Human-Centred Design at the Heart of a Successful Product Development Process

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Phillips-Medisize HUMAN-CENTRED DESIGN AT THE HEART OF A SUCCESSFUL PRODUCT DEVELOPMENT PROCESS In this article, Bill Welch, Chief Technology Officer, and Jeremy Odegard, Design & Development Center, both of Phillips-Medisize, provide an insight into how the company’s human centred design approach fits into its integrated product development process. During the development phases, pharma to higher-volume commercial production. and medical device companies can encoun- The most minor detail can derail the devel- ter obstacles complying with the US FDA’s opment of a successful product, resulting drug and medical device regulations, as well in lost time and resources and deadlines as other global regulations that determine missed. This could cause product devel- which current good manufacturing practices opment or regulatory submission to stall (cGMPs) and quality system regulations before it ever reaches the market. apply for product manufacturing. There Project complications and delays can is also the need to manage complicated arise as a result of collaboration among dis- supply chain logistics from design, testing parate organisations. For example, a design and development to low-volume clinical firm might not understand what can be trial manufacturing as well as the scale-up achieved in injection moulding processes. Bill Welch Chief Technology Officer T: +1 715 386 4320 E: [email protected] Mr Jeremy Odegard Design & Development Centre (DDC) engineering Phillips-Medisize Corporation 1201 Hanley Rd Hudson WI 54555-5401 United States European Headquarters: Phillips-Medisize Edisonstraat 1 2181 AB Hillegom The Netherlands T: +31 252 576 888 E: [email protected] Figure 1: Phillips-Medisize’s integrated product development cycle. www.phillipsmedisize.com 28 www.ondrugdelivery.com Copyright © 2015 Frederick Furness Publishing Ltd Phillips-Medisize Further, designs may not be optimised for manufacturing or assembly. By applying adequate due diligence in choosing the right partner, pharmaceutical or biotechnology and medical companies can improve the odds of launching a successful new drug product into the marketplace – on time, and on budget. INTEGRATED PRODUCT DEVELOPMENT Phillips-Medisize’s integrated product development process combines human-cen- tred design principles with a solid design for manufacturing (DFM) and design for Figure 2: Design research is typically conducted at the front end of a development assembly (DFA) philosophy. It address- cycle in order to establish a firm foundation for future design work. es design research, industrial design and Industrial Design ences must be considered as early as pos- human factors engineering (HFE) focusing Industrial designers build upon the founda- sible. Proper planning, execution and docu- on product usefulness, usability, desirability tion of design research, translating discover- mentation of HFE activities throughout the and manufacturability (see Figure 1). ies, product performance goals and market- development process should streamline the The key benefits of this are prod- ing objectives into tangible concept direc- submission process for regulatory approval. uct adoption and compliance; predict- tions. Product form, user interface, ergo- A focused Human-Centered Design able processing; overall product quality nomics, aesthetic detail treatment, material approach promotes intuitive, usable, and improvement; cycle time reduction and selection, and manufacturing approaches are desirable devices (Figure 3). stakeholder satisfaction. all considered during this phase which typi- “Almost all of the extremely diverse medi- The human-centered approach is not cally begins with collaborative brainstorm- cal sectors use and benefit from our HCD limited to a single phase nor is it a stand- ing from multiple professional disciplines. approach, among them diabetes, ophthalmol- alone module that can simply be attached Industrial designers then narrow their focus ogy, oncology, gynecology, cardio-vascular to the front-end of a program. It needs to to a manageable set of concepts that may be surgical intervention. In the field of medical be embedded into the cultural fabric of an evaluated through illustrations, preliminary devices, we are involved in the development organisation in order to be effective. CAD models, and physical prototypes. of ‘knock-your-socks-off’ technologies and applications – developed all the time – for HUMAN-CENTRED DESIGN Human Factors Engineering ever more complex Class III devices, those PRINCIPLES The objective of HFE is to minimise use- still requiring pre-market approval. Class III related risks and ultimately to ensure safe and devices are usually those that support or sus- Design Research effective use. HFE