Chile Intertidal Zones

Total Page:16

File Type:pdf, Size:1020Kb

Chile Intertidal Zones Chile Intertidal Zones 461 early settlers introduced fires around 14,000 years tiago, was established by the Chilean government, ago, it is only since Spanish colonization that fires protecting 6,778 acres (2,743 hectares) of Matorral. have become frequent. The Matorral is poorly Although there is relatively little protected public fire-adapted; human-induced fires cause major land in Chile, the concept of private land trusts has and long-lasting damage. Seeds of native sclero- recently gained momentum. These small parcels are phyllous species do not survive even low-inten- considered complementary to the National Public sity fires. Moreover, the capacity of regeneration System of Protected Areas—Sistema Nacional de of these sclerophyllous species is very low—even Áreas Silvestres Protegidas (SNASPE), which uni- after cessation of livestock grazing—because of fies conservation efforts within and between the the constant soil disruption and shoot consump- country’s national parks, reserves, and monuments. tion pressures from introduced rabbits and hares. Global warming scenarios generally point Logging and mining, with the ensuing roadways to warmer and drier climate in Mediterranean and pollution that are created, have contributed biomes such as the Chilean Matorral forests. The to habitat loss here. The increasing density of the pressure this will exert on plant and animal species road network goes hand-in-hand with invasions to relocate will only be exacerbated by increased by exotic species and with deforestation, both likelihood of fire; together these vectors point to being positively correlated with distance to pri- accelerated habitat fragmentation. mary roads. The current rate of introductions of invasive plant species is unprecedented in regional Stephan M. Funk history. Intentionally and unintentionally, nonna- tive species have spread fast and uncontrolled, Further Reading further promoted by the secondary plant and Cox, Robin L. and Emma C. Underwood. “The animal invaders that come with the introduction Importance of Conserving Biodiversity Outside of controlled populations of livestock. The con- of Protected Areas in Mediterranean Ecosystems.” sequences can be severe. Introductions not only PLoS One 6, no. 1 (2011). modify patterns of abundance and distribution of Figueroa, Javier A., S. A. Castro, P. A. Marquet, native species, they also cause local extinctions and F. M. Jaksic. “Exotic Plant Invasions to the and, especially in the case of plantations of exotic Mediterranean Region of Chile: Causes, History trees, can significantly modify soil, microclimate and Impacts.” Revista Chilena de Historia Natural and fire characteristics, thus irreversibly altering 77, no. 3 (2004). the environmental physiology of the ecosystem. Funk, Stephan M. and John E. Fa. “Ecoregion Despite its highly unique biodiversity, the Chil- Prioritization Suggests an Armoury Not a Silver ean Matorral is perhaps the least protected of the Bullet for Conservation Planning.” PLoS One, world’s five major Mediterranean regions. Moreo- 5, no. 1 (2010). ver, it is the least protected region in Chile at large. Gomez-Gonzalez, S., C. Torres-Diaz, G. Valencia, P. The World Wildlife Fund has assessed this ecore- Torres-Morales, L. A. Cavieres, and J. G. Pausas. gion’s conservation status to be Critical/Endan- “Anthropogenic Fires Increase Alien and Native gered. There remains a significant proportion of Annual Species in the Chilean Coastal Matorral.” currently unprotected natural and semi-natural Diversity and Distributions 17, no. 1 (2011). land with conservation potential, while human pressure increases continually. More intensive and efficient protection and con- servation action is urgently required; some con- servation schemes on private land and neighbor- Chile Intertidal Zones hood initiatives have recently emerged. In 2010, the new Altos de Cantillana Nature Sanctuary, located Category: Marine and Oceanic Biomes. approximately 25 miles (40 kilometers) from San- Geographic Location: South America. 