Hemiphlebia Damselfly Version Has Been Prepared for Web Publication

Total Page:16

File Type:pdf, Size:1020Kb

Hemiphlebia Damselfly Version Has Been Prepared for Web Publication #46 This Action Statement was first published in 1993 and remains current. This Hemiphlebia Damselfly version has been prepared for web publication. It Hemiphlebia mirabilis retains the original text of the action statement, although contact information, the distribution map and the illustration may have been updated. © The State of Victoria, Department of Sustainability and Environment, 2003 Published by the Department of Sustainability and Environment, Victoria. Hemiphlebia Damselfly (Hemiphlebia mirabilis) Distribution in Victoria (DSE 2002) 8 Nicholson Street, East Melbourne, Description and Distribution Victoria 3002 Australia The Hemiphlebia Damselfly (Hemiphlebia Additionally, it was discovered near Mount mirabilis Selys 1868 Odonata: William in Tasmania during 1992 (Trueman This publication may be of Hemiphlebiidae), is a small insect with a et al. 1992) and on Flinders Island in Bass assistance to you but the wingspan of 22 mm and total length of 24 Strait (Endersby 1993). The first Victorian State of Victoria and its employees do not guarantee mm (Davies 1985). It is bright metallic records came from floodplain lagoons in the that the publication is green with white anal appendages (Wells et Goulburn Valley at Alexandra and in the without flaw of any kind or al. 1983). The species was originally middle to upper course of theYarra River at is wholly appropriate for described by Selys in 1868 and more fully the turn of the century (Wells et al. 1983, your particular purposes in 1877 (Yen et al. 1990). Davies 1985). and therefore disclaims all This damselfly is of unusual scientific After continued but declining numbers of liability for any error, loss interest as it exhibits primitive and unique sightings, searchers failed to find the or other consequence which structural features in both adult and larval Hemiphlebia Damselfly on the Goulburn may arise from you relying on any information in this stages (Wells et al. 1983), and has unusual River floodplain in the late 1970s. By this publication. display behaviour (Sant & New 1988). The time, the original habitat had been largely Hemiphlebia Damselfly is taxonomically degraded by agriculture, in particular, the ISSN 1448-9902 isolated, being placed in a superfamily effects of livestock and changed drainage (Hemiphlebioidea) of its own. It has been patterns (Trueman et al. 1992). described as a 'living fossil'. In 1977, a single specimen was captured at The Hemiphlebia Damselfly is endemic to Wilsons Promontory National Park, Victoria. Australia and was first recorded from Port However, its significance was not recognised Denison, northern Queensland (Selys 1869). (Sant & New 988). A viable colony was However, as subsequent discoveries have found at Wilsons Promontory in 1985 by been confined to central and southern Davies (1985) and the species has since been Victoria, the Queensland record is thought recorded as being locally common at two to have been an error (Wells et al. 1983). sites in the park: Cotters Lake and a small swamp adjacent • significantly prone to future threats which are likely to Five Mile Road. The habitat comprises seasonally to result in extinction; and flooded heathland swamps with emergent sedges (Sant & • very rare in terms of abundance and distribution. New 1988). In January 1992, the Hemiphlebia Damselfly was Major Conservation Objectives rediscovered in central Victoria in a billabong on private The major conservation objectives are to: property beside the Yea River at Yea. Subsequent searches • conserve and appropriately manage habitat of the of the area showed the species also survives on the Hemiphlebia Damselfly; Goulburn River floodplain near Alexandra (Trueman et al. • rehabilitate degraded habitat where necessary in 1992). order to maintain and enhance the known The Hemiphlebia Damselfly is a univoltine (breeds once a populations of Hemiphlebia Damselfly; year) species. The adults are present from late November to • survey previously known, currently known and late February and spend large amounts of time resting on potential habitats of Hemiphlebia Damselfly; vegetation; they are thought to be weak fliers (Yen et al. • determine the extent of suitable habitat areas and 1990). Female damselflies probably insert eggs into aquatic remaining populations of the Hemiphlebia Damselfly, vegetation (Sant & New 1988). The larvae are predators on especially on public land; a wide range of small invertebrates (Yen et al. 1990). • investigate the ecological requirements of the The adult damselflies are more commonly found away Hemiphlebia Damselfly; and from water rather than over it (Trueman et al. 1992). It has • formulate and implement appropriate management been suggested that the eggs of Hemiphlebia can withstand which aims to conserve and enhance populations of drought. The habitats at Wilsons Promontory may dry out the Hemiphlebia Damselfly. in summer (Davies 1985, Sant & New 1989). Management Issues Conservation Status Current Status Ecological Issues Specific to the Taxon Wells et al. (1983) Endangered worldwide Habitat conservation is paramount to the survival of the DCE (1991) Vulnerable in Victoria remaining populations of Hemiphlebia Damselfly in both SAC (1991) Threatened. central and southern Victoria. More information is required on the distribution, biology and ecology of the Damselfly to assist The Hemiphlebia Damselfly has been listed as a threatened management. taxon on Schedule 2 of the Flora and Fauna Guarantee Act Populations at Wilsons Promontory lie entirely within the 1988. national park and, with appropriate