activities may include prod- tain human life,” said Phillips-Medisize Chief Design research activities are typically con- uct handling studies, usability testing with rep- Technology Officer Bill Welch. ducted at the front end of a development resentative users, and final verification/valida- cycle in order to establish a firm founda- tion studies to satisfy regulatory expectations. DFM AND DFA tion for future design work (Figure 2). HFE methods are applied throughout the This is required to determine the needs of development cycle to mitigate product related Design for manufacturing (DFM) and end users, uncovering attributes that will safety risks and justify design decisions. design for assembly (DFA) are also foundation- resonate with them on an emotional level. HFE starts early in a design cycle and al elements of a robust product development Common design research methods include should be an integral part of the development process. Much like human-centred design prin- targeted interviews, contextual observation process. Design inputs such as user profiles, ciples, a sound DFM/DFA philosophy should (for example, witnessing a surgical pro- use environment, and other contextual influ- be a cultural mindset, becoming ingrained in cedure in an operating room, or shadow- ing a diabetic patient through their daily USABLE: INTUITIVE: DESIRABLE: testing and insulin injection routine in the • Proven minimised risk • Predictable device • Fitting into the home), participatory workshops, analogous of use error behaviour lifestyle of the product benchmarking, and trend tracking. "• Comfortably • Simple operating intended user These processes allow a cross-functional " achievable user input sequence • Comfortable touchpoints and development team to appreciate circum- forces • Alignment with mental models emotional appeal stances, environmental conditions, and user • Accommodation of user group abilities / • Simple user actions / • High perceived value expectations in an effort to identify design limitations motions opportunities. Discoveries made through • Meaningful form design research inform the development language process, improving the likelihood of success upon market introduction. Figure 3: Summary of criteria for achieving usable, intuitive desirable device design. Copyright © 2015 Frederick Furness Publishing Ltd www.ondrugdelivery.com 29 Phillips-Medisize all phases of development. While HFE evalua- most of the product cost (as well as quality the product development process by a fully tion throughout the process is typically focused and risk) are driven by decisions early in engaged multidisciplinary team including on the user’s experience, DFM and DFA are the design cycle, the product development manufacturing representatives. DFM can- focused on manufacturing quality, cost and team must include expertise in DFM for the not be viewed simply as a checklist to be risk. Certain aspects of DFM, such as design intended manufacturing processes. In the completed or a task in the development guidelines for moulded plastic or metal parts, spirit of innovation and creating improved cycle. Early manufacturing involvement have proven manufacturing process principles patient outcomes at a lower cost, it is recog- not only brings DFM expertise to the prod- behind them and applying just a handful of nised that DFM guidelines must sometimes uct development team, it also promotes established DFM guidelines for moulded parts be challenged. In these cases, the product concurrent early learning and buy-in by the can prevent a majority of design issues. development team must be committed to manufacturing team, reducing lead time The same can be said for DFA, in which risk mitigation by applying computer aided and risk downstream. planning for manual, semi-automated, or engineering (CAE) tools such as mouldflow, automated assembly from the early stages finite element analysis (FEA), and tolerance COST-DRIVEN SOLUTIONS can prevent issues that would otherwise be analysis to an unfinished design, and subse- found during clinical, pilot, or manufactur- quent prototyping to verify the CAE output. Many customers are interested in get- ing launch builds when mitigation of issues In the case of injection moulded plastic ting their ideas transformed into a func- becomes much more costly. Designers, engi- components, the design team understands tional product, relying on the expertise of neers and manufacturing representatives must that part design dictates mould design and the Phillips-Medisize Design Development collaborate early and often to develop designs can envision how steel is wrapped around Center (DDC) to handle all the industry- that meet targeted quality and cost objectives, part geometry to create tooling capable of critical factors in
Recommended publications
  • Design for Assembly" As a Working Approach at Atlas Copco Tools