462 Chile Intertidal Zones Summary: Chile has one of the world’s longest a wealth of oceanic and land organisms. Near and most diverse intertidal zones, nourished the coast are found some of the world’s greatest by the Humboldt Current that flows along its populations of shrimp, anchovies, squid, sardines, entire coast. salmon, and mackerel. Marine birds and mam- mals—such as penguins, pelicans, flamingos, bot- Chile is a long, narrow country that is defined by tle-nosed dolphins, whales, and sea lions—live off the Andes mountain range on the east and by the of the smaller of these fish, mollusks, and crusta- Pacific Ocean on the west. Chile is 2,672 miles ceans. Intertidal species such as sea urchins, star- (4,300 kilometers) long and an average of 109 miles fish, and coral also contribute to this diverse, yet (175 kilometers) wide. This long strip of coastal fragile eco-community, as do seaweeds, kelp, and land runs parallel to the Andes and extends from shoreline grasses. mid-continent to Cape Horn, the southernmost Many of these organisms are adapted to point of South America. extremes, as the local water may be fresh, brackish, The coastal climate is strongly influenced by the or salty. They may be subject to varied wave action, Humboldt Current. This slow, cold Pacific current and must be able to live exposed to air and sun, or sustains one of the world’s richest fisheries along submerged in water. Many types of shellfish thrive the Chilean coast. Many forms of wildlife are also here, most notably the Chilean blue mussel, which found in abundance along the adjacent land areas. is harvested by humans regularly. Wild fisheries The Humboldt Current begins north of the Ant- and salmon fish farms have become very economi- arctic and runs the full length of the Chilean coast, cally important to Chile in the past 30 years. bringing nutrient-rich waters that nourish the intertidal zones. Intertidal zones along shorelines Human Impact and Conservation are the areas between the high tide and the low tide Because there has been an increasing worldwide and can include many types of habitat: steep rocky demand for fish over the past several decades, wild cliffs, sandy beaches, wetlands, and marshes. fisheries are being overexploited. Salmon farms The organisms that live here have become spe- consume many of these wild fish, and also have cially adapted to survive the significant changes in caused problems on some coastal areas due to pol- temperature, salinity, moisture, acidity, dissolved lution runoff, low oxygen zones, algal blooms, and oxygen, and food supply that occur on a daily basis the spread of viruses into the marine environment. due to the movement of the tides. Different plants Inland mining practices have also had a negative and animals that have excelled at dealing with dif- impact on shoreline species. Forestry, pulp, and ferent sets of conditions dominate zones at differ- paper industries are present in the south, releasing ent tidal heights. This distribution pattern of dif- pollutants that harm the intertidal zones. ferent species along the shore in vertical bands is The Chilean coast, including the intertidal zone, referred to as intertidal zonation. is administered by the Ministry of National Defense Varied climatic conditions along Chile’s long through the Marine Subsecretary, which addresses coast also contribute to the diversity of intertidal issues related to national and state public goods species: An extremely dry climate is typical of the in the intertidal zones—including harvesting of north, but the coast exhibits a rain-forest microcli- marine species. Under this Marine Subsecretary is mate, as moisture from the sea is trapped by cliffs another division that regulates such diverse activi- and valleys; the central region of the country is ties as aquaculture and harbors. State ownership characterized by the hot, dry summers and mild, of the coast tends to occur in the extreme north or wet winters of a Mediterranean climate; and the south of Chile, as the other coastal lands became southern region is cooler and wetter, classified as private during the long colonial period. an oceanic temperate climate. Since the 1990s, there has been extensive The complex relationship between the Hum- Chilean research on intertidal zones, and two boldt Current and the intertidal zones supports coastal marine research stations have been cre- China Loess Plateau Mixed Forests, Central 463 ated: Estación Mehuín in southern Chile of the Summary: This plateau, also known as the Universidad Austral de Chile, and Estación Cos- Plateau of Yellow Earth or the North China Plain, tera de Investigaciones Marinas in Las Cruces in is the cradle of the Chinese civilization. After Central Chile of Pontificia Universidad Católica more than 1,000 years of deforestation and soil