Emergencies in Space

Total Page:16

File Type:pdf, Size:1020Kb

Emergencies in Space THE PRACTICE OF EMERGENCY MEDICINE/CONCEPTS Emergencies in Space Richard L. Summers, MD From the Department of Emergency Medicine, University of Mississippi Medical Center, Smith L. Johnston, MD Jackson, MS (Summers); and Medical Operations, Office of Space Medicine, (Johnston, Thomas H. Marshburn, MD Marshburn) and Astronaut Office (Williams), National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, TX. Dave R. Williams, MD Manned spaceflight is inherently risky and results in unique problems from a trauma and medical perspective. Emergency care under these special physiologic and environmental conditions calls for novel techniques for diagnosis and therapy. [Ann Emerg Med. 2005;46:177-184.] 0196-0644/$-see front matter Copyright ª 2005 by the American College of Emergency Physicians. doi:10.1016/j.annemergmed.2005.02.010 INTRODUCTION traditional emergency medical principles could be applied for Despite the immense technological feats associated with rescue, injury evaluation, and acute treatment. However, there human extraterrestrial travel, there is always the potential need have also been in-flight incidents, including fires, vehicular for emergency medical attention. Historically, the difficulties collisions, and loss of environmental controls. These problems associated with illness and injury have accounted for the failures represent primarily technical glitches in which the resultant of more expeditions on Earth’s frontiers than any other single medical complications could have required emergency technical or environmental reason.1 It is reasonable to believe management. Because these events happened while the the same would also be true for the exploration of space. vehicle was still in orbit, the emergency approach required In space, as in most remote inhabitations, most medical consideration of the conditions of microgravity, the remote problems are manageable locally until definitive diagnosis and environment, and the limitation of resources. While reviewing treatment are available. However, when the problem is an the history of space medical urgencies and emergencies, one emergency and the closest medical facility is thousands of miles must remember that the direction of space exploration is away, then there are significant risks of an adverse outcome. constantly changing, and different and unforeseen emergencies Evacuation from space is costly and arduous and may not be could also arise. possible in a timely manner. Fortunately, astronaut selection, medical screening, and the short duration of most missions have Risk of an Emergency made medical emergencies rare. As space exploration progresses To date, the majority of space exploration has involved to longer missions, interplanetary travel, and possible extrater- healthy young individuals (average age approximately 40 years; restrial colonization with diverse and older populations, the approximately 20% are female astronauts) who have undergone need for improved medical preparation will become increasingly intensive medical screening and remain in space for only short important. Providing emergency medical care to this group will periods. In considering longer missions with more diverse crews, undoubtedly be the most difficult obstacle in any operations such as the extended occupancy of the International Space and contingency planning. This article examines the current Station or a possible voyage to Mars, then it is increasingly state of emergency medical care for those exploring the frontier important to plan for a medical emergency. of space. Risk analysis is the first step in any medical contingency planning. Using actuarial data, it is possible to estimate the risk History of Emergencies During Space Flight of an emergency medical event during space flight.1-3 In the In more than 60 person-years of manned spaceflight general population, the emergency incidence rate is usually involving more than 400 astronauts and cosmonauts, there have considered to be about 0.06 events per person-year. If a been only 21 fatalities from 5 events.1 However, there have been 7-member crew were to travel for 2.4 years to Mars (the multiple near catastrophes. Most mishaps that involved injuries approximate expected duration of such a trip), then we could have occurred during liftoff or reentry and include near expect 0.06 events per person-yearÂ7 personsÂ2.4 years=1.0 drownings, cabin decompression, and blunt trauma. In one emergency. incident, after landing 1,200 miles off target in 5 feet of snow, a This finding is consistent with the analysis from the cosmonaut of the Russian Voskhod 2 was attacked by wolves Longitudinal Study of Astronaut Health and data from the when he tried to exit the spacecraft. Because these medical Russian Space Program.4 Although this calculation may be events were all essentially ground-based accidents, the reasonable for estimating risk during future space travel when Volume 46, no. 2 : August 2005 Annals of Emergency Medicine 177 Emergencies in Space Summers et al the general population is involved, the current medical Trauma screening criteria for astronauts may make such a prediction Ophthalmology 1 unrealistic for routine mission planning. Second-degree burns 1 On examining evacuation rates for medical emergencies from Cardiopulmonary the Antarctic McMurdo Station, we can calculate an incidence Arrhythmias 2 of 0.036 events per person-year. The general crew health and Pneumonitis 4 the environment of isolation at such a station may reflect the Reactive airways 1 conditions faced by the astronauts, although the potential for an