69Th Annual Meeting Society of Vertebrate

Total Page:16

File Type:pdf, Size:1020Kb

69Th Annual Meeting Society of Vertebrate ISSN 0272-4634 September 2009 Society of Vertebrate Paleontology Society of Vertebrate Volume 29, Supplement to Number 3 Volume 69th Annual Meeting Paleontology Society of Vertebrate and Palaeontology of Vertebrate and the 57th Symposium Comparative Anatomy (SVPCA) University of Bristol Bristol, United Kingdom September 23-26, 2009 Program and Abstracts Vol. 29, Supplement to No. 3 September 2009 Wills Memorial 2 1/8” = 1/4 Mile Bristol/Precinct Map Building A4018, M5 junction 17 Badock Hall, Churchill Hall, Durdham Hall, Hiatt Baker Hall, KEY University Hall, Wills Hall Main Entrance to Sites Car Parks Traffic Flow Railway Station Victoria Rooms Burwalls via the Suspension Bridge A369, M5 junction 19 Bristol Marriott B3129 City Centre Hotel Avon Gorge Hotel to M32, M4 junction 19 (A38, A420, A421) Temple Meads Chemistry Building Broadmead Shopping Centre The Grand by Thistle Clifton Hill House Goldney Hall & Clifton Village DETAIL MAP Hotel Novotel Bristol Centre Bristol Temple Meads Railway Station Bristol Marriott A4 Royal Hotel A38, A420, M5 Bristol Airport Taunton, The South West Travelodge Bristol { Central Hotel SEE Bristol Hotel DETAIL MAP Hotel Ibis At-Bristol Bristol Centre Museum University of Bristol Vol. 29, Supplement to No. 3, September 2009 Vol. Poster Session III, (Friday) and thickening of the entire limb, reduction of the femoral medullary cavity, and distal SIGNIFICANT MID-LATITUDE ARIDITY IN THE MIDDLE MIOCENE OF EAST movement of the insertion point for the major limb retractor muscles. These patterns are AISA interpreted as indicative of an ontogenetic shift in locomotor strategy from more agile, LIU, Liping, Department of Geology, University of Helsinki, Helsinki, Finland; ERONEN, cursorial juveniles to a more graviportal adult condition. Taken together, cranial and Jussi, Department of Geology, University of Helsinki, Helsinki, Finland; FORTELIUS, hindlimb changes during the growth of Allosaurus suggest a shift in lifestyle from agile, Mikael, Department of Geology, University of Helsinki, Helsinki, Finland generalist juveniles to graviportal, specialist adults. The East Asian climate history during the Neogene is a complicated and contentious issue, in particular because of its bearing on the development of the East Asian monsoon and Poster Session II, (Thursday) Tibetan uplift chronology. Here we present a paleoprecipitaion analysis based on mean HISPANOMYS BIJUGATUS (RODENTIA, CRICETODONTINAE) FROM molar tooth height (hypsodonty) of large herbivorous mammals to investigate the spatial THE MIDDLE MIOCENE OF LA GRIVE-SAINT-ALBAN (FRANCE): pattern of climate zonation in East Asia during the middle Miocene. We show a generally BIOSTRATIGRAPHICAL IMPLICATIONS humid and uniform situation before the late middle Miocene, replaced by a mid-latitude arid LÓPEZ-ANTOÑANZAS, Raquel, Museo Nacional de Ciencias Naturales - CSIC , Madrid, belt from the late middle Miocene, into the earlier part of the late Miocene. These findings Spain; MEIN, Pierre, Université Claude Bernard - Lyon I, Villeurbanne , France are concordant with the global phenomena of the middle Miocene climate optimum and the subsequent cooling, and suggest that the predominant climate in East Asia for most of the La Grive-Saint-Alban is the name used to refer to various Upper Aragonian pits located Miocene was planetary rather than monsoonal. Our results support a late initiation of the on the territory of the municipality of Saint-Alban-de-Roche (Isère, France). All pits have East Asian summer monsoon, coincidentally with the beginning of eolian red clay deposition yielded micromammals, but remains of Hispanomys have been only recovered from La in the later late Miocene at 7-8 Ma. Grive L (pit Lechartier, with