and C. RÍOS (eds.) On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca)* ANGELIKA BRANDT Zoological Institute and Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany Dedicated to Jürgen Sieg, who silently died in 1996. He inspired this research with his important account of the zoogeography of the Antarctic Tanaidacea. SUMMARY: The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary his- tory of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of “preadapted“ taxa, like for exam- ple the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse) in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago) and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopo- da) led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988) demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988) to conclude that the recent Antarctic crustacean fauna must be comparatively young.
    [Show full text]
  • Host DNA Integrity Within Blood Meals of Hematophagous Larval Gnathiid Isopods (Crustacea, Isopoda, Gnathiidae) Gina C
    Hendrick et al. Parasites Vectors (2019) 12:316 https://doi.org/10.1186/s13071-019-3567-8 Parasites & Vectors RESEARCH Open Access Host DNA integrity within blood meals of hematophagous larval gnathiid isopods (Crustacea, Isopoda, Gnathiidae) Gina C. Hendrick1,2, Maureen C. Dolan1,2, Tanja McKay1 and Paul C. Sikkel1* Abstract Background: Juvenile gnathiid isopods are common ectoparasites of marine fshes. Each of the three juvenile stages briefy attach to a host to obtain a blood meal but spend most of their time living in the substrate, thus making it difcult to determine patterns of host exploitation. Sequencing of host blood meals from wild-caught specimens is a promising tool to determine host identity. Although established protocols for this approach exist, certain challenges must be overcome when samples are subjected to typical feld conditions that may contribute to DNA degradation. The goal of this study was to address a key methodological issue associated with molecular-based host identifcation from free-living, blood-engorged gnathiid isopods—the degradation of host DNA within blood meals. Here we have assessed the length of time host DNA within gnathiid blood meals can remain viable for positive host identifcation. Methods: Juvenile gnathiids were allowed to feed on fsh of known species and subsets were preserved at 4-h intervals over 24 h and then every 24 h up to 5 days post-feeding. Host DNA extracted from gnathiid blood meals was sequenced to validate the integrity of host DNA at each time interval. DNA was also extracted from blood meals of wild-fed gnathiids for comparison.
    [Show full text]
  • Woodlice in Britain and Ireland: Distribution and Habitat Is out of Date Very Quickly, and That They Will Soon Be Writing the Second Edition
    • • • • • • I att,AZ /• •• 21 - • '11 n4I3 - • v., -hi / NT I- r Arty 1 4' I, • • I • A • • • Printed in Great Britain by Lavenham Press NERC Copyright 1985 Published in 1985 by Institute of Terrestrial Ecology Administrative Headquarters Monks Wood Experimental Station Abbots Ripton HUNTINGDON PE17 2LS ISBN 0 904282 85 6 COVER ILLUSTRATIONS Top left: Armadillidium depressum Top right: Philoscia muscorum Bottom left: Androniscus dentiger Bottom right: Porcellio scaber (2 colour forms) The photographs are reproduced by kind permission of R E Jones/Frank Lane The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the Culture Centre of Algae and Protozoa. ITE contributes to, and draws upon, the collective knowledge of the 13 sister institutes which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from natural or man- made change. The results of this research are available to those responsible for the protection, management and wise use of our natural resources. One quarter of ITE's work is research commissioned by customers, such as the Department of Environment, the European Economic Community, the Nature Conservancy Council and the Overseas Development Administration. The remainder is fundamental research supported by NERC. ITE's expertise is widely used by international organizations in overseas projects and programmes of research.
    [Show full text]
  • World List of the Anthurldean Isopods (Crustacea, Isopoda, Anthuridea)
    WORLD LIST OF THE ANTHURLDEAN ISOPODS (CRUSTACEA, ISOPODA, ANTHURIDEA) ILEANA NEGOESCU, JOHANN W. WAGELE On prdsente la liste des esp8ce's de Crustacks Isopodes du sous-ordie des Anthuridea, liste qui rdunit B prBsent 57 genres avec 321 espbces appartenant B 3 families: Anthuridae, Hyssuridae et Paranthuridae. Des dombes relatives B la rdpartition gbographique, la profondem et l'habitat ainsi que des rbfbrences bibliogaphiques complbtent la liste des espbces pour lea- quelles on indique anssi les synonymies. INTRODUCTION The Anthuridea have found increased interest during the last' few years and the number of known species is growing fast. These crustaceans are obviously present all over the world in the marine benthos and in some brackish and freshwater habitats. In the course of ex~editionsand benthic surveys of the last decades many new species were discovered, often with the help of diving techniques and by careful sorting of the samples. At present 57 genera and 321 species are known. In table 1, one can see how many spe- cies were described only in the past 10 years. For someone who is not constantly following the taxonomic publicat- ions it is difficult to find out which names are valid today, what synonyms exist, how many species are known and from which part of the world. The present paper will help those who are not familiar with this group of Isopoda to get the necessarv information. (7 It is not possible for us to revise those genera which are still in an unsatisfactorv condition. as the material for the necessarv redescri~tions , I was not available.
    [Show full text]