    Design for Assembly" As a Working Approach at Atlas Copco Tools

    TMT 2012:69 Evaluation of "Design For Assembly" as a working approach at Atlas Copco Tools ALEXANDER ANTURI JENNY TIGER Examensarbete inom MASKINTEKNIK Innovation och Design Högskoleingenjör, 15 hp Södertälje, Sverige 2012 Evaluation of "Design For Assembly" as a working approach at Atlas Copco Tools av Alexander Anturi Jenny Tiger Examensarbete TMT 2012:69 KTH Industriell teknik och management Tillämpad maskinteknik Mariekällgatan 3, 151 81 Södertälje Examensarbete TMT 2012:69 Utvärdering av "Design For Assembly" som ett arbetssätt på Atlas Copco Tools Alexander Anturi Jenny Tiger Godkänt Examinator KTH Handledare KTH 2012-08-20 Namn Jan Linell Uppdragsgivare Företagskontakt/handledare Atlas Copco Tools AB Andris Danebergs Sammanfattning Denna rapport presenterar resultatet av ett examensarbete där en utvärdering av DFA(Design For Assembly)- metoden som ett arbetssätt på Atlas Copco Tools utfördes. DFA är en metod som handlar om att designa en produkt så att dess egenskaper kommer att ha en inverkan på monteringsvänligheten av produkten. Det främsta målet med DFA är att reducera antalet ingående detaljer i en produkt. Atlas Copco Tools är ett företag som har påbörjat sin resa mot ständiga förbättringar och fokuserat sig bland annat på att förbättra produktutvecklingsprocessen. Därav har företaget visat ett stort intresse för DFA-metoden som ett arbetssätt inom konstruktionsavdelningen. Idag använder sig inte Atlas Copco Tools av en specifik metod som stödjer DFA-metodiken vid utveckling av deras produkter. Den stora frågan i detta examensarbete är därför huruvida DFA lönar sig att implementeras på Atlas Copco Tools i deras produktutecklingsprocess och i så fall hur arbetet med DFA ska ske samt vilka tillvägagångssätt ska användas.
  • Implementing Design for Automatic Assembly a Recommendation on How to Implement and Apply DFAA at Company Y

    Implementing Design for Automatic Assembly a Recommendation on How to Implement and Apply DFAA at Company Y

    DEGREE PROJECT IN MECHANICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Implementing Design For Automatic Assembly A recommendation on how to implement and apply DFAA at Company Y FILIPPA VON YXKULL KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT Implementing Design For Automatic Assembly A recommendation on how to implement and apply DFAA at Company Y Filippa von Yxkull Master of Science Thesis TPRMM: 2018: KTH Production Engineering and Management Industrial Production SE-100 44 STOCKHOLM Abstract The need to work with Design for Automatic Assembly (DFAA) has been widely recognized in the literature. However, the implementation of DFAA is not clearly defined. Therefore, the purpose of this master thesis is to investigate and contribute with knowledge of how DFAA should be implemented into an organization, such as Company Y. Several interviews have been conducted to establish a current state analysis, to receive an understanding of the current problems at Company Y and how to address them. A benchmarking study was conducted, where the three companies Ericsson, Company X and Scania were interviewed. All three companies have successfully implemented DFA and were interviewed with the purpose to obtaining their best practices. The study also included an early implementation of DFAA, where a software based DFA2-method created by Eskilander (2001) was tested on a current product and a new developed design concept at Company Y. Based on this a recommended workflow of the evaluation could be attained. Based on the empirical gatherings several recommendations of how DFAA should be implemented into the organization could be made.
  • Application of a Design Method for Manufacture and Assembly Flexible Assembly Methods and Their Evaluation for the Construction of Bridges

    Application of a Design Method for Manufacture and Assembly Flexible Assembly Methods and Their Evaluation for the Construction of Bridges