eight fissure-fillings numbered from L1 to L8) and La Grive M (pit Milliat). Two species of this genus have been identified at La Grive-Saint-Alban:H. bijugatus from La Grive L (fissures L3 and L5) and H. decedens from La Grive L (fissure L5 Poster Session III, (Friday) and maybe L7), La Grive M as well as from an unnamed fissure-filling.H. bijugatus shows ARE BIPEDOPUS, SEMIBIPEDOPUS, LACERTIPUS, NAVAHOPUS AND some of the typically primitive dental characters of the Aragonian species of Hispanomys, BRASILICHNIUM DISTINCT ICHNOGENERA? REEVALUATING JURASSIC such as the unreduced M3. However, it also presents progressive features: the absence of TRACKS FROM THE WESTERN USA labial and lingual cingula surrounding the upper and lower molar valleys respectively, the LOCKLEY, Martin, University of Colorado at Denver, Denver, CO, USA; TEDROW, Allen, increase of the number of roots on the second lower molar, and the lost of mesolophs on the Idaho Museum of Natural History , Pocatello, , ID, USA upper molars. All these characters are lacking in H. decedens. All in all, H. bijugatus appears as a relatively derived species with respect to the coeval congeneric species. The age of Bipedopus, Semibipedopus and Lacertipus are ichnogenera proposed for Lower Jurassic the different fissure-fillings of La Grive-Saint Alban is controversial. BecauseH. bijugatus vertebrate tracks from near Meeker, Colorado. The tracks, which occur in eolian facies and H. decedens are believed to be closely related species within the same lineage, the fact of the Navajo-Nugget Sandstone, are similar to the larger ichnogenus Navahopus and the that the former shows a more progressive dental morphology than the latter suggests that the smaller South American ichnogenus Brasilichnium. Both names are presently applied to unnamed fissure-filling from La Grive and La Grive M (withH. decedens only) are older tracks from the Navajo Sandstone in southern Utah. However, the former three names, with than La Grive L3 (with H. bijugatus only). The coexistence of the two species at La Grive potential priority, have never been used, nor have detailed comparisons been made between L5 may indicate an intermediate age for this locality. Should the extremely low percentage these ichnogenera. Diagnostic track features are evaluated in order to determine whether: of H. decedens in the sample from L7 not be due to “contamination”, this locality may be 1) the track names are valid, 2) the named ichnogenera differ from one another, 3) the older than La Grive L3 and L5. ichnogenera suggest diagnostic track makers. Preliminary results indicate that Lacertipus is valid and different from the other ichnogenera due to its tetradactyl elongate track shape and large manus (slight heteropody). It is of probable lepidosaur affinity, but very similar to Technical Session V, Wednesday 2:15 Dolichopodus from the Permian. Bipedopus and Semibipedopus are short, wide tetradactyl HOMOLOGY OF THE INFRAORBITAL BONES AND THE MONOPHYLY OF tracks with pes larger than manus (moderate heteropody). They differ only in the sporadic SEMIONOTIFORMES presence of the smaller manus track. So Bipedopus could be an extra-morphological variant LÓPEZ-ARBARELLO, Adriana, Bayerische Staatssammlung fuer Palaeontologie und of Semibipedopus caused by pes on manus overprinting, or the consistently faint manus Geologie, Munich, Germany traces may indicate a trackmaker placing very little body weight on forelimbs. In the latter case Semibipedopus is a fair descriptor. Brasilichnium and Navahopus have pes tracks very The monophyly of Semionotiformes (including the gars, semionotids and macrosemiids) similar to Bipedopus and Semibipedopus (and the Permian ichnogenera Chelichnus and its is supported by several characters, in particular the presence of anterior infraorbital bones, junior synonym Laoporus). Navahopus is larger