Anatomical Study of the Facial Recess with Implications in Round Window Visibility for Cochlear Implantation: Personal Observations and Review of the Literature
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neuroanatomy Crash Course
Neuroanatomy Crash Course Jens Vikse ∙ Bendik Myhre ∙ Danielle Mellis Nilsson ∙ Karoline Hanevik Illustrated by: Peder Olai Skjeflo Holman Second edition October 2015 The autonomic nervous system ● Division of the autonomic nervous system …………....……………………………..………….…………... 2 ● Effects of parasympathetic and sympathetic stimulation…………………………...……...……………….. 2 ● Parasympathetic ganglia ……………………………………………………………...…………....………….. 4 Cranial nerves ● Cranial nerve reflexes ………………………………………………………………….…………..…………... 7 ● Olfactory nerve (CN I) ………………………………………………………………….…………..…………... 7 ● Optic nerve (CN II) ……………………………………………………………………..…………...………….. 7 ● Pupillary light reflex …………………………………………………………………….…………...………….. 7 ● Visual field defects ……………………………………………...................................…………..………….. 8 ● Eye dynamics …………………………………………………………………………...…………...………….. 8 ● Oculomotor nerve (CN III) ……………………………………………………………...…………..………….. 9 ● Trochlear nerve (CN IV) ………………………………………………………………..…………..………….. 9 ● Trigeminal nerve (CN V) ……………………………………………………................…………..………….. 9 ● Abducens nerve (CN VI) ………………………………………………………………..…………..………….. 9 ● Facial nerve (CN VII) …………………………………………………………………...…………..………….. 10 ● Vestibulocochlear nerve (CN VIII) …………………………………………………….…………...…………. 10 ● Glossopharyngeal nerve (CN IX) …………………………………………….……….…………...………….. 10 ● Vagus nerve (CN X) …………………………………………………………..………..…………...………….. 10 ● Accessory nerve (CN XI) ……………………………………………………...………..…………..………….. 11 ● Hypoglossal nerve (CN XII) …………………………………………………..………..…………...…………. -
Morphometry of Parietal Foramen in Skulls of Telangana Population Dr
Scholars International Journal of Anatomy and Physiology Abbreviated Key Title: Sch Int J Anat Physiol ISSN 2616-8618 (Print) |ISSN 2617-345X (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://saudijournals.com/sijap Original Research Article Morphometry of Parietal Foramen in Skulls of Telangana Population Dr. T. Sumalatha1, Dr. V. Sailaja2*, Dr. S. Deepthi3, Dr. Mounica Katukuri4 1Associate professor, Department of Anatomy, Government Medical College, Mahabubnagar, Telangana, India 2Assistant Professor, Department of Anatomy, Gandhi Medical College, Secunderabad, Telangana, India 3Assistant Professor, Department of Anatomy, Government Medical College, Mahabubnagar, Telangana, India 4Post Graduate 2nd year, Gandhi Medical College, Secunderabad, Telangana, India DOI: 10.36348/sijap.2020.v03i10.001 | Received: 06.10.2020 | Accepted: 14.10.2020 | Published: 18.10.2020 *Corresponding author: Dr. V. Sailaja Abstract Aims & Objectives: To study the prevalence, number, location and variations of parietal foramen in human skulls and correlate with the clinical significance if any. Material and Methods: A total of 45 skulls with 90 parietal bones were studied in the Department of Anatomy Govt medical college Mahabubnagar from osteology specimens in the academic year 2018-2019.Various parameters like unilateral or bilateral occurance or total absence of the parietal foramen, their location in relation to sagittal suture and lambda, their shape have been observed using appropriate tools and the findings have been tabulate. Observation & Conclusions: Out of total 45 skulls there were 64 parietal foramina in 90 parietal bones, with foramina only on right side in 10 skulls, only on left side in 7 skulls, bilaterally present in 23 skulls, total absence in 4 skulls and 1 foramen located in the sagittal suture. -
Morfofunctional Structure of the Skull
N.L. Svintsytska V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 Ministry of Public Health of Ukraine Public Institution «Central Methodological Office for Higher Medical Education of MPH of Ukraine» Higher State Educational Establishment of Ukraine «Ukranian Medical Stomatological Academy» N.L. Svintsytska, V.H. Hryn Morfofunctional structure of the skull Study guide Poltava 2016 2 LBC 28.706 UDC 611.714/716 S 24 «Recommended by the Ministry of Health of Ukraine as textbook for English- speaking students of higher educational institutions of the MPH of Ukraine» (minutes of the meeting of the Commission for the organization of training and methodical literature for the persons enrolled in higher medical (pharmaceutical) educational