de Chile. erosion, it is sparsely vegetated but parts of it are In 2001, Oceana was founded. It is the larg- being rehabilitated to its natural state. est international organization focused solely on ocean conservation. The Oceana offices in North The central loess plateau, extending across America, Central America, South America, and 250,000 square miles (650,000 square kilometers) Europe work together on a limited number of of north central China along the Yellow River, is strategic, directed campaigns to achieve measur- the largest loess deposit region in the world and able outcomes that will help return the oceans home to some 100 million people. Tilted upward to former levels
Recommended publications
  • Flora of the Mediterranean Basin in the Chilean Espinales: Evidence of Colonisation
    PASTOS 2012. ISSN: 0210-1270 PASTOS, 42 (2), 137 - 160 137 FLORA OF THE MEDITERRANEAN BASIN IN THE CHILEAN ESPINALES: EVIDENCE OF COLONISATION I. MARTÍN-FORÉS1, M. A. CASADO1*, I. CASTRO2, C. OVALLE3, A. DEL POZO4, B. ACOSTA-GALLO1, L. SÁNCHEZ-JARDÓN1 AND J. M. DE MIGUEL1 1Departamento de Ecología. Facultad de Biología. Universidad Complutense de Madrid. Madrid (España). 2Departamento de Ecología. Facultad de Ciencias. Universidad Autónoma de Madrid. Madrid (España). 3Instituto de Investigaciones Agropecuarias INIA-La Cruz. La Cruz (Chile). 4Facultad de Ciencias Agrarias. Universidad de Talca. Talca (Chile). *Author for correspondence: M.A. Casado ([email protected]). SUMMARY In Chile’s Mediterranean region, over 18% of plant species are alien. This is particularly noteworthy in some agrosilvopastoral systems such as the espinales, which are functionally very similar to the Spanish dehesas and are of great ecological and socioeconomic interest. In the present paper we analyse Chile’s non-native flora, considering three scales of analysis: national, regional (the central region, presenting a Mediterranean climate) and at community level (the espinales within the central region). We compare this flora with that recorded in areas of the Iberian Peninsula with similar lithological and geomorphological characteristics, and land use. We discuss possible mechanisms that might have been operating in the floristic colonisation from the Mediterranean Basin to Chile’s Mediterranean region. Key words: Alien plants, biogeography, Chile, life cycle, Spain. INTRODUCTION Historically, the transit of goods, domestic animals and people has favoured the flow of wild organisms around the planet (Lodge et al., 2006), a fact that is often associated with the introduction of cultural systems, which have contributed to generating new environmental and socioeconomic scenarios (Le Houérou, 1981; Hobbs, 1998; Grenon and Batisse, 1989).
    [Show full text]
  • Effects of Dry-Season N Input on the Productivity and N Storage of Mediterranean-Type Shrublands
    Ecosystems (2009) 12: 473–488 DOI: 10.1007/s10021-009-9236-6 � 2009 Springer Science+Business Media, LLC Effects of Dry-Season N Input on the Productivity and N Storage of Mediterranean-Type Shrublands George L. Vourlitis,1* Sarah C. Pasquini,1,2 and Robert Mustard1 1Department of Biological Sciences, California State University, San Marcos, California 92096, USA; 2Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA ABSTRACT Anthropogenic nitrogen (N) deposition is a globally leaching in chaparral but not CSS. Nitrogen addi­ important source of N that is expected to increase tion also lead to an increase in litter and tissue N with population growth. In southern California, N concentration and a decline in the C:N ratio, but input from dry deposition accumulates on vegeta­ failed to alter the ecosystem productivity and N tion and soil surfaces of chaparral and coastal sage storage of the chaparral and CSS shrublands over scrub (CSS) ecosystems during the summer and fall the 4-year study period. The reasons for the lack of and becomes available as a pulse following winter a treatment response are unknown; however, it is rainfall. Presumably, N input will act to stimulate possible that these semi-arid shrublands are not N the productivity and N storage of these Mediterra­ limited, cannot respond rapidly enough to capture nean-type, semi-arid shrublands because these the ephemeral N pulse, are limited by other nutri­ ecosystems are thought to be N limited. To assess ents, or the N response is dependent on the amount whether dry-season N inputs alter ecosystem pro­ and/or distribution of rainfall.
