Evolution of the Pectoral Girdle and Forelimb in Sauropodomorpha (Dinosauria, Saurischia): Osteology, Myology and Function

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Pectoral Girdle and Forelimb in Sauropodomorpha (Dinosauria, Saurischia): Osteology, Myology and Function EVOLUTION OF THE PECTORAL GIRDLE AND FORELIMB IN SAUROPODOMORPHA (DINOSAURIA, SAURISCHIA): OSTEOLOGY, MYOLOGY AND FUNCTION von Dipl.-Geol. Kristian Remes Dissertation der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München zur Erlangung des Doktorgrades (Dr. rer. nat.) Eingereicht zur Beurteilung am 06.12.2007 Betreuer: PD Dr. Oliver Rauhut, Ludwig-Maximilians-Universität München Zweitgutachter: Prof. Dr. Martin Sander, Rheinische Friedrich-Wilhelms-Universität Bonn Datum der mündlichen Prüfung: 21.04.2008 温子、真摯な支えとその愛に。 REMES Sauropodomorph forelimb evolution 5 0 Contents 0 Contents __________________________________________________ 5 Anatomical abbreviations 9 Institutional abbreviations 12 1 Introduction ______________________________________________ 14 2 Material and Methods ______________________________________ 24 3 A review of archosaurian forelimb musculature: The fundament for reconstructions in extinct taxa _______________ 34 Introduction 34 General theoretical aspects of phylogenetic inference of musculature 35 Variation and the choice of extant sample taxa 37 Archosaurian forelimb myology 39 I. Cingulo-axial muscles 41 1. M. cucullaris (C) 41 2. M. rhomboideus (R) 43 3. M. levator scapulae (LS) 45 4. M. serratus superficialis (SS) 47 5. M. serratus profundus (SP) 50 6. M. costocoracoideus (CC) 52 7. M. sternocoracoideus (StC) 54 II. Humeral muscles 56 8. M. deltoideus scapularis (DS) 56 9. M. deltoideus clavicularis (DC) 57 10. M. coracobrachialis (CB) 61 11. M. supracoracoideus (SC) 63 12. M. pectoralis (P) 66 13. M. latissimus dorsi (LD) 69 14. M. teres major (TM) 71 15. Mm. scapulohumerales (SH) 73 16. M. subcoracoscapularis (SCS) 75 III. Antebrachial muscles 79 17. M. triceps brachii (TB) 79 18. M. biceps brachii (BB) 84 19. M. humeroradialis (HR) 87 20. M. brachialis (B) 88 21. M. supinator (S) 91 6 Sauropodomorph forelimb evolution REMES 22. M. abductor radialis (AR) 92 23. M. ectepicondylo-ulnaris (EctU) 94 24. M. pronator teres (PT) 95 25. M. entepicondylo-ulnaris (EntU) 98 26. M. pronator quadratus (PQ) 99 IV. Manual muscles 101 a) Antebrachial musculature acting on the hand 101 27. M. extensor carpi radialis (ECR) 102 28. M. extensor carpi ulnaris (ECU) 103 29. M. supinator manus (SM) 106 30. M. extensor digitorum communis (EDC) 108 31. M. flexor carpi radialis (FCR) 110 32. M. flexor carpi ulnaris (FCU) 111 33. M. flexor digitorum longus (FDL) 112 b) Intrinsic musculature of the hand 115 34. Mm. extensores digitorum superficiales (EDS) 115 35. Mm. extensores digitorum profundi (EDP) 118 36. M. abductor pollicis brevis (APB) 120 37. M. abductor digiti V (AD5) 121 38. Mm. flexores digitorum superficiales (FDS) 121 39. M. flexor pollicis brevis (FPB) 123 40. M. flexor digiti V (FD5) 125 41. Mm. lumbricales (L) 127 42. Mm. flexores digitorum profundi (FDP) 128 43. Mm. interossei (I) 130 Conclusions 131 4 Forelimb anatomy of basal archosaurs and ornithodirans: Facts and Fictions _______________________________________ 133 Introduction 133 Data quality 133 Anatomy 137 Basal Archosauria: Euparkeria capensis 137 Basal Dinosauriformes: Lewisuchus admixtus 143 Comments on other forms 146 Muscle reconstructions 148 Euparkeria 149 Lewisuchus 153 Discussion 154 Conclusions 159 REMES Sauropodomorph forelimb evolution 7 5 Structure and function of the forelimb in basal saurischians and early theropods _______________________________________ 161 Introduction 161 Anatomy 163 Basal saurischians 163 Basal theropods 177 Basal ornithischians 181 Muscle reconstructions 183 Discussion 194 Shoulder region 194 Arm 195 Manus 199 Body proportions 