    Application of a Design Method for Manufacture and Assembly Flexible Assembly Methods and their Evaluation for the Construction of Bridges Master of Science Thesis in the Master’s Programme Design and Construction Project Management MICHEL KALYUN TEZERA WODAJO Department of Civil and Environmental Engineering Division of Structural Engineering Steel and Timber Structures CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2012 Master’s Thesis 2012:29 MASTER’S THESIS 2012:29 Application of a Design Method for Manufacture and Assembly Master of Science Thesis in the Master’s Programme Design and Construction Project Management MICHEL KALYUN & TEZERA WODAJO Department of Civil and Environmental Engineering Division of Structural Engineering Steel and Timber Structures CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2012 Application of a Design Method for Manufacture and Assembly Flexible Assembly Methods and their Evaluation for the Construction of Bridges Master of Science Thesis in the Master’s Programme Design and Construction Project Management MICHEL KALYUN & TEZERA WODAJO © MICHEL KALYUN & TEZERA WODAJO, 2012 Examensarbete/Institutionen för bygg- och miljöteknik, Chalmers tekniska högskola 2012:29 Department of Civil and Environmental Engineering Division of Construction Management Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Cover: Demonstration of easy assembly Chalmers reproservice / Department of Civil and Environmental Engineering Göteborg, Sweden 2012 Application of a Design Method
  • A Cost-Effective Knowledge-Based Reasoning System for Design for Automation

    A Cost-Effective Knowledge-Based Reasoning System for Design for Automation

    1 A cost-effective knowledge-based reasoning system for design for automation E M Shehab1* and H S Abdalla2 1Department of Manufacturing, Cranfield University, Cranfield, UK 2Department of Product and Spatial Design, De Montfort University, Leicester, UK The manuscript was received on 3 February 2005 and was accepted after revision for publication on 16 December 2005. DOI: 10.1243/095440554JEM298 Abstract: Design for assembly automation (DFAA) is an important part of the concurrent engineering strategy for reduction of product manufacturing costs and lead times. An intelligent knowledge-based system (KBS) for design for automation and early cost modelling within a concurrent engineering environment has been developed. This paper focuses upon the development of the design for an assembly automation system. The system framework encompasses an extensive knowledge base reasoning system, a CAD system, a design analysis for automation module, a design improvement suggestion module, and a user interface. The development process of the system involved three main stages: creating the KBS, developing the design improvement module, and integrating the KBS with the CAD system. The developed system has the capability to: (a) select the most economic assembly technique for the product at an early design stage; (b) estimate the assembly time and cost for manual, automatic, and robotic assembly methods; and (c) analyse the product design for automation and provide the designers with design improvement suggestions of a product to simplify assembly operations without any compromise of the product functionality. The above capabilities of the system have been demonstrated and validated through a real case study. Keywords: design for automation, concurrent engineering, knowledge-based systems, assembly cost estimation 1 INTRODUCTION good design from the assembly point of view [7].
  • Assembly Simulation Through a Digital Mock-Up Application

    Assembly Simulation Through a Digital Mock-Up Application

    ASSEMBLY SIMULATION THROUGH A DIGITAL MOCK-UP APPLICATION Giampaolo Pascali, Angelo Corallo, Mariangela Lazoi and Alessandro Margherita EuroMediterranean Incubator, University of Salento, Via Monteroni s.n., Lecce, Italy Keywords: Design for assembly, Digital mock-up, Naval sector. Abstract: “Design for X” includes a set of techniques to realize the best product yet during the design avoiding re- works and loose of time and money. Among these, the design for assembly covers an important role and aims to design a product “thinking” to the physical assembling moment. Digital Mock-Up (DMU) is a process to enhance assembly feasibility and efficiency through specific design analysis and allow re- producing a product virtual assembling. Based on an action research based on a collaboration among company and university researchers, the paper aims to describe the development of a DMU application in a naval Italian aerospace company to improve a ship fuel system assembling. Technical features of the application are described. 1 INTRODUCTION company processes, the activities for assembling individual parts to obtain the final product are Different authors face the topics of the new product crucial as they use over 50% of total production development phases (Clark, Wheelright, 1995; time, with costs varying from 20% to 40% for a Crawford, Di Benedetto, 2003; Ulrich, Eppinger, single unit. The use of DFA can improve 2007; Ribbens, 2000; Rosenau et al., 1996), significantly such performance and several methods everyone specify such phase that goes from the have been developed at this purpose (Miyakawa and conceptualization until the production trough the Ohashi, 1986; Boothroyd and Dewhurst, 1986; engineering.
  • How to Design for Manufacture and Assembly Value Chain Competitiveness (VCC)