    [Show full text]
  • Threats from Human Land Use and Climate Change to the Kodkod Leopardus Guigna
    Assessing the distribution of a Vulnerable felid species: threats from human land use and climate change to the kodkod Leopardus guigna G RIET A.E. CUYCKENS,MIRIAM M. MORALES and M ARCELO F. TOGNELLI Abstract Climate change and habitat fragmentation are Introduction considered key pressures on biodiversity, and mammalian carnivores with a limited geographical distribution are limate change and destruction of natural habitats particularly vulnerable. The kodkod Leopardus guigna,a Cthrough human activities are major threats to terres- small felid endemic to the temperate forests of southern trial biodiversity. These pressures have led to substantial ’ Chile and Argentina, has the smallest geographical range range contractions and species extinctions (Parmesan & 2003 2003 2004 of any New World felid. Although the species occurs in Yohe, ; Root et al., ; Opdam & Wascher, ), 2008 protected areas in both countries, it is not known how well including for mammals (Schipper et al., ), and species 1991 these areas protect the kodkod either currently or under at high altitudes are particularly vulnerable (Innes, ; 1997 2003 climate change scenarios. We used species distribution Diaz & Bradley, ; Burns et al., ; Thomas et al., 2004 models and spatial analyses to assess the distribution of the ). Knowledge of the geographical distribution of species 2000 kodkod, examining the effects of changes in human land use is essential to assess these threats (Regan et al., ; Conrad 2006 and future climate change. We also assessed the species’ et al., ) but data on the distribution of rare species is 2006 2009 present representation in protected areas and in light of limited (Hernandez et al., ; Thorn et al., ).
    [Show full text]
  • Patagonian Bats
    Mammalia 2020; 84(2): 150–161 Analía Laura Giménez* and Mauro Ignacio Schiaffini Patagonian bats: new size limits, southernmost localities and updated distribution for Lasiurus villosissimus and Myotis dinellii (Chiroptera: Vespertilionidae) https://doi.org/10.1515/mammalia-2019-0024 (i.e. intra and interspecific interactions) and abiotic Received March 10, 2019; accepted June 7, 2019; previously published factors (i.e. temperature, altitude, precipitation and pro- online July 16, 2019 ductivity), together with dispersal ability capacities and the evolutionary history of each lineage (Gaston 2003, Cox Abstract: Vespertilionid species are widely distributed and Moore 2005, Soberón and Peterson 2005). As abiotic in South America. They are highly diverse, with physio- factors are not evenly distributed in space or time, they logical and behavioral adaptations which allow them to shape the borders of species’ distributions trough extreme extend their distributions into temperate areas. In Patago- values (e.g. minimum or maximum temperatures, dry or nia, this family is represented by seven species in three humid areas), which in turn influence resource availabil- genera (Histiotus, Lasiurus and Myotis). In this study, we ity and impose limits to reproduction and survival (Mackey analyzed the distribution of two vespertilionid species, and Lindenmayer 2001, Gaston 2003). In this way, those Lasiurus villosissimus and Myotis dinellii, including new areas with more favorable abiotic (and biotic) conditions southernmost records, and their relationship with envi- will show the highest relative abundance, while records ronmental variables. Two different spatial scales were will become more scarce and more far away from each analyzed: a continental approach for species distribu- other toward the borders of a species’ distribution (Brown tion analyses (South America), and local trapping of bats 2003 and references therein).
    [Show full text]
  • Shrub Defoliation in the Chilean Matorral: What Is Its Significance?
    Revista Chilena de Historia Natural 60: 276-283, 1987 Shrub defoliation in the Chilean matorral: what is its significance? Defoliaci6n de arbustos en el matorral chileno: ¿cuál es su significado? EDUARDO R. FUENTES, ALDO POAINI & JUAN D. MOLINA Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile. Casilla 114-D. Santiago - Chile. ABSTRACT This paper reviews the available information on shrub defoliation in the Chilean matorral. The phenomenon and its patterns in space and time are described. The roles of climate, predators, plant defenses and competition are analyzed within a comprehensive model. Key words: Defoliation, climatic constraint, predation, competition, plant defenses. RESUMEN Este articulo recopila la informacion disponible acerca del papel de Ia defoliacion en el matorral chileno. Se describe el fenomeno y sus manifestaciones en el tiempo y en el espacio. Luego se discute un modelo en que se destacan Ia im- portancia del clima, depredadores, defensas de las plantas, y de la competicion. Palabras claves: Defoliacion, restricciones climaticas, depredaci6n, competici6n, defensas de las plantas. INTRODUCTION 1979, Fuentes & Etchégaray 1981) have This contribution is a complement to E. shown that herbivores can greatly modify Bucher's presentation (in this volume) on the physiognomy of the landscapes of the role of native grazers and browsers in central Chile. We do not intend to further South America. Similarly to what seems to discuss these phenomena. be the Argentinian case, in the Chilean Instead we will identify potentially in­ temperate areas there are still not many teresting questions in relation with a still studies of this type. Most studies of inter- little understood phenomenon: the defoli- actions between terrestrial native herbi- ation of large woody plants in the mediter- vores and plants have been done rather ranean-type shrublands.