201 Conclusions 203 6 The pectoral girdle and forelimb of basal sauropodomorphs: Anatomy and functional interpretation _______________________ 204 Introduction 204 Anatomy 206 Saturnalia tupiniquim 206 Other basal sauropodomorphs 209 Muscle reconstructions 215 Saturnalia 215 Efraasia 218 Discussion 220 Conclusions 223 7 ‘Prosauropod’ forelimb anatomy and the transition to Sauropoda _ 224 Introduction 224 Anatomy 226 Non-sauropod sauropodomorphs 227 Antetonitrus ingenipes and other stem-sauropods 236 Muscle reconstructions 243 Discussion 246 Osteology and bauplan 246 Myology 252 Conclusions 255 8 Sauropodomorph forelimb evolution REMES 8 Functional morphology of the pectoral girdle and forelimb in basal sauropods _______________________________________ 257 Introduction 257 Data quality 258 Anatomy 264 Patagosaurus and other non-mamenchisaurid basal sauropods 264 Mamenchisauridae 275 Muscle reconstructions 276 Discussion 281 Osteology and bauplan 281 Myology 287 Conclusions 291 9 Forelimb evolution in sauropodomorphs: Combining functional morphology and phylogeny ____________ 293 Introduction 293 Phylogeny 293 Evolutionary transformations 297 Pectoral girdle 297 Humerus 304 Elbow joint 308 Antebrachium 313 Manus 313 Conclusions 316 10 Summary _______________________________________________ 320 Acknowledgements 322 11 Bibliography_____________________________________________ 323 Appendix: Myological overview _______________________________ 349 Lebenslauf (Curriculum vitae)__________________________________ 353 REMES Sauropodomorph forelimb evolution 9 Anatomical abbreviations Osteology ac accessory distal condyles on fcm craniomedial fossa of coracoid humerus fmc facet for M. cucullaris acr acromion fmcb fossa for M. coracobrachialis adp apex of deltopectoral crest (brevis) ar acromial ridge fmdc facet for M. deltoideus ambb attachment of M. biceps clavicularis brachii fmds fossa for M. deltoideus ameu attachment of M. scapularis entepicondylo-ulnaris fmeu facet for M. ectepicondylo- amhr attachment of M. ulnaris humeroradialis fmfdl facet for origin of M. flexor amsc attachment of M. supracora- digitorum longus coideus fmfdp fossa for M. flexor digitorum amtb attachment of M. triceps profundus brachii fmpq fossa for M. pronator amtbc attachment of coracoidal quadratus anchor of M. triceps brachii fmsc fossa for M. supracoracoideus caput coracoscapulare (pars scapularis) bt biceps tubercle on coracoid fmscs fossa for M. subcoracoideus ccl contact for clavicle fmsh fossa(e) for M. cdp caudodistal process on scapulohumeralis scapula fmsm facet for M. supinator manus cdr distal condyle of radius fmsp facet for M. serratus profundus cdu distal condyle of ulna fmss facet for M. serratus ce centrale superficialis cf caudal flange on scapular fmssc facet for M. subscapularis blade fmtbh facet(s) for M. triceps brachii chr humeral cotyle of radius capiti humerales mediales chu humeral cotyle of ulna fmtbhm facet for M. triceps brachii cid caudal intercondylar caput humerale mediale depression fr radial fossa on ulna cl clavicle ft flexor tubercle cne centrale fvm ventromedial fossa of coracoid co coracoid gl glenoid cavity cocp caudal process of coracoid h humerus cof coracoid foramen hh humeral head cp cranial process of ulna hlt lateral tubercle of humerus cpt caudoproximal tubercle of hmt medial tuberosity of humerus radius hrc radial condyle of humerus crdt craniodistal tubercle of radius huc ulnar condyle of humerus crp craniodistal process on i intermedium scapula icb impressio m. coracobrachialis crr cranial ridge on radius icl interclavicle dc distal carpal(s) imr intermuscular ridge(s) dcr dorsocranial ridge on lepc ectepicondyle humerus lfmc lateral flange(s) of de distal expansion of scapula metacarpal(s) did dorsal intercondylar lp lateral process of ulna depression m manus dp deltopectoral crest mc metacarpal drc distal radial