    How to Design for Manufacture and Assembly Value Chain Competitiveness (VCC)

    How to Design for Manufacture and Assembly Value Chain Competitiveness (VCC) Version: 1 December 2019 This information is provided by Rolls-Royce in good faith based upon the latest information © 2019 Rolls-Royce | Not Subject to Export available to it; no warranty or representation is given; no contractual or other binding Control commitment is implied. 2 How to Design for Manufacture and BACK Map NEXT Assembly Scope Objectives & Principles Prerequisites 1. Understand 2. Apply ‘Design ‘Design for Gate Gate Start Check for Manufacture Check Manufacture and list and Assembly’ list Assembly’ End © 2019 Rolls-Royce 3 Scope BACK Map NEXT This ‘How To’ will enable you to: • Identify and review the inputs needed to conduct appropriate Design for Manufacture and Assembly (DFMA) at different stages of the product lifecycle • Design for manufacture guidelines • Design for assembly guidelines • DFMA team members with knowledge and experience in cross-functional disciplines • The product, manufacturing and assembly requirements • Approach to conducting DFMA reviews for action capture and closure © 2019 Rolls-Royce 4 Objective and Principles BACK Map NEXT 1. DFMA influences design definition 2. Design for Assembly aims to in the early stages of the product reduce the number of parts, development easing handling and assembly operations Design for Manufacturing and Assembly (DFMA) Influence on Cost / Quality / Time: 4. DFMA utilises cross-functional 3. Design for Manufacturing aims to knowledge and experiences for select the most cost effective idea generation and action material and process to ease implementation manufacturing operations © 2019 Rolls-Royce 5 Prerequisites BACK Map NEXT Knowledge: • Existing design development process and potential benefits of adopting a DFMA approach © 2019 Rolls-Royce 6 1.
  • Final Presentation

    Final Presentation

    Cradle to Cradle Andrea Herrera Jaramillo Student Msc. Industrial Design Engineering Cradle to Cradle Business Case Theory Practice C2C lectures Books Papers /documents C2C Expo Lab C2C PII MBDC website EPEA website Cradle to Cradle Business Case/ Andrea Herrera/ [email protected] / University of Twente/ Dec 2012 Cradle to Cradle Business Case Part 1 Cradle to Cradle Theory Part 2 Cradle to Cradle Implementation implementation Environment Description process Leolux Staco Part 3 Van Houtum Comparison Leolux Staco Van Houtum Cradle to Cradle Business Case/ Andrea Herrera/ [email protected] / University of Twente/ Dec 2012 Cradle to Cradle Business Case Part 1 Cradle to Cradle Theory Cradle to Cradle Implementation process Cradle to Cradle Business Case/ Andrea Herrera/ [email protected] / University of Twente/ Dec 2012 Cradle to Cradle Theory review Philosophy Principles Application tools 1. Waste equals food: Roadmaps Improving product quality nutrients become nutrients Defined Use Pathways by moving from being again 2. Use current solar income: 'less bad' (eco-efficiency) Design for Assembly, use renewable sources to becoming 'good' (eco- Disassembly and Reverse powered by sun effectiveness) Logistics 3. Celebrate diversity: biodiversity, cultural Preferred Ingredients Lists diversity and conceptual (P-Lists) diversity Cradle to Cradle Business Case/ Andrea Herrera/ [email protected] / University of Twente/ Dec 2012 Cradle to Cradle Theory: Cradle to
  • Genetic Algorithm Optimization of Product Design for Environmental Impact Reduction