habitat management, would appear more secure than those in the Goulburn Valley Reasons for Conservation Status which are on private land. Activities that affect the habitat of Determination of the current distribution and abundance of the damselfly, such as fire, may be catastrophic to isolated Hemiphlebia Damselfly was given the highest priority populations in the short term. The long-term effects of such among conservation projects on the order Odonata at the events are unknown. An ecological burning program is inaugural meeting of the International Union for conducted in heath adjacent to the Five Mile Road swamp. This Conservation of Nature and Natural Resources Odonata program may need to be specifically modified to achieve the Specialist Group (IUCN) in 1980 (Moore 1982). damselfly conservation objectives. Within Victoria, population decline of the Hemiphlebia A fuel reduction burn, which burnt much of the Five Mile Road Damselfly in the Goulburn and Yarra Valleys has occurred swamp in April 1987, was responsible for reducing the area of with changes in land use. Many of the vegetated floodplain suitable habitat, and probably resulted in the low numbers lagoons suitable for the damselfly have been severely recorded for the following two flight seasons (Sant & New altered as a result of land clearing, wetland drainage, river 1988, Yen et al. 1990). In early 1992, numbers were still low in regulation and cattle grazing (Yen et al. 1990). the burnt section, but relatively high in unburnt areas of the The known populations at Wilsons Promontory are isolated swamp (T. New pers comm.). from each other and highly localised (Yen et al. 1990). Populations of the damselfly may only be temporarily reduced Highly localised populations are susceptible to local by fire and recover in a few years. The Five Mile Road swamp, extinctions through inappropriate management regimes or which supported the largest known population of the catastrophic events. damselfly prior to the 1987 fire, had been burnt in 1951 and Davies (1985) estimated population levels of around 100 per again in 1957, while other nearby swamps of a similar nature 10 m2 in sheltered patches of reeds, with similar numbers (not known to support significant numbers of Damselflies) recorded in the following two flight seasons. were not burnt. Cotters Lake, on the other hand, which also In its final recommendation, the Scientific Advisory supports a significant number of Hemiphlebia Damselflies, has Committee (1991) has determined that the Hemiphlebia remained unburnt for over 40 years (J. Whelan pers comm.). Damselfly is: The known populations at Wilsons Promontory do not appear • in a demonstrable state of decline which is likely to be threatened by current management practices, such as to result in extinction; control burning, ecological burns and mowing of fire-breaks. 2 Fire occurs naturally in the area from lighting strikes. been successful in allowing regeneration of vegetation in the Furthermore, regular rotational fuel reduction burning of swamp (T. New pers. comm.). areas surrounding Hemiphlebia Damselfly habitat may 1988 A report on the biology and conservation of the promote vegetation succession, therefore maintaining Hemiphlebia Damselfly was prepared (Sant & New 1988). damselfly numbers (T. New pers. comm.). Conversely, 1992 Cattle grazing was phased out of Wilsons Promontory cessation of the ecological burning program of the heath National Park. surrounding the freshwater swamps will eventually lead to decline of the heath and its replacement with dense Coast Intended Management Action Tea-tree (Leptospermum laevigatum) scrub, which could- Population and Habitat Inventory alter the wetland ecosystem and thereby affect damselfly • La Trobe University, with assistance from CNR where populations. appropriate, to undertake survey and assessment of At the Five Mile Road swamp, damselflies congregate in freshwater swamps on Wilsons Promontory and
Recommended publications
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • Dragonflies and Damselflies in Your Garden
    Natural England works for people, places and nature to conserve and enhance biodiversity, landscapes and wildlife in rural, urban, coastal and marine areas. Dragonflies and www.naturalengland.org.uk © Natural England 2007 damselflies in your garden ISBN 978-1-84754-015-7 Catalogue code NE21 Written by Caroline Daguet Designed by RR Donnelley Front cover photograph: A male southern hawker dragonfly. This species is the one most commonly seen in gardens. Steve Cham. www.naturalengland.org.uk Dragonflies and damselflies in your garden Dragonflies and damselflies are Modern dragonflies are tiny by amazing insects. They have a long comparison, but are still large and history and modern species are almost spectacular enough to capture the identical to ancestors that flew over attention of anyone walking along a prehistoric forests some 300 million river bank or enjoying a sunny years ago. Some of these ancient afternoon by the garden pond. dragonflies were giants, with This booklet will tell you about the wingspans of up to 70 cm. biology and life-cycles of dragonflies and damselflies, help you to identify some common species, and tell you how you can encourage these insects to visit your garden. Male common blue damselfly. Most damselflies hold their wings against their bodies when at rest. BDS Dragonflies and damselflies belong to Dragonflies the insect order known as Odonata, Dragonflies are usually larger than meaning ‘toothed jaws’. They are often damselflies. They are stronger fliers and referred to collectively as ‘dragonflies’, can often be found well away from but dragonflies and damselflies are two water. When at rest, they hold their distinct groups.