establishments of postgraduate education MPH of Ukraine, from 02.06.2016 №2). Letter of the MPH of Ukraine of 11.07.2016 № 08.01-30/17321 Composed by: N.L. Svintsytska, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor V.H. Hryn, Associate Professor at the Department of Human Anatomy of Higher State Educational Establishment of Ukraine «Ukrainian Medical Stomatological Academy», PhD in Medicine, Associate Professor This textbook is intended for undergraduate, postgraduate students and continuing education of health care professionals in a variety of clinical disciplines (medicine, pediatrics, dentistry) as it includes the basic concepts of human anatomy of the skull in adults and newborns. Rewiewed by: O.M. Slobodian, Head of the Department of Anatomy, Topographic Anatomy and Operative Surgery of Higher State Educational Establishment of Ukraine «Bukovinian State Medical University», Doctor of Medical Sciences, Professor M.V. -
ANATOMY of EAR Basic Ear Anatomy
ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age. -
Non Metric Traits of the Skull and Their Role in Anthropological Studies
Original article Non metric traits of the skull and their role in anthropological studies Kaur, J.1*, Choudhry, R.2, Raheja, S.3 and Dhissa, NC.4 1Doctor, Master of Science in Anatomy, Assistant Professor, Department of Anatomy, ESIC Dental College, Rohini, New Delhi 2Doctor, Master of Science in Anatomy, Ex Head of the Department of Anatomy, VMMC & Safdarjung Hospital, New Delhi 3Doctor, Master of Science in Anatomy, Professor, Department of Anatomy, Lady Hardinge Medical College, New Delhi 4Doctor, Master of Science in Anatomy, Associate Professor, Department of Anatomy, ESIC Dental College, New Delhi *E-mail: [email protected] Abstract Anthropological and paleoanthropological studies concerning the so called epigenetic cranial traits or non-metrical cranial traits have been increasing in frequency in last ten years. For this type of study, the trait should be genetically determined, vary in frequency between different populations and should not show age, sex and side dependency. The present study was conducted on hundred dry adult human skulls from Northern India. They were sexed and classified into groups of various non metrical traits. These traits were further studied for sexual and side dimorphism. None of the traits had shown statistically significant side dimorphism. Two of them (Parietal foramen and Exsutural mastoid foramen) however had shown statistically significant sexual dimorphism. Since the dimorphism is exhibited by very less number of traits, it can be postulated that these traits are predominantly under genetic control and can be effectively used for population studies. Keywords: double hypoglossal canal, epigenetic variants, non-metric cranial variants, supraorbital foramen, zygomaticofacial foramen. 1 Introduction 2 Material and methods Anthropological and paleoanthropological studies Hundred dry adult human skulls from Northern India, concerned with the epigenetic traits or non-metrical cranial having no deformity or fracture were examined. -
Morphometric Analysis of Stylomastoid Foramen Location and Its Clinical Importance
Dental Communication Biosc.Biotech.Res.Comm. Special Issue Vol 13 No 8 2020 Pp-108-111 Morphometric Analysis of Stylomastoid Foramen Location and its Clinical Importance Hemanth Ragav N V1 and Yuvaraj Babu K2* 1Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai- 600077, India 2Assistant Professor, Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai- 600077, India ABSTRACT The stylomastoid foramen is located between the styloid process and mastoid process of the temporal bone. Facial nerve and Stylomastoid branch of posterior auricular artery passes through this stylomastoid foramen. The facial nerve can be blocked at this stylomastoid foramen but it has high risk of nerve damage. For Nadbath facial nerve block, stylomastoid foramen is the most important site. Facial canal ends at this foramen and it is the important motor portion of this stylomastoid foramen. A total of 50 dry skulls from the Anatomy Department of Saveetha Dental College were studied to locate the position of the centre of the stylomastoid foramen with respect to the tip of mastoid process and the articular tubercle of the zygomatic arch by a digital vernier caliper. All measurements were tabulated and statistically analysed. In our study, we found the mean distance of stylomastoid foramen from mastoid processes 16.31+2.37 mm and 16.01+2.08 mm on right and left. Their range is 10.48-23.34 mm and 11.5-21.7 mm. The mean distance of stylomastoid foramen from articular tubercle is 29.48+1.91 mm and 29.90+1.62 mm on right and left. -