    [Show full text]
  • The Chaparral Vegetation in Mexico Under Nonmediterranean Climate: the Convergence and Madrean-Tethyan Hypotheses Reconsidered1
    American Journal of Botany 85(10): 1398±1408. 1998. THE CHAPARRAL VEGETATION IN MEXICO UNDER NONMEDITERRANEAN CLIMATE: THE CONVERGENCE AND MADREAN-TETHYAN HYPOTHESES RECONSIDERED1 ALFONSO VALIENTE-BANUET,2,4 NOEÂ FLORES-HERNAÂ NDEZ,2 MIGUEL VERDUÂ ,3 AND PATRICIA DAÂ VILA3 2Instituto de EcologõÂa, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 70±275, UNAM, 04510 MeÂxico, D.F.; and 3UBIPRO, ENEP-Iztacala, Universidad Nacional AutoÂnoma de MeÂxico, Apartado Postal 314, MeÂxico, 54090, Tlalnepantla, MeÂxico A comparative study between an unburned evergreen sclerophyllous vegetation located in south-central Mexico under a wet-summer climate, with mediterranean regions was conducted in order to re-analyze vegetation and plant characters claimed to converge under mediterranean climates. The comparison considered ¯oristic composition, plant-community struc- ture, and plant characters as adaptations to mediterranean climates and analyzed them by means of a correspondence analysis, considering a tropical spiny shrubland as the external group. We made a species register of the number of species that resprouted after a ®re occurred in 1995 and a distribution map of the evergreen sclerophyllous vegetation in Mexico (mexical) under nonmediterranean climates. The TehuacaÂn mexical does not differ from the evergreen sclerophyllous areas of Chile, California, Australia, and the Mediterranean Basin, according to a correspondence analysis, which ordinated the TehuacaÂn mexical closer to the mediter- ranean areas than to the external group. All the vegetation and ¯oristic characteristics of the mexical, as well as its distribution along the rain-shadowed mountain parts of Mexico, support its origin in the Madrean-Tethyan hypothesis of Axelrod. Therefore, these results allow to expand the convergence paradigm of the chaparral under an integrative view, in which a general trend to aridity might explain ¯oristic and adaptive patterns detected in these environments.
    [Show full text]
  • Exotic Herbivores As Drivers of Plant Invasion and Switch to Ecosystem Alternative States
    Biological Invasions 4: 25–33, 2002. © 2002 Kluwer Academic Publishers. Printed in the Netherlands. Review Exotic herbivores as drivers of plant invasion and switch to ecosystem alternative states Milena Holmgren Forest Ecology and Forest Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 342, 6700 AH Wageningen, The Netherlands (e-mail: [email protected]) Received 23 October 2001; accepted in revised form 25 March 2002 Key words: Chilean matorral, exotic herbivores, Mediterranean ecosystems, plant invasion Abstract This paper discusses the evidence of the way in which coupled herbivore and plant invasions altered the structure and functioning of ecosystems in central Chile, and compares these patterns to results from other Mediterranean ecosystems around the world. In pre-Columbian times, sclerophyllous ‘matorral’ forests largely covered mediter- ranean Chile. Remnants of the original, continuous matorral can now be found only on relatively humid slopes of the Coastal Range. In the Intermediate Depression, a long central valley, it has been replaced by extensive savannas dominated by the exotic Acacia caven, whereas the matorral remains on dry slopes as isolated shrub clumps. Experimental work suggests that introduced cattle have played a major role in promoting the shift to Acacia savanna, whereas introduced European rabbits prevent the recolonization of clearings by matorral on the slopes. As in other regions of the world, the loss of woodlands in Chile is likely to have resulted in reduced carbon storage capacity and nutrient recycling, and in increased erosion and climatic aridity within the region. Numerous exotic herbs and grasses now dominate the open areas, and experiments indicate that the dry conditions in the absence of woodland cover in combination with loss of soil fertility and severe grazing by introduced mammals has pushed the competitive balance from native to exotic species.