condyle mcdc metacarpal distal condyles ep extensor pit(s) mcep metacarpal extensor pit(s) et extensor tubercle(s) mclp metacarpal ligament pit(s) fc caudal facet on ulna mepc entepicondyle ol olecranon process 10 Sauropodomorph forelimb evolution REMES pcs processus sternocoracoidei ph phalanx, phalanges plp phalangeal ligament pit(s) pi pisiform pua proximal ulnar articular facet of radius r radius rae radiale rcp radial caudoproximal process rcr radial cotyle of radiale rct radial cranioproximal tubercle rnsc recessus for N. supracoracoideus rt radial tubercle (= tmb?) rup radial ulnar process sa sternocoracoidal articulation sc scapula sca scapulocoracoidal articulation scb scapular blade sch scapular head scs scapulocoracoidal suture sgb supraglenoidal buttress sgf subglenoidal fossa on coracoid smld scar for M. latissimus dorsi ssc suprascapula ssca suprascapular articulation ste sternum stp sternal plate tmb tubercle for M. brachialis tmbb tubercle for M. biceps brachii tmtbs tubercle for M. triceps brachii caput scapulare ua ulnar articular facet on radius ucu ulnar cotyle of ulnare ul ulna ule ulnare un ungual(s) urt ulnar radial tubercle vip ventral intercondylar pit REMES Sauropodomorph forelimb evolution 11 Myology AD5 M. abductor digiti V LDcran M. latissimus dorsi cranialis AdA M. adductor alulae LS M. levator scapulae ADM M. abductor digiti majoris LSHL Lig. scapulohumerale laterale AP M. abductor pollicis LSSI Lig. Sternoscapulare AR M. abductor radialis internum B M. brachialis P M. pectoralis BB M. biceps brachii PA palmar aponeurosis C M. cucullaris PQ M. pronator quadratus CB M. coracobrachialis PT M. pronator teres CBbrev M. coracobrachialis brevis PT1 M. pronator superficialis CBcran M. coracobrachialis cranialis PT2 M. pronator profundus CBlong M. coracobrachialis longus R M. rhomboideus CC M. costocoracoideus S M. supinator CCprof M. costocoracoideus SC M. supracoracoideus profundus SCcor M. supracoracoideus pars CCsup M. costocoracoideus coracoideus superficialis SCscap M. supracoracoideus pars DC M. deltoideus
Recommended publications
  • MADAGASCAR: the Wonders of the “8Th Continent” a Tropical Birding Custom Trip
    MADAGASCAR: The Wonders of the “8th Continent” A Tropical Birding Custom Trip October 20—November 6, 2016 Guide: Ken Behrens All photos taken during this trip by Ken Behrens Annotated bird list by Jerry Connolly TOUR SUMMARY Madagascar has long been a core destination for Tropical Birding, and with the opening of a satellite office in the country several years ago, we further solidified our expertise in the “Eighth Continent.” This custom trip followed an itinerary similar to that of our main set-departure tour. Although this trip had a definite bird bias, it was really a general natural history tour. We took our time in observing and photographing whatever we could find, from lemurs to chameleons to bizarre invertebrates. Madagascar is rich in wonderful birds, and we enjoyed these to the fullest. But its mammals, reptiles, amphibians, and insects are just as wondrous and accessible, and a trip that ignored them would be sorely missing out. We also took time to enjoy the cultural riches of Madagascar, the small villages full of smiling children, the zebu carts which seem straight out of the Middle Ages, and the ingeniously engineered rice paddies. If you want to come to Madagascar and see it all… come with Tropical Birding! Madagascar is well known to pose some logistical challenges, especially in the form of the national airline Air Madagascar, but we enjoyed perfectly smooth sailing on this tour. We stayed in the most comfortable hotels available at each stop on the itinerary, including some that have just recently opened, and savored some remarkably good food, which many people rank as the best Madagascar Custom Tour October 20-November 6, 2016 they have ever had on any birding tour.