Atlas of the Facial Nerve and Related Structures
Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries. -
Dissection and Exposure of the Whole Course of Deep Nerves in Human Head Specimens After Decalcification
Hindawi Publishing Corporation International Journal of Otolaryngology Volume 2012, Article ID 418650, 7 pages doi:10.1155/2012/418650 Research Article Dissection and Exposure of the Whole Course of Deep Nerves in Human Head Specimens after Decalcification Longping Liu, Robin Arnold, and Marcus Robinson Discipline of Anatomy and Histology, University of Sydney, Anderson Stuart Building F13, Sydney, NSW 2006, Australia Correspondence should be addressed to Marcus Robinson, [email protected] Received 29 July 2011; Revised 10 November 2011; Accepted 12 December 2011 AcademicEditor:R.L.Doty Copyright © 2012 Longping Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The whole course of the chorda tympani nerve, nerve of pterygoid canal, and facial nerves and their relationships with surrounding structures are complex. After reviewing the literature, it was found that details of the whole course of these deep nerves are rarely reported and specimens displaying these nerves are rarely seen in the dissecting room, anatomical museum, or atlases. Dissections were performed on 16 decalcified human head specimens, exposing the chorda tympani and the nerve connection between the geniculate and pterygopalatine ganglia. Measurements of nerve lengths, branching distances, and ganglia size were taken. The chorda tympani is a very fine nerve (0.44 mm in diameter within the tympanic cavity) and approximately 54 mm in length. The mean length of the facial nerve from opening of internal acoustic meatus to stylomastoid foramen was 52.5 mm. -
The Role of Facial Canal Diameter in the Pathogenesis and Grade of Bell's Palsy
Braz J Otorhinolaryngol. 2017;83(3):261---268 Brazilian Journal of OTORHINOLARYNGOLOGY www.bjorl.org ORIGINAL ARTICLE The role of facial canal diameter in the pathogenesis and grade of Bell’s palsy: a study by high resolution ଝ computed tomography a a b a,∗ Onur Celik , Gorkem Eskiizmir , Yuksel Pabuscu , Burak Ulkumen , c Gokce Tanyeri Toker a Celal Bayar University, School of Medicine, Department of Otorhinolaryngology, Manisa, Turkey b Celal Bayar University, School of Medicine, Department of Radiology, Manisa, Turkey c Gelibolu State Hospital, Department of Otorhinolaryngology, Gelibolu, Turkey Received 20 February 2016; accepted 23 March 2016 Available online 29 April 2016 KEYWORDS Abstract Facial canal; Introduction: The exact etiology of Bell’s palsy still remains obscure. The only authenticated Facial nerve; finding is inflammation and edema of the facial nerve leading to entrapment inside the facial Bell’s palsy; canal. Idiopathic facial Objective: To identify if there is any relationship between the grade of Bell’s palsy and diameter paralysis; of the facial canal, and also to study any possible anatomic predisposition of facial canal for Computed Bell’s palsy including parts which have not been studied before. tomography Methods: Medical records and temporal computed tomography scans of 34 patients with Bell’s palsy were utilized in this retrospective clinical study. Diameters of both facial canals (affected and unaffected) of each patient were measured at labyrinthine segment, geniculate ganglion, tympanic segment, second genu, mastoid segment and stylomastoid foramen. The House- Brackmann (HB) scale of each patient at presentation and 3 months after the treatment was evaluated from their medical records. -
Damage to Taste (Otitis Media) Is Associated with Dysgeusia, Intensified Pain Experience and Weight Gain