than Brasilichnium but both have a small which constitute a unique synapomorphy of this group. The term ‘anterior infraorbitals’ manus (strong heteropody). All are of probable synapsid affinity, althoughNavahopus refers to the infraorbital bones placed anterior to the anterior border of the orbit (preorbitals, has also been attributed to a prosauropod. Clear differentiation of manus and pes track lacrimals, or antorbitals of other authors). Similarly, the ‘toothed infraorbitals’, placed morphology and heteropody in well-preserved specimens are crucial for differentiating between the antorbital and the anterior infraorbitals, constitute a synapomorphy of the these ichnogenera both within the Jurassic and in Mesozoic-Paleozoic comparisons. Distinct Lepisosteidae. Postorbitals and suborbitals, subinfraorbitals and postinfraorbitals, and a patterns of heteropody may help reliably differentiate ichnotaxa. jugal have been identified among the series of dermal bones associated with the infraorbital sensory canal in actinopterygians. However, the number of infraorbital bones is highly variable and individual homologies cannot be established. The association of each of these Romer Prize Session, Thursday 8:30 bones with particular neuromasts of the infraorbital line does not provide a valid criterion FUNCTIONAL SHIFTS DURING GROWTH IN THE LATE JURASSIC of homology because the number of neuromasts in this sensory canal is variable between THEROPOD DINOSAUR ALLOSAURUS: THE IMPLICATIONS OF species of the same genus, between specimens of the same species, and sometimes even ONTOGENETIC VARIATION between the left and right sides of the same specimen. Nonetheless, developmental studies LOEWEN, Mark, University of Utah, Salt Lake City, UT, USA have shown that all the ossifications associated with the infraorbital line occur in connection with one or more neuromasts and through the same process. Therefore, serial homology can Paleobiological
Recommended publications
  • A New Insect Trackway from the Upper Jurassic—Lower Cretaceous Eolian Sandstones of São Paulo State, Brazil: Implications for Reconstructing Desert Paleoecology
    A new insect trackway from the Upper Jurassic—Lower Cretaceous eolian sandstones of São Paulo State, Brazil: implications for reconstructing desert paleoecology Bernardo de C.P. e M. Peixoto1,2, M. Gabriela Mángano3, Nicholas J. Minter4, Luciana Bueno dos Reis Fernandes1 and Marcelo Adorna Fernandes1,2 1 Laboratório de Paleoicnologia e Paleoecologia, Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil 2 Programa de Pós Graduacão¸ em Ecologia e Recursos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos (UFSCar), São Carlos, São Paulo, Brazil 3 Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 4 School of the Environment, Geography, and Geosciences, University of Portsmouth, Portsmouth, Hampshire, United Kingdom ABSTRACT The new ichnospecies Paleohelcura araraquarensis isp. nov. is described from the Upper Jurassic-Lower Cretaceous Botucatu Formation of Brazil. This formation records a gigantic eolian sand sea (erg), formed under an arid climate in the south-central part of Gondwana. This trackway is composed of two track rows, whose internal width is less than one-quarter of the external width, with alternating to staggered series, consisting of three elliptical tracks that can vary from slightly elongated to tapered or circular. The trackways were found in yellowish/reddish sandstone in a quarry in the Araraquara municipality, São Paulo State. Comparisons with neoichnological studies and morphological inferences indicate that the producer of Paleohelcura araraquarensis isp. nov. was most likely a pterygote insect, and so could have fulfilled one of the Submitted 6 November 2019 ecological roles that different species of this group are capable of performing in dune Accepted 10 March 2020 deserts.