Internal Medicine emergency medical event may be somewhat different. In the Chronic headaches 1 Figure is a summary of all nonfatal severe medical events during Cellulitis of arm 1 spaceflight from 1961 to 1999 (total=17).1,2 In reviewing the Other unspecified 1 Genitourinary Figure, note the relative lack of trauma in the events recorded. Renal stone 1 This finding is in sharp contrast to the 48% trauma as a reason 1,2 Urinary retention 1 for evacuation from McMurdo Station. Prostatitis 1 A retrospective review of records from the National Urosepsis 2 Aeronautics and Space Administration (NASA) Johnson Space Center Longitudinal Study of Astronaut Health was conducted Figure. Summary of nonfatal spaceflight severe medical events in 1999 to estimate the occurrence, type, and severity of general (1961-1999), Total=17. illness in the astronaut population while they were not on active duty.4 Each event was classified according to medical signifi- cance, particularly with regard to whether it would have required emergency evacuation or could have been managed by prolonged space travel, the low afterload resistance and reduced the health maintenance facility planned for the International sympathetic outflow has been postulated to result in cardiac Space Station had the event occurred in flight.5 After subtrac- atrophy and loss of function.9 More recent evidence suggests tion of the events that were unlikely to occur in microgravity or that changes in ventricular volumes may be due to fluid would have been detected in preflight screening, an anticipated redistributions instead of atrophy.10 Despite an accentuation in medical evacuation incidence of 0.02 events per person-year was lung blood flow, there is no increase in alveolar fluid. Lung determined from the data. Using the onboard health mainte- volumes are changed with a 15% decrease in tidal volume and nance facility to treat less severe medical conditions would have an 18% decrease in alveolar and physiologic dead space. As a reduced the likelihood to 0.01 events per person-year for this result, there is small increase in the respiratory rate.7,8 During group of astronauts. This estimation is consistent with the prolonged exposure to microgravity, astronauts lose a small extensive data from the Russian program in which 3 percentage of total body calcium and bone density, which cosmonauts have been evacuated in 41.5 years of space flight results in an increase in urinary calcium.6-8 Muscles can also and in which the Mir Space Station had 1 medical evacuation in atrophy, with up to a 20% loss in strength and with associated 31 person-years.1,2 neuroplastic changes.6-8 There is also a decrease in lymphocyte numbers, with an increase in leukocytes but with a reduced Physiology and Pharmacology of Microgravity ability for phagocytosis.8,11 Circadian rhythms and sleep A microgravity environment results in such significant patterns are usually disrupted and can induce psychophysiologic physiologic changes that in the early years of space exploration, responses to stress.8,12 it was uncertain whether humans could even survive in space. More than 75% of all shuttle astronauts have taken some All physiologic and pharmacologic aberrations in response to form of medication for conditions typically considered microgravity should be considered when any therapeutic nonemergency (motion sickness, headache, sleeplessness, and responses to medical emergencies are contemplated during back pain) during their missions.13,14 Gastrointestinal motility spaceflight. appears to be significantly reduced during the first 72 hours of a On entering microgravity, there is an immediate shift of mission. Furthermore, space motion sickness symptoms, which dependent fluids cephalad, with a resulting diuresis and a include nausea and vomiting, may also affect drug absorption decrease in systemic plasma volume of 10% to 20% and a when drugs are taken orally. The changes in extracellular fluid transient
Recommended publications
  • 5-8 Satellites and “Weightlessness” Objects in Orbit Are Said to Experience Weightlessness
    5-8 Satellites and “Weightlessness” Objects in orbit are said to experience weightlessness. They do have a gravitational force acting on them, though! The satellite and all its contents are in free fall, so there is no normal force. This is what leads to the experience of weightlessness. 5-8 Satellites and “Weightlessness” More properly, this effect is called apparent weightlessness, because the gravitational force still exists. It can be experienced on Earth as well, but only briefly: Calculating the Local Force of Gravity So the local gravitational acceleration depends upon your distance from the center of mass. Usually this is your distance from the center of the Earth ConcepTest 5.9 Fly Me Away You weigh yourself on a scale inside an airplane that is flying with constant 1) greater than speed at an altitude of 20,000 feet. 2) less than How does your measured weight in the 3) same airplane compare with your weight as measured on the surface of the Earth? ConcepTest 5.9 Fly Me Away You weigh yourself on a scale inside an airplane that is flying with constant 1) greater than speed at an altitude of 20,000 feet. 2) less than How does your measured weight in the 3) same airplane compare with your weight as measured on the surface of the Earth? At a high altitude, you are farther away from the center of Earth. Therefore, the gravitational force in the airplane will be less than the force that you would experience on the surface of the Earth. ConcepTest 5.10 Two Satellites Two satellites A and B of the same mass 1) 1/8 are going around Earth in concentric 2) 1/4 orbits.