    Genetic Algorithm Optimization of Product Design for Environmental Impact Reduction

    GENETIC ALGORITHM OPTIMIZATION OF PRODUCT DESIGN FOR ENVIRONMENTAL IMPACT REDUCTION JULIROSE GONZALES THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY FACULTY OF ENGINEERING UNIVERSITY OF MALAYA KUALA LUMPUR 2018 ABSTRACT The growing environmental awareness of today’s consumers has put the manufacturing companies with the burden of taking responsibility for their own product’s environmental impact. This incited the need to develop product management systems which focus on minimizing a product’s impact across its life cycle. However, a survey conducted on Malaysian design companies suggests that there are no systems available for them to include environmental considerations in their product design processes. This dissertation presents a study on product design optimization which focuses on the inclusion of the potential environmental impact in the design consideration. The aim of this research is to develop a methodology that will aid designers to reduce the potential environmental impact of a product’s design, which does not require them to train additional skills in environmental impact analysis. Analysis of the effect of changing the product design parameters such as its dimensions, and basic features on the environmental impact of machining process in terms of its power consumption, waste produced and the chemicals and other consumables used up during the process is the key method in this research. A novel feature-based product design methodology based on an integrated CAD-LCA approach is developed which analyzes a product design’s environmental impact. Genetic Algorithm is applied to the product design parameters to create a feedback system in order to get the best possible product design solutions with the least environmental impact within the product design functionality limitation.
  • Design for Manufacture and Assembly (Dfma) in Construction: the Old and the New Weisheng Lu1, Tan Tan2*, Jinying Xu3, Jing Wang4, Ke Chen5, Shang Gao6, and Fan Xue7

    Design for Manufacture and Assembly (Dfma) in Construction: the Old and the New Weisheng Lu1, Tan Tan2*, Jinying Xu3, Jing Wang4, Ke Chen5, Shang Gao6, and Fan Xue7

    Design for Manufacture and Assembly (DfMA) in construction: the old and the new Weisheng Lu1, Tan Tan2*, Jinying Xu3, Jing Wang4, Ke Chen5, Shang Gao6, and Fan Xue7 This is a copy of the peer-reviewed Accepted Manuscript of the paper: Lu, W., Tan, T., Xu, J., Wang, J., Chen, K., Gao, S. & Xue, F. (2020). Design for Manufacture and Assembly (DfMA) in construction: The old and the new. Architectural Engineering and Design Management, in press. Doi: 10.1080/17452007.2020.1768505 This document is available for personal and non-commercial use only, as permitted by Taylor & Francis Group’s Architectural Engineering and Design Management. The final version is available online: http://www.tandfonline.com/10.1080/17452007.2020.1768505 5 6 Abstract 7 Design for manufacture and assembly (DfMA) has become a buzzword amid the global 8 resurgence of prefabrication and construction industrialization. Some argued that DfMA is 9 hardly new, as there are concepts such as buildability, lean construction, value management, 10 and integrated project delivery in place already. Others believe that DfMA is a new direction 11 to future construction. This paper aims to review the development of DfMA in manufacturing 12 and its status quo in construction, and clarify its similarities and differences to other concepts. 13 A multi-step research method is adopted in this study: First, an analytical framework is 14 generated; Secondly, a literature review is conducted on DfMA in general, and DfMA-like 15 concepts in the AEC industry; The third step is to compare DfMA with related concepts. This 16 study reveals that DfMA as a philosophy is hardly new in construction, and the empirical 17 implementation of many DfMA guidelines has begun in the AEC industry.
  • Design for Human Safety in Manufacturing Systems