    [Show full text]
  • Dinotracks.Indb 358 1/22/16 11:23 AM Dinosaur Tracks in Eolian Strata: New Insights Into Track Formation, Walking Kinetics and Trackmaker Behavior 18
    358 DinoTracks.indb 358 1/22/16 11:23 AM Dinosaur Tracks in Eolian Strata: New Insights into Track Formation, Walking Kinetics and Trackmaker Behavior 18 David B. Loope and Jesper Milàn Dinosaur tracks are abundant in wind-blown hooves of the bison deformed soft, laminated sediment – the Mesozoic deposits, but the nature of loose eolian sand perfect medium to preserve recognizable tracks. The next makes it difficult to determine how they are preserved. This windstorm buried the tracks. Today, the thick cover of grasses also raises the questions: Why would dinosaurs be walking protects the land surface so well that there are no soft, lami- around in dune fields in the first place? And, if they did go nated sediments for cattle to step on. And, if any tracks were, there, why would their tracks not be erased by the next wind somehow, to get formed, no moving sediment would be avail- storm? able to bury them. Mesozoic eolian sediments around the world, which have been the focus of a number of case studies Introduction in recent years, preserve the tracks of dinosaurs that walked on actively migrating sand dunes. This chapter summarizes Most dunes today form only in deserts and along shore- the known occurrences of dinosaur tracks in Mesozoic eo- lines – the only sandy land surfaces that are nearly devoid of lian strata and discusses their unique modes of preservation plants. Normally plants slow the wind at the ground surface and the anatomical and behavioral information about the enough that sand will not move even when the plant cover trackmakers that can be deduced from them.
    [Show full text]
  • Stegosaurian Footprints from the Morrison Formation of Utah and Their Implications for Interpreting Other Ornithischian Tracks Gerard D
    Stegosaurian footprints from the Morrison Formation of Utah and their implications for interpreting other ornithischian tracks Gerard D. Gierliński and Karol Sabath Polish Geological Institute, Rakowiecka 4, 00-975 Warsaw, Poland. e-mail: [email protected] ABSTRACT - The supposed stegosaurian track Deltapodus Whyte & Romano, 1994 (Middle Jurassic of England) is sauro- pod-like, elongate and plantigrade, but many blunt-toed, digitigrade, large ornithopod-like footprints (including pedal print cast associated with the manus of Stegopodus Lockley & Hunt, 1998) from the Upper Jurassic of Utah, better fit the stego- saurian foot pattern. The Morrison Formation of Utah yielded other tracks fitting the dryomorph (camptosaur) foot pattern (Dinehichnus Lockley et al., 1998) much better than Stegopodus. If the Stegopodus pedal specimen (we propose to shift the emphasis from the manus to the pes in the revised diagnosis of this ichnotaxon) and similar ichnites are proper stegosaur foot- prints, Deltapodus must have been left by another thyreophoran trackmaker. Other Deltapodus-like (possibly ankylosaurian) tracks include Navahopus Baird,1980 and Apulosauripus Nicosia et al., 1999. Heel-dominated, short-toed forms within the Navahopus-Deltapodus-Apulosauripus plexus differ from the gracile, relatively long-toed Tetrapodosaurus Sternberg, 1932, traditionally regarded as an ankylosaurian track. Thus, the original interpretation of the latter as a ceratopsian track might be correct, supporting early (Aptian) appearance of ceratopsians in North America. Isolated pedal ichnites from the Morrison Formation (with a single tentatively associated manus print, and another one from Poland) and the only known trackways with similar footprints (Upper Jurassic of Asturias, Spain) imply bipedal gait of their trackmakers. Thus, problems with stegosaur tracks possibly stem from the expectation of their quadrupedality.