    [Show full text]
  • The Braincase, Brain and Palaeobiology of the Basal Sauropodomorph Dinosaur Thecodontosaurus Antiquus
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2020, XX, 1–22. With 10 figures. Downloaded from https://academic.oup.com/zoolinnean/advance-article/doi/10.1093/zoolinnean/zlaa157/6032720 by University of Bristol Library user on 14 December 2020 The braincase, brain and palaeobiology of the basal sauropodomorph dinosaur Thecodontosaurus antiquus ANTONIO BALLELL1,*, J. LOGAN KING1, JAMES M. NEENAN2, EMILY J. RAYFIELD1 and MICHAEL J. BENTON1 1School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK 2Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK Received 27 May 2020; revised 15 October 2020; accepted for publication 26 October 2020 Sauropodomorph dinosaurs underwent drastic changes in their anatomy and ecology throughout their evolution. The Late Triassic Thecodontosaurus antiquus occupies a basal position within Sauropodomorpha, being a key taxon for documenting how those morphofunctional transitions occurred. Here, we redescribe the braincase osteology and reconstruct the neuroanatomy of Thecodontosaurus, based on computed tomography data. The braincase of Thecodontosaurus shares the presence of medial basioccipital components of the basal tubera and a U-shaped basioccipital–parabasisphenoid suture with other basal sauropodomorphs and shows a distinct combination of characters: a straight outline of the braincase floor, an undivided metotic foramen, an unossified gap, large floccular fossae, basipterygoid processes perpendicular to the cultriform process in lateral view and a rhomboid foramen magnum. We reinterpret these braincase features in the light of new discoveries in dinosaur anatomy. Our endocranial reconstruction reveals important aspects of the palaeobiology of Thecodontosaurus, supporting a bipedal stance and cursorial habits, with adaptations to retain a steady head and gaze while moving.
    [Show full text]
  • Studies on Continental Late Triassic Tetrapod Biochronology. I. the Type Locality of Saturnalia Tupiniquim and the Faunal Succession in South Brazil
    Journal of South American Earth Sciences 19 (2005) 205–218 www.elsevier.com/locate/jsames Studies on continental Late Triassic tetrapod biochronology. I. The type locality of Saturnalia tupiniquim and the faunal succession in south Brazil Max Cardoso Langer* Departamento de Biologia, FFCLRP, Universidade de Sa˜o Paulo (USP), Av. Bandeirantes 3900, 14040-901 Ribeira˜o Preto, SP, Brazil Received 1 November 2003; accepted 1 January 2005 Abstract Late Triassic deposits of the Parana´ Basin, Rio Grande do Sul, Brazil, encompass a single third-order, tetrapod-bearing sedimentary sequence that includes parts of the Alemoa Member (Santa Maria Formation) and the Caturrita Formation. A rich, diverse succession of terrestrial tetrapod communities is recorded in these sediments, which can be divided into at least three faunal associations. The stem- sauropodomorph Saturnalia tupiniquim was collected in the locality known as ‘Waldsanga’ near the city of Santa Maria. In that area, the deposits of the Alemoa Member yield the ‘Alemoa local fauna,’ which typifies the first association; includes the rhynchosaur Hyperodapedon, aetosaurs, and basal dinosaurs; and is coeval with the lower fauna of the Ischigualasto Formation, Bermejo Basin, NW Argentina. The second association is recorded in deposits of both the Alemoa Member and the Caturrita Formation, characterized by the rhynchosaur ‘Scaphonyx’ sulcognathus and the cynodont Exaeretodon, and correlated with the upper fauna of the Ischigualasto Formation. Various isolated outcrops of the Caturrita Formation yield tetrapod fossils that correspond to post-Ischigualastian faunas but might not belong to a single faunal association. The record of the dicynodont Jachaleria suggests correlations with the lower part of the Los Colorados Formation, NW Argentina, whereas remains of derived tritheledontid cynodonts indicate younger ages.