    [Show full text]
  • Bibliographies on Coastal Sage Scrub and Related Malacophyllous Shrublands of Other Mediterranean- California Wildlife Type Climates Conservation Bulletin No
    Bibliographies on Coastal Sage Scrub and Related Malacophyllous Shrublands of Other Mediterranean- California Wildlife Type Climates Conservation Bulletin No. 10 1994 Table of Contents: John F. O'Leary Department of Geography San Diego State Preface University San Diego, CA 92182- 1. Animals 4493 2. Autecology 3. Biogeography, Evolution, and Systematics Sandra A. DeSimone Department of Biology 4. Community Composition, Distribution, and San Diego State Classification University 5. Comparisons with Other Malacophyllous San Diego, CA 92182- Shrublands in Mediterranean Climates 0057 6. Conservation, Restoration, and Management 7. Fire, Diversity, and Succession Dennis D. Murphy Center for Conservation 8. Maps Biology 9. Mediterranean Systems (Malacophyllous Only) of Department of Other Regions Biological Sciences 10. Morphology, Phenology, and Physiology Stanford University 11. Mosaics: Coastal Sage Scrub/Chaparral or Stanford CA 94305 Grasslands Peter Brussard 12. Productivity and Nutrient Use Department of Biology 13. Soils and Water Resources University of Nevada Reno, NV 89557-0015 Michael S. Gilpin Department of Biology University of California, San Diego La Jolla, CA 92093 Reed F. Noss 7310 N.W. Acorn Ridge Drive Corvallis, OR 97330 Bibliography on Coastal Sage Scrub Shrublands Page 1 of 2 Preface Coastal sage scrub is often referred to as "soft chaparral" to differentiate it from "hard chaparral," the more widespread shrub community that generally occupies more mesic sites and higher elevations in cismontane California. Unlike evergreen, sclerophyllous chaparral, coastal sage scrub is characterized by malacophyllous subshrubs with leaves that abscise during summer drought and are replaced by fewer smaller leaves (Westman 1981, Gray and Schlesinger 1983). Sage scrub also contrasts with chaparral in its lower stature (0.5 - 1.5 meters vs.
    [Show full text]
  • Biomass of Root and Shoot Systems of Quercus Coccifera Shrublands in Eastern Spain Isabel Cañellas Rey De Viñas, Alfonso San Miguel Ayanz
    Biomass of root and shoot systems of Quercus coccifera shrublands in Eastern Spain Isabel Cañellas Rey de Viñas, Alfonso San Miguel Ayanz To cite this version: Isabel Cañellas Rey de Viñas, Alfonso San Miguel Ayanz. Biomass of root and shoot systems of Quercus coccifera shrublands in Eastern Spain. Annals of Forest Science, Springer Nature (since 2011)/EDP Science (until 2010), 2000, 57 (8), pp.803-810. 10.1051/forest:2000160. hal-00883436 HAL Id: hal-00883436 https://hal.archives-ouvertes.fr/hal-00883436 Submitted on 1 Jan 2000 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ann. For. Sci. 57 (2000) 803–810 803 © INRA, EDP Sciences Original article Biomass of root and shoot systems of Quercus coccifera shrublands in Eastern Spain Isabel Cañellas Rey de Viñasa,* and Alfonso San Miguel Ayanzb a Dpto Selvicultura, CIFOR-INIA, Ap.8.111, 28080 Madrid, Spain b Dpto. Silvopascicultura, E.T.S.I. Montes, Ciudad Universitaria, 28040 Madrid, Spain (Received 12 October 1999; accepted 14 February 2000) Abstract – Belowground and aboveground biomass of kermes oak shrublands (Quercus coccifera L.), an evergreen sclerophyllous species common in garrigue communities in Spain, have been studied by controlled excavation and harvesting.