DAMAGE TO TASTE (OTITIS MEDIA) IS ASSOCIATED WITH DYSGEUSIA, INTENSIFIED PAIN EXPERIENCE AND WEIGHT GAIN L.M. Bartoshuk1, F.A. Catalanotto1, V.B. Duffy2, H. Hoffman3, H. Logan1, V. Mayo1 and D.J. Snyder1,4 1University of Florida Smell & Taste Center, 2 Allied Health, University of Connecticut, 3NIDCD, 4Neuroscience, Yale University ABSTRACT METHODS DISCUSSION The chorda tympani taste nerve traverses the middle ear and may be damaged by Data analyzed are from a questionnaire study initiated in 1993. Lecture attendees (cumulative Dysgeusia and Strongest Oral Pain. Using anesthesia of taste nerves along with study of infections (otitis media). Lecture attendees (N=6984) answered questions (Have you total about 6500) were asked to provide demographic information (age, sex, height, weight) as well as patients with taste damage, we have hypothesized that loss of taste input releases inhibition ever suffered from middle ear infections? Do you ever have persistent salty, sweet, information about histories of otitis media and dysgeusia: producing phantom sensations as well as intensifying sensations evoked by some oral stimuli. sour, or bitter tastes in your mouth?) and reported height and weight. Analyses were The observation that dysgeusia (chronic taste sensations in the absence of stimulation) and Have you ever suffered from middle ear infections? done with multiple regression (controlling for sex and age). Those with histories of intensified oral pain are associated with a history of otitis media is consistent with the damage to (1) no, (2) yes, but not serious, (3) yes, required antibiotics more than once, otitis media reported more dysgeusia and had higher BMIs (weight corrected for taste inflicted by otitis media. -
The Prevalence and Morphometric Features of Mastoid Emissary Vein on Multidetector Computed Tomography G
Folia Morphol. Vol. 75, No. 4, pp. 448–453 DOI: 10.5603/FM.a2016.0021 O R I G I N A L A R T I C L E Copyright © 2016 Via Medica ISSN 0015–5659 www.fm.viamedica.pl The prevalence and morphometric features of mastoid emissary vein on multidetector computed tomography G. Demirpolat, E. Bulbul, B. Yanik Department of Radiology, Faculty of Medicine, Balıkesir University, Turkey [Received: 29 October 2015; Accepted: 17 December 2016] Background: The aim of the study was to evaluate the prevalence and morp- hometric features of mastoid emissary vein (MEV) on multidetector computed tomography (MDCT) scans, emphasize its clinical significance and review its surgical implications. Materials and methods: Cranial and temporal bone MDCTs of 248 patients (496 sides) were analysed by 2 radiologists. Mastoid foramen (MF) was defined on the 3 dimensional volume rendered (3DVR) images. The MF and mastoid emissary canal (MEC) were investigated in axial thin slices and the diameters of the largest MF and MEC were measured. Mean diameters of MF and MEC were determined. The number of the mastoid foramina was noted. Differences in MF prevalence by sex and side were evaluated. Results: The overall prevalence of MEC was 92.3%. It was observed in 91.5% of women and 93.3% of men. MEC was present on the right side in 84.7% and on the left side in 82.3% of temporal bones. The mean diameter of MF was 1.92 ± ± 1.02 mm on the right and 1.84 ± 0.98 mm on the left. In both sides the num- ber of the MF’s changed from absent to triple. -
Variations in the Morphology of Stylomastoid Foramen: a Possible Solution to the Conundrum of Unexplained Cases of Bell’S Palsy S.K
Folia Morphol. Vol. 80, No. 1, pp. 97–105 DOI: 10.5603/FM.a2020.0019 O R I G I N A L A R T I C L E Copyright © 2021 Via Medica ISSN 0015–5659 eISSN 1644–3284 journals.viamedica.pl Variations in the morphology of stylomastoid foramen: a possible solution to the conundrum of unexplained cases of Bell’s palsy S.K. Ghosh , R.K. Narayan Department of Anatomy, All India Institute of Medical Sciences, Phulwarisharif, Patna, Bihar, India [Received: 12 January 2020; Accepted: 2 February 2020] Background: Stylomastoid foramen is the terminal part of facial canal and is the exit gateway for facial nerve from skull base. We hypothesized that anatomical variations of this foramen could be a risk factor for the injury of facial nerve re- sulting in unilateral facial nerve paralysis or Bell’s palsy. Hence the present study was conducted to study the variations in size and shape of stylomastoid foramen in dry adult human skulls. Materials and methods: The study was conducted on 37 dry adult human skulls of unknown age and sex. High resolution images of the skulls under study were processed by ImageJ software and observations were undertaken. Results: Total eight variations of stylomastoid foramen were observed in terms of shape. The common variants were round, oval and square (present in 83.79% skulls on right side and 81.07% skulls on left side), whereas the rare variants were triangular, rectangular, serrated, bean-shaped and irregular. It was noted that stylomastoid foramen were associated with extensions (45.95% skulls) and also adjacent foramen (18.92% skulls).