    [Show full text]
  • Valérie Martin, Varavudh Suteethorn & Eric Buffetaut, Description of the Type and Referred Material of Phuwiangosaurus
    ORYCTOS, V ol . 2 : 39 - 91, Décembre 1999 DESCRIPTION OF THE TYPE AND REFERRED MATERIAL OF PHUWIANGOSAURUS SIRINDHORNAE MARTIN, BUFFETAUT AND SUTEETHORN, 1994, A SAUROPOD FROM THE LOWER CRETACEOUS OF THAILAND Valérie MARTIN 1, Varavudh SUTEETHORN 2 and Eric BUFFETAUT 3 1 Musée des Dinosaures, 11260 Espéraza, France 2 Geological Survey Division, Department of Mineral Resources, Rama VI Road, 10400 Bangkok, Thailand 3 CNRS (UMR 5561), 16 cour du Liégat, 75013 Paris, France Abstract : The type specimen of P. sirindhornae Martin, Buffetaut and Suteethorn, 1994 is an incomplete, partly articulated, skeleton discovered in the Phu Wiang area of northeastern Thailand). Most of the abundant sauropod material from the Sao Khua Formation (Early Cretaceous), collected on the Khorat Plateau, in northeastern Thailand, is referable to this species. Phuwiangosaurus is a middle-sized sauropod, which is clearly different from the Jurassic Chinese sauropods (Euhelopodidae). On the basis of a few jaw elements and teeth, P. sirindhornae may be considered as an early representative of the family Nemegtosauridae. Key words : Sauropoda, Osteology, Early Cretaceous, Thailand Description du type et du matériel rapporté de Phuwiangosaurus sirindhornae Martin, Buffetaut et Suteethorn, 1994, un sauropode du Crétacé inférieur de Thaïlande Résumé : Le spécimen type de Phuwiangosaurus sirindhornae est un squelette incomplet, partiellement articulé, découvert dans la région de Phu Wiang (Nord-Est de la Thaïlande). Phuwiangosaurus est un sauropode de taille moyenne (15 à 20 m de longueur) très différent des sauropodes du Jurassique chinois. La majeure partie de l’abondant matériel de sauropodes, récolté sur le Plateau de Khorat (Formation Sao Khua, Crétacé inférieur), est rap - portée à cette espèce.
    [Show full text]
  • Dino Cards Project D E F List B
    Daanosaurus Efraasia Dacentrurus Einiosaurus "Dachongosaurus" – nomen nudum Ekrixinatosaurus Daemonosaurus Elachistosuchus – a rhynchocephalian Dahalokely Elaltitan Dakosaurus – a metriorhynchid crocodilian Elaphrosaurus Dakotadon Elmisaurus Dakotaraptor Elopteryx - nomen dubium Daliansaurus Elosaurus – junior synonym of Brontosaurus "Damalasaurus" – nomen nudum Elrhazosaurus Dandakosaurus - nomen dubium "Elvisaurus" – nomen nudum; Cryolophosaurus Danubiosaurus – junior synonym of Struthiosaurus Emausaurus "Daptosaurus" – nomen nudum; early manuscript name for Deinonychus Embasaurus - theropoda incertae sedis Darwinsaurus - possible junior synonym of Huxleysaurus Enigmosaurus Dashanpusaurus Eoabelisaurus Daspletosaurus Eobrontosaurus – junior synonym of Brontosaurus Dasygnathoides – a non-dinosaurian archosaur, junior synonym Eocarcharia of Ornithosuchus Eoceratops – junior synonym of Chasmosaurus "Dasygnathus" – preoccupied name, now known as Dasygnathoides Eocursor Datanglong Eodromaeus Datonglong "Eohadrosaurus" – nomen nudum; Eolambia Datousaurus Eolambia Daurosaurus – synonym of Kulindadromeus Eomamenchisaurus Daxiatitan Eoplophysis - Dinosauria indet. Deinocheirus Eoraptor Deinodon – possibly Gorgosaurus Eosinopteryx - Avialae Deinonychus Eotrachodon Delapparentia - probable junior synonym of Iguanodon Eotriceratops Deltadromeus Eotyrannus Demandasaurus Eousdryosaurus Denversaurus Epachthosaurus Deuterosaurus – a therapsid Epanterias – may be Allosaurus Diabloceratops "Ephoenosaurus" – nomen nudum; Machimosaurus (a crocodilian) Diamantinasaurus