    [Show full text]
  • Seasonality, Growth, and Net Productivity of Herbs and Shrubs Of
    Abstract: The physiognomy and species composition Seasonality, Growth, and Net Productivity of of the matorral, as well as growth period and net Herbs and Shrubs of the Chilean Matorral1 productivity of shrubs, change with altitude. In shrubs, vegetative growth period is shorter at higher altitudes; leaf area indices are signifi- cantly higher at lower sites, while biomass Gloria Montenegro, María E. Aljaro, Alan Walkowiak, and indices increase with altitude. At the community 2 Ricardo Saenger level, productivity is lower in the montane matorral. Growth and productivity of the herba- ceous understory markedly varies depending on precipitation. Most vegetative growth occurs between winter and early spring. Chile, located between 18° and 56° latitude The midelevation matorral in the Coastal Range south, has a climate which markedly varies accord- and the sclerophyllous scrub at the foothills of ing to geographical position (Di Castri 1968, the Andes are replaced at about 1850 m by a mon- Hajek and Di Castri 1975). Drought predominates tane evergreen scrub community (Mooney and others in the north of the country and rainfall is char- 1970, Rundel and Weisser 1975, Hoffmann and acteristic of the central and southern regions. Hoffmann 1978, Montenegro and others 1979b). At The natural vegetation is closely related to the 2300 m in the Andes the matorral gives way to a different climatic patterns. The northern part of low subalpine scrub. Over 3000 m, alpine herbs the country is desertic, while evergreens predomi- and cushion plants predominate (Villagran and nate in the south (Pisano 1954, Di Castri 1968, others 1979, Arroyo and others 1979).
    [Show full text]
  • Chilean Blind Spots in Soil Biodiversity and Ecosystem Function Research
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.24.449754; this version posted June 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Chilean blind spots in soil biodiversity and ecosystem function research 2 3 César Marín1*, Javiera Rubio2, Roberto Godoy3 4 5 1Institute of Botany, The Czech Academy of Sciences, Zámek 1, 25243, Průhonice, Czech Republic. 6 2Escuela de Geografía, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, 7 5090000, Valdivia, Chile. 3Instituto Ciencias Ambientales y Evolutivas, Facultad de Ciencias, 8 Universidad Austral de Chile, Campus Isla Teja s/n, 5090000, Valdivia, Chile. 9 10 *Corresponding author: César Marín, E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.24.449754; this version posted June 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 11 Abstract 12 Soil harbor up to a quarter of the world’s biodiversity, contributing to many ecosystem functions. It is 13 of great importance to identify distribution patterns of soil organisms and their ecosystem functions to 14 support their conservation and policy building. This has been recently analyzed at macroecological 15 scales, but analyses at national/local scales are scarce.
    [Show full text]
  • Allelopathic Effects of the Chilean Matorral Shrub Flourensia Thurifera
    Revista Chilena de Historia Natural 60: 57-62, 1987 Allelopathic effects of the Chilean matorral shrub Flourensia thurifera Efectos alelopaticos del arbusto de matorral Flourensia thurifera EDUARDO R. FUENTES, GUILLERMO A. ESPINOZA and GLORIA GAJARDO Laboratorio de Ecologia, Pontificia Universidad Cat61ica de Chile, Casilla 114-D, Santiago, Chile ABSTRACT This paper reports 4 types of evidence of the allelopathic effect of the drought-deciduous shrub F1ourensia thuri[era (Compositae) on forbs and shrubs. Field evidences include: (1) observed differences in grass abundances at neigh- boring sites with and without (Temoved) F. thuri[era; (2) measured grass abundances at various distances and directions from isolated F. thurifera shrubs; and (3) the results of experiments in which F. thurifera was cut and the ensuing increment in the relative grass densities monitored. Laboratory evidences pertain to relative germination rates of rye and shrub seeds when irrigated with water in which shrub leaves had been soaked. All four evidences point in the same direction, namely, that F. thurifera produces water-soluble chemical substances capable of inhibiting the germination of other plant species. In addition, the paper supports previous results regarding the lack of demonstrable allelopathic effects in some evergreen species of shrubs. Finally, the ecological significance of these results is discussed. Key words: Allelopathy, Forb densities, forb supression, germination rates. RESUMEN Este articulo informa sobre 4 tipos de evidencias que sugieren que el arbusto deciduo de verano F1ourensia thuri[era (Compositae) tiene efectos alelopaticos sobre hierbas y arbustos. Las evidencias de campo incluyen: (1) Observaciones de abundancia de hierbas en sitios vecinos con y sin F.
    [Show full text]