    [Show full text]
  • The Anatomy and Phylogenetic Relationships of Antetonitrus Ingenipes (Sauropodiformes, Dinosauria): Implications for the Origins of Sauropoda
    THE ANATOMY AND PHYLOGENETIC RELATIONSHIPS OF ANTETONITRUS INGENIPES (SAUROPODIFORMES, DINOSAURIA): IMPLICATIONS FOR THE ORIGINS OF SAUROPODA Blair McPhee A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2013 i ii ABSTRACT A thorough description and cladistic analysis of the Antetonitrus ingenipes type material sheds further light on the stepwise acquisition of sauropodan traits just prior to the Triassic/Jurassic boundary. Although the forelimb of Antetonitrus and other closely related sauropododomorph taxa retains the plesiomorphic morphology typical of a mobile grasping structure, the changes in the weight-bearing dynamics of both the musculature and the architecture of the hindlimb document the progressive shift towards a sauropodan form of graviportal locomotion. Nonetheless, the presence of hypertrophied muscle attachment sites in Antetonitrus suggests the retention of an intermediary form of facultative bipedality. The term Sauropodiformes is adopted here and given a novel definition intended to capture those transitional sauropodomorph taxa occupying a contiguous position on the pectinate line towards Sauropoda. The early record of sauropod diversification and evolution is re- examined in light of the paraphyletic consensus that has emerged regarding the ‘Prosauropoda’ in recent years. iii ACKNOWLEDGEMENTS First, I would like to express sincere gratitude to Adam Yates for providing me with the opportunity to do ‘real’ palaeontology, and also for gladly sharing his considerable knowledge on sauropodomorph osteology and phylogenetics. This project would not have been possible without the continued (and continual) support (both emotionally and financially) of my parents, Alf and Glenda McPhee – Thank you.
    [Show full text]
  • 1 Uphill-Only Dinosaur Tracks? a Talking Rocks 2017 Participant
    1 Uphill-only Dinosaur Tracks? A Talking Rocks 2017 Participant Seeks Answers Robert T. Johnston Talking Rocks 2017 was a geology tour organized by Adventist pastor John McLarty and guided by Gerald Bryant, an Adventist geology professor at Dixie State University (St. George, UT) and an expert in the sedimentary geology of the area—in particular, the extensive sandstone outcrops of the geologic unit formally known as the Navajo Sandstone. I had the pleasure of participating in the first Talking Rocks tour last year and enjoyed the experience so much that I went again this year! Two other participants from 2016 also repeated. New participants included a mix of men and women of varied backgrounds and points of view on the age of the earth and “Flood geology”, and two children. Besides Bryant, none of us had formal geology backgrounds, but we were eager to learn more about geology and the intersection of faith and science. We converged on St. George, Utah, from where we traveled to various sites in Utah and northern Arizona. Places not visited last year included the Pine Valley Mountains, new sites in Snow Canyon, and a hike to what locals call the Vortex, an amazing area where a complex stack of ancient, trough-shaped dune deposits is dissected by the modern canyons. The topography features an enormous vortex-shaped “scour pit”1 at the top of a ridge, where sand grains loosened by weathering are removed by wind currents sweeping the landscape (Figure 1). Figure 1. Talking Rocks organizer John McLarty making his way into the Vortex, a weathered and eroded Navajo Sandstone feature north of St.