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • The Sauropodomorph Biostratigraphy of the Elliot Formation of Southern Africa: Tracking the Evolution of Sauropodomorpha Across the Triassic–Jurassic Boundary
    Editors' choice The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary BLAIR W. MCPHEE, EMESE M. BORDY, LARA SCISCIO, and JONAH N. CHOINIERE McPhee, B.W., Bordy, E.M., Sciscio, L., and Choiniere, J.N. 2017. The sauropodomorph biostratigraphy of the Elliot Formation of southern Africa: Tracking the evolution of Sauropodomorpha across the Triassic–Jurassic boundary. Acta Palaeontologica Polonica 62 (3): 441–465. The latest Triassic is notable for coinciding with the dramatic decline of many previously dominant groups, followed by the rapid radiation of Dinosauria in the Early Jurassic. Among the most common terrestrial vertebrates from this time, sauropodomorph dinosaurs provide an important insight into the changing dynamics of the biota across the Triassic–Jurassic boundary. The Elliot Formation of South Africa and Lesotho preserves the richest assemblage of sauropodomorphs known from this age, and is a key index assemblage for biostratigraphic correlations with other simi- larly-aged global terrestrial deposits. Past assessments of Elliot Formation biostratigraphy were hampered by an overly simplistic biozonation scheme which divided it into a lower “Euskelosaurus” Range Zone and an upper Massospondylus Range Zone. Here we revise the zonation of the Elliot Formation by: (i) synthesizing the last three decades’ worth of fossil discoveries, taxonomic revision, and lithostratigraphic investigation; and (ii) systematically reappraising the strati- graphic provenance of important fossil locations. We then use our revised stratigraphic information in conjunction with phylogenetic character data to assess morphological disparity between Late Triassic and Early Jurassic sauropodomorph taxa. Our results demonstrate that the Early Jurassic upper Elliot Formation is considerably more taxonomically and morphologically diverse than previously thought.
    [Show full text]
  • Titanosauriform Teeth from the Cretaceous of Japan
    “main” — 2011/2/10 — 15:59 — page 247 — #1 Anais da Academia Brasileira de Ciências (2011) 83(1): 247-265 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Titanosauriform teeth from the Cretaceous of Japan HARUO SAEGUSA1 and YUKIMITSU TOMIDA2 1Museum of Nature and Human Activities, Hyogo, Yayoigaoka 6, Sanda, 669-1546, Japan 2National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan Manuscript received on October 25, 2010; accepted for publication on January 7, 2011 ABSTRACT Sauropod teeth from six localities in Japan were reexamined. Basal titanosauriforms were present in Japan during the Early Cretaceous before Aptian, and there is the possibility that the Brachiosauridae may have been included. Basal titanosauriforms with peg-like teeth were present during the “mid” Cretaceous, while the Titanosauria with peg-like teeth was present during the middle of Late Cretaceous. Recent excavations of Cretaceous sauropods in Asia showed that multiple lineages of sauropods lived throughout the Cretaceous in Asia. Japanese fossil records of sauropods are conformable with this hypothesis. Key words: Sauropod, Titanosauriforms, tooth, Cretaceous, Japan. INTRODUCTION humerus from the Upper Cretaceous Miyako Group at Moshi, Iwaizumi Town, Iwate Pref. (Hasegawa et al. Although more than twenty four dinosaur fossil local- 1991), all other localities provided fossil teeth (Tomida ities have been known in Japan (Azuma and Tomida et al. 2001, Tomida and Tsumura 2006, Saegusa et al. 1998, Kobayashi et al. 2006, Saegusa et al. 2008, Ohara 2008, Azuma and Shibata 2010).