    [Show full text]
  • André Nel Sixtieth Anniversary Festschrift
    Palaeoentomology 002 (6): 534–555 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY PE Copyright © 2019 Magnolia Press Editorial ISSN 2624-2834 (online edition) https://doi.org/10.11646/palaeoentomology.2.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:25D35BD3-0C86-4BD6-B350-C98CA499A9B4 André Nel sixtieth anniversary Festschrift DANY AZAR1, 2, ROMAIN GARROUSTE3 & ANTONIO ARILLO4 1Lebanese University, Faculty of Sciences II, Department of Natural Sciences, P.O. Box: 26110217, Fanar, Matn, Lebanon. Email: [email protected] 2State Key Laboratory of Palaeobiology and Stratigraphy, Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. 3Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum national d’Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, Entomologie, F-75005, Paris, France. 4Departamento de Biodiversidad, Ecología y Evolución, Facultad de Biología, Universidad Complutense, Madrid, Spain. FIGURE 1. Portrait of André Nel. During the last “International Congress on Fossil Insects, mainly by our esteemed Russian colleagues, and where Arthropods and Amber” held this year in the Dominican several of our members in the IPS contributed in edited volumes honoring some of our great scientists. Republic, we unanimously agreed—in the International This issue is a Festschrift to celebrate the 60th Palaeoentomological Society (IPS)—to honor our great birthday of Professor André Nel (from the ‘Muséum colleagues who have given us and the science (and still) national d’Histoire naturelle’, Paris) and constitutes significant knowledge on the evolution of fossil insects a tribute to him for his great ongoing, prolific and his and terrestrial arthropods over the years.
    [Show full text]
  • Megalagrion Nigrohamatum Nigrolineatum (Perkins 1899) Blackline Hawaiian Damselfly Odonata: Zygoptera: Coenagrionidae
    Megalagrion nigrohamatum nigrolineatum (Perkins 1899) Blackline Hawaiian damselfly Odonata: Zygoptera: Coenagrionidae Photo credit Hawaii Biological Survey Profile prepared by Celeste Mazzacano, The Xerces Society for Invertebrate Conservation SUMMARY Megalagrion nigrohamatum nigrolineatum is endemic to the Hawaiian island of Oahu. This subspecies was found historically in the mountain ranges of Koolau and Waianae, and is currently known from 16 stream sites at high altitudes in the Koolau Range. Its limited habitat and small scattered populations may affect long-term stability. The species is susceptible to the effects of habitat loss and introduced species. Research should focus on habitat management and protection, and control of invasive species. CONSERVATION STATUS Rankings: Canada – Species at Risk Act: N/A Canada – provincial status: N/A Mexico: N/A USA – Endangered Species Act: Candidate USA – state status: S2 Imperiled NatureServe: G4T2 Apparently secure; Subspecies imperiled IUCN Red List: VU Vulnerable SPECIES PROFILE DESCRIPTION Megalagrion n. nigrolineatum is in the family Coenagrionidae (pond damsels). Adults are medium-sized, from 35-45 mm (1.4-1.8 in.) in length with a wingspan of 43-50 mm (1.7-2.0 in.). Adults of both sexes can be recognized by the lime green to blue-green coloration on the lower Species Profile: Megalagrion nigrohamatum nigrolineatum 1 half of the face and eyes (Polhemus & Asquith 1996), and the top portion of the eyes is bright red. Males have a dark abdomen with an orange-red tip, and a broad yellow, red, or orange patch on the side of the thorax. Females have a similar pattern but the patch on the thorax may be yellow to light blue, and final segment of the abdomen is dull orange.