    [Show full text]
  • A Forgotten Collection of Vertebrate and Invertebrate Ichnofossils from the Nugget Sandstone (?Late Triassic-?Early Jurassic), Near Heber, Wasatch County, Utah
    181 Lockley, M.G. & Lucas, S.G., eds., 2014, Fossil footprints of western North America: NMMNHS Bulletin 62 A FORGOTTEN COLLECTION OF VERTEBRATE AND INVERTEBRATE ICHNOFOSSILS FROM THE NUGGET SANDSTONE (?LATE TRIASSIC-?EARLY JURASSIC), NEAR HEBER, WASATCH COUNTY, UTAH DANIEL J. CHURE1, THOMAS ROGER GOOD2 AND GEORGE F. ENGELMANN3 1Dinosaur National Monument, Box 128, Jensen UT 84035 U.S.A. [email protected]; 2Department of Geology and Geophysics, Frederick Albert Sutton Build- ing, University of Utah, 115 S 1460 East, Salt Lake City, UT 84112 U.S.A. [email protected]; 3Department of Geography and Geology, University of Nebraska, Omaha, NE 68182 U.S.A. [email protected]; Abstract—In the University of Utah Ichnology Collection we have located a small collection of ichnofossils from the Nugget Sandstone that was part of an unpublished Master’s thesis by Sheryl Albers. This historically significant collection, which was made from an active stone quarry, includes invertebrate and vertebrate traces, both as latex molds of specimens and actual fossils. These specimens allow a description of all the ichnofossils from the Heber quarry, based on both museum specimens and field photos of uncollected fossils. The ichnofauna is typical of late Paleozoic and Mesozoic eolian dune slipface paleoenvironrnents. Most of the vertebrate traces are referable to Brasilichnium, with the exception of three rare lacertoid trackways, one of which preserves excellent detail. Invertebrate trackways are referable to both Paleohelcura and Octopodichnus. A few Entradichnus burrows are present. The abundance of trace fossils and closely spaced invertebrate and vertebrate traces with parallel orientation and the same direction of travel on the same bedding surface is unusual in the Nugget Sandstone and suggests that further examination of the Nugget exposures in the Heber area might prove fruitful.
    [Show full text]
  • Sauropod Tracks in the Early Jurassic of Poland
    Sauropod tracks in the Early Jurassic of Poland GERARD cIpnuŃsru Gierliński, G. 1991. Sauropod tracks in the Early Jurassic of Poland. - Acta Palaeonto- logica P olonica 42, 4, 533-538. After the discovery of Early Jurassic sauropod tracks in northern Italy, Polish Liassic strata revealed a second comparably early record of sauropod footpńnts in Europe. In comparison with thę Italian material, described tracks seem to be left by juvenile or small primitive sauropods,presumably 4.4 m and 5.5 m long. Key w o rd s: Sauropoda,tracks, Early Jurassic,Poland. Gerard Gierliński, Geological Museum of the Polish Geological Institute, ul. Rako- wiecka 4, PL-00-975 Warszawa, Poland. Introduction The specimensreported herein are the first sauropodomorphtracks discoveredin the Liassic deposits of the Holy Cross Mountains, central Poland, thus adding to the previous ichnological record of theropods and ornithischians in that region (e.9., Gierliński 1991, 1995b, 1996).Footprints were found in June of 1997, on two fallen slabs of thę yellowish gray,fine-grained sandstone, below the exposurelocated along Kamionka River, in Gromadzice (5 km southof the town of ostrowiec Swiętokrzyski). The possible track-bearingstrata represent early Hettangianfluvial plain deposits of the Zagaje Formation, and/or the middle Hettangian deltaic plain deposits of the SkłobyFormation (G. Pienkowski personalcommunication; see Pieńkowski 1991for generalgeological data). Description The specimen Muz. PIG 1560.II.60(Fig. 1,Ą) comprises a trackway fragment, naturalcasts of the left and the right pes-manusset. Cast of the left pes impression is broken,being incompleteposteriorly. Trackway Seemsto be nźIffow-gaugeSensu Farlow (1992).Ratio of pace length (measuredbętween the most anteriorpoints of 534 Sauropod trącks: GIERLŃSKI A - Fig.