    [Show full text]
  • A New Sauropodomorph Ichnogenus from the Lower Jurassic of Sichuan, China Fills a Gap in the Track Record
    Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: http://www.tandfonline.com/loi/ghbi20 A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record Lida Xing, Martin G. Lockley, Jianping Zhang, Hendrik Klein, Daqing Li, Tetsuto Miyashita, Zhongdong Li & Susanna B. Kümmell To cite this article: Lida Xing, Martin G. Lockley, Jianping Zhang, Hendrik Klein, Daqing Li, Tetsuto Miyashita, Zhongdong Li & Susanna B. Kümmell (2016) A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record, Historical Biology, 28:7, 881-895, DOI: 10.1080/08912963.2015.1052427 To link to this article: http://dx.doi.org/10.1080/08912963.2015.1052427 Published online: 24 Jun 2015. Submit your article to this journal Article views: 95 View related articles View Crossmark data Citing articles: 2 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 Download by: [University of Alberta] Date: 23 October 2016, At: 09:07 Historical Biology, 2016 Vol. 28, No. 7, 881–895, http://dx.doi.org/10.1080/08912963.2015.1052427 A new sauropodomorph ichnogenus from the Lower Jurassic of Sichuan, China fills a gap in the track record Lida Xinga*, Martin G. Lockleyb, Jianping Zhanga, Hendrik Kleinc, Daqing Lid, Tetsuto Miyashitae, Zhongdong Lif and Susanna B. Ku¨mmellg aSchool of the Earth Sciences and Resources, China University
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]
  • The Anatomy and Phylogenetic Relationships of Antetonitrus Ingenipes (Sauropodiformes, Dinosauria): Implications for the Origins of Sauropoda
    THE ANATOMY AND PHYLOGENETIC RELATIONSHIPS OF ANTETONITRUS INGENIPES (SAUROPODIFORMES, DINOSAURIA): IMPLICATIONS FOR THE ORIGINS OF SAUROPODA Blair McPhee A dissertation submitted to the Faculty of Science, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science. Johannesburg, 2013 i ii ABSTRACT A thorough description and cladistic analysis of the Antetonitrus ingenipes type material sheds further light on the stepwise acquisition of sauropodan traits just prior to the Triassic/Jurassic boundary. Although the forelimb of Antetonitrus and other closely related sauropododomorph taxa retains the plesiomorphic morphology typical of a mobile grasping structure, the changes in the weight-bearing dynamics of both the musculature and the architecture of the hindlimb document the progressive shift towards a sauropodan form of graviportal locomotion. Nonetheless, the presence of hypertrophied muscle attachment sites in Antetonitrus suggests the retention of an intermediary form of facultative bipedality. The term Sauropodiformes is adopted here and given a novel definition intended to capture those transitional sauropodomorph taxa occupying a contiguous position on the pectinate line towards Sauropoda. The early record of sauropod diversification and evolution is re- examined in light of the paraphyletic consensus that has emerged regarding the ‘Prosauropoda’ in recent years. iii ACKNOWLEDGEMENTS First, I would like to express sincere gratitude to Adam Yates for providing me with the opportunity to do ‘real’ palaeontology, and also for gladly sharing his considerable knowledge on sauropodomorph osteology and phylogenetics. This project would not have been possible without the continued (and continual) support (both emotionally and financially) of my parents, Alf and Glenda McPhee – Thank you.
    [Show full text]
  • Re-Description of the Sauropod Dinosaur Amanzia (“Ornithopsis
    Schwarz et al. Swiss J Geosci (2020) 113:2 https://doi.org/10.1186/s00015-020-00355-5 Swiss Journal of Geosciences ORIGINAL PAPER Open Access Re-description of the sauropod dinosaur Amanzia (“Ornithopsis/Cetiosauriscus”) greppini n. gen. and other vertebrate remains from the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, Switzerland Daniela Schwarz1* , Philip D. Mannion2 , Oliver Wings3 and Christian A. Meyer4 Abstract Dinosaur remains were discovered in the 1860’s in the Kimmeridgian (Late Jurassic) Reuchenette Formation of Moutier, northwestern Switzerland. In the 1920’s, these were identifed as a new species of sauropod, Ornithopsis greppini, before being reclassifed as a species of Cetiosauriscus (C. greppini), otherwise known from the type species (C. stewarti) from the late Middle Jurassic (Callovian) of the UK. The syntype of “C. greppini” consists of skeletal elements from all body regions, and at least four individuals of diferent sizes can be distinguished. Here we fully re-describe this material, and re-evaluate its taxonomy and systematic placement. The Moutier locality also yielded a theropod tooth, and fragmen- tary cranial and vertebral remains of a crocodylomorph, also re-described here. “C.” greppini is a small-sized (not more than 10 m long) non-neosauropod eusauropod. Cetiosauriscus stewarti and “C.” greppini difer from each other in: (1) size; (2) the neural spine morphology and diapophyseal laminae of the anterior caudal vertebrae; (3) the length-to-height proportion in the middle caudal vertebrae; (4) the presence or absence of ridges and crests on the middle caudal cen- tra; and (5) the shape and proportions of the coracoid, humerus, and femur.
    [Show full text]