    [Show full text]
  • Preservation of Three-Dimensional Anatomy in Phosphatized Fossil Arthropods Enriches Evolutionary Inference Achim H
    Clemson University TigerPrints Publications Plant and Environmental Sciences 2-2016 Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference Achim H. Schwermann University of Bonn Tomy dos Santos Rolo Karlsruhe Institute of Technology Michael S. Caterino Clemson University, [email protected] Gunter Bechly State Museum of Natural History Stuttgart, Germany Heiko Schmied University of Bonn See next page for additional authors Follow this and additional works at: https://tigerprints.clemson.edu/ag_pubs Part of the Ecology and Evolutionary Biology Commons Recommended Citation Please use publisher's recommended citation: http://elifesciences.org/content/5/e12129v1/article-info This Article is brought to you for free and open access by the Plant and Environmental Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Authors Achim H. Schwermann, Tomy dos Santos Rolo, Michael S. Caterino, Gunter Bechly, Heiko Schmied, Tilo Baumbach, and Thomas van de Kamp This article is available at TigerPrints: https://tigerprints.clemson.edu/ag_pubs/73 TOOLS AND RESOURCES Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference Achim H Schwermann1*, Tomy dos Santos Rolo2, Michael S Caterino3, Gu¨ nter Bechly4, Heiko Schmied5, Tilo Baumbach2,6, Thomas van de Kamp2,6* 1 Steinmann Institute for Geology, Mineralogy and Paleontology, University
    [Show full text]
  • Identification Guide to the Australian Odonata Australian the to Guide Identification
    Identification Guide to theAustralian Odonata www.environment.nsw.gov.au Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW National Library of Australia Cataloguing-in-Publication data Theischinger, G. (Gunther), 1940– Identification Guide to the Australian Odonata 1. Odonata – Australia. 2. Odonata – Australia – Identification. I. Endersby I. (Ian), 1941- . II. Department of Environment and Climate Change NSW © 2009 Department of Environment, Climate Change and Water NSW Front cover: Petalura gigantea, male (photo R. Tuft) Prepared by: Gunther Theischinger, Waters and Catchments Science, Department of Environment, Climate Change and Water NSW and Ian Endersby, 56 Looker Road, Montmorency, Victoria 3094 Published by: Department of Environment, Climate Change and Water NSW 59–61 Goulburn Street Sydney PO Box A290 Sydney South 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131555 (information & publication requests) Fax: (02) 9995 5999 Email: [email protected] Website: www.environment.nsw.gov.au The Department of Environment, Climate Change and Water NSW is pleased to allow this material to be reproduced in whole or in part, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. ISBN 978 1 74232 475 3 DECCW 2009/730 December 2009 Printed using environmentally sustainable paper. Contents About this guide iv 1 Introduction 1 2 Systematics
    [Show full text]
  • Zygoptera: Hemiphlebiidae)
    Odonatolngica 21(3): 367-374 September 1 , 1992 Hemiphlehiamirabilis Selys: new localities in Australia and perspectives on conservation (Zygoptera: Hemiphlebiidae) ³, 4* 5 J.W.H. Trueman¹,G.A. Hoye J.H. Hawking J.A.L. Watson & T.R. New ², 1 Division of Botany and Zoology, Australian National University, G.P.O. Box 4, Canberra, A.C.T. 2601, Australia 2 Private Mail Bag 10, Singleton,N.S.W. 2330, Australia 3 Murray-Darling Freshwater Research Centre, P.O. Box 921, Albury, N.S.W. 2640, Australia 4 Division of Entomology, C.S.I.R.O., G.P.O. Box 1700, Canberra, A.C.T. 2601, Australia* 5 Department of Zoology, La Trobe University, Bundoora, Vic. 3083, Australia Received April 28, 1992 / Accepted May 14, 1992 H. mirabilis Until now, was known to survive only at Wilsons Promontory, Victoria. However, although previously thought to have died out in the Goulburn Valley, also in the still there - Victoria, sp. occurs on floodplain lagoons (billabongs) of the R. and of Goulbum at Alexandra, lagoons the tributary Yea R. at Yea, some 30 km downstream from Alexandra. More significant in terms ofconservation is its discovery in Mt William National H. mirabilis be Park, NE Tasmania. can no longer regarded as an endangered sp. INTRODUCTION The metallic tiny, blue-green, greenor bronze damselfly Hemiphlebia mirabilis is the Australian odonate included Selys only as an endangered species in the I.U.C.N. Invertebrate Red Data Book (WELLS et al„ 1983; SANT & NEW, is 1988). It taxonomically isolated, constituting a monotypic superfamily, and its affinities are not understood.