    [Show full text]
  • The Late Triassic Sauropod Track Reconrd Comes Into Focus: Old Legacies and New Paradigms Martin G
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/52 The Late Triassic sauropod track reconrd comes into focus: Old legacies and new paradigms Martin G. Lockley, Joanna L. Wright, Adrian P. Hunt, and Spencer G. Lucas, 2001, pp. 181-190 in: Geology of Llano Estacado, Lucas, Spencer G.;Ulmer-Scholle, Dana; [eds.], New Mexico Geological Society 52nd Annual Fall Field Conference Guidebook, 340 p. This is one of many related papers that were included in the 2001 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • An Inventory of Non-Avian Dinosaurs from National Park Service Areas
    Lucas, S.G. and Sullivan, R.M., eds., 2018, Fossil Record 6. New Mexico Museum of Natural History and Science Bulletin 79. 703 AN INVENTORY OF NON-AVIAN DINOSAURS FROM NATIONAL PARK SERVICE AREAS JUSTIN S. TWEET1 and VINCENT L. SANTUCCI2 1National Park Service, 9149 79th Street S., Cottage Grove, MN 55016 -email: [email protected]; 2National Park Service, Geologic Resources Division, 1849 “C” Street, NW, Washington, D.C. 20240 -email: [email protected] Abstract—Dinosaurs have captured the interest and imagination of the general public, particularly children, around the world. Paleontological resource inventories within units of the National Park Service have revealed that body and trace fossils of non-avian dinosaurs have been documented in at least 21 National Park Service areas. In addition there are two historically associated occurrences, one equivocal occurrence, two NPS areas with dinosaur tracks in building stone, and one case where fossils have been found immediately outside of a monument’s boundaries. To date, body fossils of non- avian dinosaurs are documented at 14 NPS areas, may also be present at another, and are historically associated with two other parks. Dinosaur trace fossils have been documented at 17 NPS areas and are visible in building stone at two parks. Most records of NPS dinosaur fossils come from park units on the Colorado Plateau, where body fossils have been found in Upper Jurassic and Lower Cretaceous rocks at many locations, and trace fossils are widely distributed in Upper Triassic and Jurassic rocks. Two NPS units are particularly noted for their dinosaur fossils: Dinosaur National Monument (Upper Triassic through Lower Cretaceous) and Big Bend National Park (Upper Cretaceous).
    [Show full text]
  • Jurassic Tetrapod Footprint Ichnofaunas and Ichnofacies of the Western Interior, USA
    Volumina Jurassica, 2014, Xii (2): 133–150 Doi: 10.5604/17313708 .1130134 Jurassic tetrapod footprint ichnofaunas and ichnofacies of the Western Interior, USA Martin LOCKLEY1, Gerard GIERLINSKI2 Key words: Jurassic, footprints, ichnofacies, dinosaurs, pterosaurs, Western Interior. Abstract. The Jurassic tetrapod track record of the Western Interior, USA, is one of the most diverse, complete and well-studied in the world, spanning a relatively continuous representation of Lower, Middle and Upper Jurassic formations. Although a few of these forma- tions, notably the Morrison Formation, have yielded abundant body fossils, the majority lack abundant skeletal remains and, while track- rich, are in some cases completely barren of body fossils. Thus, the track record assumes great importance as the most complete and repre- sentative record of changing tetrapod faunas through time in a region where the body fossil record is often sparse or absent. In the Lower and Middle Jurassic, many distinctive assemblages are associated with eolian units (Wingate, Navajo and Entrada) that are almost devoid of body fossils. However, the former two units are rich in synapsid tracks characterized as the Brasilichnium ichnofacies. In the Middle Jurassic, fluctuating sea-levels exerted important controls on the distribution of theropod and pterosaur-dominated ichnofaunas associated with coastal plain and marginal marine settings. The Morrison ichnofauna is a reliable reflection of the body fossil record of that formation. Ongoing efforts to group and classify the various tetrapod ichnofaunas into tetrapod ichnofacies and tetrapod biochron categories have, in some cases, provoked stimulating, if sometimes inconclusive, debate. INTRODUCTION widespread evidence of life in the various eolian and mar- ginal marine paleoenvironments that prevailed throughout The Jurassic of the Western Interior of the USA is histori- much of the Early and Middle Jurassic.