    Design for Human Safety in Manufacturing Systems

    Design for human safety in manufacturing systems: applications of design theories, methodologies, tools and techniques Leyla Sadeghi, Jean-Yves Dantan, Ali Siadat, Jacques Marsot To cite this version: Leyla Sadeghi, Jean-Yves Dantan, Ali Siadat, Jacques Marsot. Design for human safety in manu- facturing systems: applications of design theories, methodologies, tools and techniques. Journal of Engineering Design, Taylor & Francis, 2016, 27 (12), pp.844-877. 10.1080/09544828.2016.1235262. hal-01394720 HAL Id: hal-01394720 https://hal.archives-ouvertes.fr/hal-01394720 Submitted on 9 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Design for human safety in manufacturing systems: applications of design theories, methodologies, tools and techniques Leyla Sadeghia, Jean-Yves Dantana, Ali Siadata and Jacques Marsotb aLaboratory of Design, Manufacturing and Control (LCFC), Arts et Métiers ParisTech, Metz, France; bFrench National Research and Safety Institute (INRS), Vandoeuvre-les-Nancy, France ABSTRACT During recent decades, there has been growing awareness of human safety in the design process. The purpose of this paper is to review the literature on design for human safety (DfHS) in manufacturing systems. To this end, a process for systematically reviewing DfHS studies was used.
  • Design for Manufacture and Assembly in Construction: a Review

    Design for Manufacture and Assembly in Construction: a Review

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335635445 Design for manufacture and assembly in construction: a review Article in Building Research and Information · December 2019 DOI: 10.1080/09613218.2019.1660608 CITATIONS READS 2 283 3 authors: Gao Shang Ruoyu Jin University of Melbourne London South Bank University 39 PUBLICATIONS 392 CITATIONS 85 PUBLICATIONS 642 CITATIONS SEE PROFILE SEE PROFILE Weisheng Lu The University of Hong Kong 197 PUBLICATIONS 3,587 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Changing cities View project Content analysis of construction documents using semantic similarity models View project All content following this page was uploaded by Ruoyu Jin on 07 September 2019. The user has requested enhancement of the downloaded file. Building Research & Information ISSN: 0961-3218 (Print) 1466-4321 (Online) Journal homepage: https://www.tandfonline.com/loi/rbri20 Design for manufacture and assembly in construction: a review Shang Gao, Ruoyu Jin & Weisheng Lu To cite this article: Shang Gao, Ruoyu Jin & Weisheng Lu (2019): Design for manufacture and assembly in construction: a review, Building Research & Information, DOI: 10.1080/09613218.2019.1660608 To link to this article: https://doi.org/10.1080/09613218.2019.1660608 Published online: 05 Sep 2019. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=rbri20
  • Place Title Here

    Place Title Here

    Using Cost Analysis as a Tool for Combining Design for Assembly and Design for Disassembly at the Early Stage of Sustainable Product Development Process Reza Memary Department of Manufacturing and Industrial Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia 81310 UTM Skudai, Malaysia. [email protected] Abstract costs. But, those methods that facilitate manufacturing, usually makes environmental problems. As a case in A model for Integration of Assembly and Disassembly point difficulties in disassembly and using toxic in Lifecycle Management is proposed and its efficiency materials are sizeable. In order to solve this problem, is evaluated using case studies. The feasibility of whole product life cycle should be considered during considering assembly and disassembly together in the product development process. way that End of Life Option gives the highest profit and promotes recycling profitability is investigated. 2 Literature Review Keywords; Design for Sustainability, Design for 2.1 Design for Assembly Assembly, Design for Disassembly, Life Cycle Management Design for Assembly is considering and resolving the possible problems in the assembly process at the 1 Introduction early stage of the design which can make sure the part will be assembled with high speed, low cost and productivity. Today, Environment is dealing with high amounts DFA is a kind of design method that can be used in of solid waste added to the earth. These wastes are two ways. First a tool for assembly analysis and making severe problems for earth. For instance, in second a guide for assembly design. 2001 Japan calculated that it was soon to run out of There are different Quantitative evaluation space for landfill so government passed a law which procedures design that mostly concentrates on added the cost of recycling home appliances to the evaluating the design and improving it using retail price.