    [Show full text]
  • Critical Species of Odonata in Australia
    ---Guardians of the watershed. Global status of Odonata: critical species, threat and conservation --- Critical species of Odonata in Australia John H. Hawking 1 & Gunther Theischinger 2 1 Cooperative Research Centre for Freshwater Ecology, Murray-Darling Freshwater Research Centre, PO Box 921, Albury NSW, Australia 2640. <[email protected]> 2 Environment Protection Authority, New South Wales, 480 Weeroona Rd, Lidcombe NSW, Australia 2141. <[email protected]> Key words: Odonata, dragonfly, IUCN, critical species, conservation, Australia. ABSTRACT The Australian Odonata fauna is reviewed. The state of the current taxonomy and ecology, studies on biodiversity, studies on larvae and the all identification keys are reported. The conservation status of the Australian odonates is evaluated and the endangered species identified. In addition the endemic species, species with unusual biology and species, not threatened yet, but maybe becoming critical in the future are discussed and listed. INTRODUCTION Australia has a diverse odonate fauna with many relict (most endemic) and most of the modern families (Watson et al. 1991). The Australian fauna is now largely described, but the lack of organised surveys resulted in limited distributional and ecological information. The conservation of Australian Odonata also received scant attention, except for Watson et al. (1991) promoting the awareness of Australia's large endemic fauna, the listing of four species as endangered (Moore 1997; IUCN 2003) and the suggesting of categories for all Australian species (Hawking 1999). This conservation report summarizes the odonate studies/ literature for species found in Continental Australia (including nearby smaller and larger islands) plus Lord Howe Island and Norfolk Island. Australia encompasses tropical, temperate, arid, alpine and off shore island climatic regions, with the land mass situated between latitudes 11-44 os and 113-154 °E, and flanked on the west by the Indian Ocean and on the east by the Pacific Ocean.
    [Show full text]
  • Ecosystem Services Provided by the Little Things That Run the World
    Chapter 13 Ecosystem Services Provided by the Little Things That Run the World Olga Maria Correia Chitas Ameixa,Chitas Ameixa, António Onofre Soares,Onofre Soares, Amadeu M.V.M. SoaresM.V.M. Soares and andAna AnaI. Lillebø I. Lillebø Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.74847 Abstract Highest extinction risk and consequently biodiversity loss are predicted to occur in inver- tebrates, specifically insects, and these declines are expected to cascade onto ecosystem functioning and human well-being. Although this knowledge is intrinsically present in more traditional communities, in more urban environments, mapping ecosystem ser - vices can be an important tool to raise people’s awareness on the importance of pre - serving insect diversity. After an extensive revision of the available literature, we used a rule-based approach to assess the provisioning, regulating and maintenance, and cul - tural services delivered by insects. We followed the Common International Classification of Ecosystem Services (CICES) and identified several potential indicators that may help underpin the mapping and valuation of the services delivered by insects. From our search, we extracted a total of 73 indicators, divided as 17 Provisional indicators, 27 Regulation and Maintenance indicators, and 29 Cultural indicators. We concluded that insects are providers of services in the three major ‘Sections’ of ecosystem services defined by CICES. Despite the lack of recognition of provisioning and cultural services, the indicators provided may help to raise awareness on the importance of the little things the run the world, in order to preserve traditional and technological uses of insects and their services.