    [Show full text]
  • Crouching Theropod and Navahopus Sauropodomorph Tracks from the Early Jurassic Navajo Sandstone of USA
    Crouching theropod and Navahopus sauropodomorph tracks from the Early Jurassic Navajo Sandstone of USA Jesper Milàn, David B. Loope, and Richard G. Bromley Acta Palaeontologica Polonica 53 (2), 2008: 197-205 doi:http://dx.doi.org/10.4202/app.2008.0203 Numerous tracks and trackways are preserved in the a cross−strata of the Lower Jurassic Navajo Sandstone of northern Arizona and southern Utah, USA. Tracks and trackways of small theropod dinosaurs are particularly abundant within one 10−m−thick interval. This paper describes a crouching trace from a theropod dinosaur that shows impressions of all four limbs, the ischial callosity, the tail, and tracks leading to and away from the crouching site, and revises the interpretation of a well preserved trackway hitherto referred to the synapsid ichnogenus Brasilichnium and here considered to be from a sauropodomorph dinosaur. It is named Navahopus coyoteensis isp. nov. on the basis of morphological differences from the type ichnospecies N. falcipollex. The ichnofamily Navahopodidae is revised to include Tetrasauropous unguiferus, Navahopus falcipollex, and N. coyoteensis. Key words: Navahopus, Navahopodidae, Sauropodomorpha, Theropoda, ichnology, locomotory habits, crouching trace Jesper Milàn [[email protected]] and Richard G. Bromley [[email protected]], Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK−1350 Copenhagen K, Denmark; David B. Loope [[email protected]], Department of Geosciences, University of Nebraska, Lincoln, NE 68588−0340, Lincoln, Nebraska, USA. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see creativecommons.org), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Cidarisrevista Ilicitana De Paleontología Y Mineralogía
    CidarisRevista Ilicitana de Paleontología y Mineralogía DIRECCIÓN José Manuel Marín Ferrer REFERENCIA DE ESTE VOLUMEN Fortuny, J., Sellés, A.G., Valdiserri, D. y Bolet, A. EDITOR y DISEÑO (2010): New tetrapod footprints from the Per- Francisco Vives Boix mian of the Pyrenees (Catalonia, Spain). Preli- minar results. En: Moreno-Azanza, M., Díaz- SECRETARIO Matínez, I., Gasca, J.M., Melero-Rubio, M., Antonio Ródenas Maciá Rabal-Garcés, R. y Sauqué, V. (coords). Cidaris, número 30, VIII Encuentro de Jóvenes Investiga- COORDINACIÓN DE ESTE dores en Paleontología, volúmen de actas, 121-124 NÚMERO Miguel Moreno-Azanza, Ignacio Díaz-Martínez, José Manuel Gasca, María Melero-Rubio, Raquel Rabal Garcés, Victor Sauqué Latas. COMITÉ EDITORIAL Diego Castanera Andrés, Rubén Contreras Izquierdo, Ignacio Díaz-Martínez, José Manuel Gasca, Esperanza García-Ortiz de Landaluce, María Melero- Rubio, Silvia Mielgo Gállego, Miguel Moreno-Azanza, Raquel Rabal Garcés, Victor Sauqué Portada: Latas. Logotipo del VIII Encuentro de JóVenes InVestigado- res en Paleontología. Contorno de dos icnitas terópoda MAQUETACIÓN y ornitópoda de La Rioja. Superposición inspirada en Miguel Moreno-Azanza El Hombre de VitruVio de Leonardo da Vinci. Raquel Rabal Garcés Autor: José Manuel Gasca" Silvia Mielgo Gallego IMPRIME Imprenta Segarra Sánchez, s.l. Dep. Legal: A-738-1993 I. S. S. N.: 1134-5179 © Grupo Cultural Paleontológico de Elche CORRESPONDENCIA Cidaris Grupo Cultural Paleontológico de Elche Museo Paleontológico de Elche Apdo. 450 Elche (Alicante) España www.cidarismpe.org E-mail: [email protected] III Cidaris Revista Ilicitana de Paleontología y Mineralogía Preside Dr. Félix Pérez-Lorente UNIVERSIDAD DE LA RIOJA.ESPAÑA COMITÉ CIENTÍFICO Dr. José Antonio Arz UNIVERSIDAD DE ZARAGOZA.
    [Show full text]