    [Show full text]
  • The Classification and Diversity of Dragonflies and Damselflies (Odonata)*
    Zootaxa 3703 (1): 036–045 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3703.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:9F5D2E03-6ABE-4425-9713-99888C0C8690 The classification and diversity of dragonflies and damselflies (Odonata)* KLAAS-DOUWE B. DIJKSTRA1, GÜNTER BECHLY2, SETH M. BYBEE3, RORY A. DOW1, HENRI J. DUMONT4, GÜNTHER FLECK5, ROSSER W. GARRISON6, MATTI HÄMÄLÄINEN1, VINCENT J. KALKMAN1, HARUKI KARUBE7, MICHAEL L. MAY8, ALBERT G. ORR9, DENNIS R. PAULSON10, ANDREW C. REHN11, GÜNTHER THEISCHINGER12, JOHN W.H. TRUEMAN13, JAN VAN TOL1, NATALIA VON ELLENRIEDER6 & JESSICA WARE14 1Naturalis Biodiversity Centre, PO Box 9517, NL-2300 RA Leiden, The Netherlands. E-mail: [email protected]; [email protected]; [email protected]; [email protected]; [email protected] 2Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany. E-mail: [email protected] 3Department of Biology, Brigham Young University, 401 WIDB, Provo, UT. 84602 USA. E-mail: [email protected] 4Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium. E-mail: [email protected] 5France. E-mail: [email protected] 6Plant Pest Diagnostics Branch, California Department of Food & Agriculture, 3294 Meadowview Road, Sacramento, CA 95832- 1448, USA. E-mail: [email protected]; [email protected] 7Kanagawa Prefectural Museum of Natural History, 499 Iryuda, Odawara, Kanagawa, 250-0031 Japan. E-mail: [email protected] 8Department of Entomology, Rutgers University, Blake Hall, 93 Lipman Drive, New Brunswick, New Jersey 08901, USA.
    [Show full text]
  • INTRODUCTION to Dragonfly and Damselfly Watching
    Booklet.qxd 11.07.2003 10:59 AM Page 1 TEXAS PARKS AND WILDLIFE INTRODUCTION TO Dragonfly and Damselfly Watching BY MARK KLYM AND MIKE QUINN Booklet.qxd 11.07.2003 10:59 AM Page 2 Cover illustration by Rob Fleming. Booklet.qxd 11.07.2003 10:59 AM Page 3 Introduction to Dragonfly and Damselfly Watching By Mark Klym and Mike Quinn Acknowledgement This work would not have been possible without the input of Bob Behrstock, John Abbott and Sid Dunkle who provided technical information on the Order Odonata in Texas. This is not the first book about this order of insects, and the work of Sid Dunkle in Dragonflies Through Binoculars was a great help in assembling and presenting the material. Pat Morton was a great help in reviewing the material and keeping the work on track. Booklet.qxd 11.07.2003 10:59 AM Page 4 INTRODUCTION Background Dragonflies and Damselflies are members of the insect order Odonata, derived from the Greek word odonto meaning tooth. They are insects meaning that they have three body regions — a head, a thorax to which their four wings and six legs are attached and an abdomen. They are characterized by two pairs of net-veined wings and large compound eyes. Their wings are not linked together, allowing each wing to operate independently of the others. Damselflies have narrowly rectangular heads and eyes separated by more than their own width while dragonfly eyes are never separated by more than their own width. Both are preda- tors throughout their lives and valuable in destroying mosquitoes, gnats and other insects though they can become pests near beehives and may take other beneficial insects like butterflies.
    [Show full text]
  • Dragonfly (Pg. 3-4) Head Eye Color
    QUICK GUIDE TO DAMSELFLY & DRAGONFLY FAMILIES Most useful features for identification: Damselfly (pg. 2) Dragonfly (pg. 3-4) Head eye color; spots/bars eye color & shape; color & markings on face (T-spot, line) Thorax shape & color of stripes on top & sides presence, shape, and color of stripes on top & sides Abdomen color; markings on top, esp. S2 and S8-S10 color; markings on top, esp. S2 and S8-S10; presence of “club” at the end Wings color & shape of stigma; orientation when perched color of wing bases, veins, and stigma; color & shape of wing spots, bands, or patches Legs color color Forewings & hindwings similar in size & shape, held Hindwings broader than forewings; wings held out together over abdomen or no more than partly spread horizontally when perched; eyes meet at front of head when perched; eyes widely separated (i.e., by the or slightly separated (i.e., by less than the width of the width of the head) head) 1 Damselfly Dragonfly Vivid Dancer (Argia vivida); CAS Mazzacano Cardinal Meadowhawk (Sympetrum illotum); CAS Mazzacano DAMSELFLIES Wings narrow, stalked at base 2 Wings broad, colored, not stalked at base 3 Wings held askew Wings held together Broad-winged Damselfly when perched when perched (Calopterygidae); streams Spreadwing Pond Damsels (Coenagrionidae); (Lestidae); ponds ponds, streams Dancer (Argia); Wings held above abdomen; vivid colors streams 4 Wings held along Bluet (Enallagma); River Jewelwing (Calopteryx aequabilis); abdomen; mostly blue ponds CAS Mazzacano Dark abdomen with blue Forktail (Ischnura); tip;
    [Show full text]