    [Show full text]
  • Mir-125 in Normal and Malignant Hematopoiesis
    Leukemia (2012) 26, 2011–2018 & 2012 Macmillan Publishers Limited All rights reserved 0887-6924/12 www.nature.com/leu SPOTLIGHT REVIEW MiR-125 in normal and malignant hematopoiesis L Shaham1,2, V Binder3,4,NGefen1,5, A Borkhardt3 and S Izraeli1,5 MiR-125 is a highly conserved microRNA throughout many different species from nematode to humans. In humans, there are three homologs (hsa-miR-125b-1, hsa-miR-125b-2 and hsa-miR-125a). Here we review a recent research on the role of miR-125 in normal and malignant hematopoietic cells. Its high expression in hematopoietic stem cells (HSCs) enhances self-renewal and survival. Its expression in specific subtypes of myeloid and lymphoid leukemias provides resistance to apoptosis and blocks further differentiation. A direct oncogenic role in the hematopoietic system has recently been demonstrated by several mouse models. Targets of miR-125b include key proteins regulating apoptosis, innate immunity, inflammation and hematopoietic differentiation. Leukemia (2012) 26, 2011–2018; doi:10.1038/leu.2012.90 Keywords: microRNA; hematopoiesis; hematological malignancies; acute myeloid leukemia; acute lymphoblastic leukemia MicroRNAs (miRNAs) are 21–23-nucleotide non-coding RNAs that nucleotides with the seed region of miR-125b (ebv-miR-BART21-5p, have crucial roles in fundamental biological processes by ebv-miR-BART8 and rlcv-miR-rL1-25). In humans, as in most of the regulating the levels of multiple proteins. They are transcribed genomes, there are two paralogs (hsa-miR-125b-1 on chromosome as primary miRNAs and processed in the nucleus by the RNase III 11 and hsa-miR-125b-2 on chromosome 21), coding for the same endonuclease DROSHA to liberate 70-nucleotide stem loops, the mature sequence.
    [Show full text]
  • Michael R. Barratt (M.D.) NASA Astronaut
    National Aeronautics and Space Administration Lyndon B. Johnson Space Center Houston, Texas 77058 August 2020 Michael R. Barratt (M.D.) NASA Astronaut Summary: Dr. Michael R. Barratt was selected by NASA in 2000. Board certified in Internal and Aerospace Medicine, he has participated in two spaceflights. In 2009, Dr. Barratt served as Flight Engineer for Expedition 19/20. This marked the transition from three to six permanent International Space Station crew members. During this time, he performed two spacewalks. He also flew on STS-133, which delivered the Permanent Multipurpose Module and fourth Express Logistics Carrier. Currently, Dr. Barratt serves in the Mission Support branches providing medical and human factors expertise to multiple spaceflight programs. Personal Data: Born on April 16, 1959 in Vancouver, Washington. Considers Camas, Washington, to be his home town. Married to the former Michelle Lynne Sasynuik. They have five children. His mother, Donna Barratt, resides in Camas, Washington. Personal and recreational interests include sailing, boat restoration and nautical history, carpentry, writing, cooking good food in austere places, family and church activities. Education: Graduated from Camas High School, Camas, WA, 1977. Bachelor of Science in Zoology, University of Washington, 1981. Doctor of Medicine (M.D.) from Northwestern University, 1985. Completed a three-year residency in Internal Medicine at Northwestern University in 1988. Completed Chief Residency year at Veterans Administration Lakeside Hospital in Chicago in 1989. Completed residency and Master’s program in Aerospace Medicine at Wright State University in 1991. Board certified in Internal and Aerospace Medicine. NASA Experience: Dr. Barratt came to NASA JSC in May 1991 employed as a project physician with KRUG Life Sciences, working on medical systems for Space Station Freedom.
    [Show full text]
  • International Space Medicine Summit 2018
    INTERNATIONAL SPACE MEDICINE SUMMIT 2018 October 25–28, 2018 • Rice University’s Baker Institute for Public Policy • Houston, Texas INTERNATIONAL SPACE MEDICINE SUMMIT 2018 October 25–28, 2018 • Rice University’s Baker Institute for Public Policy • Houston, Texas About the Event As we continue human space exploration, much more research is needed to prevent and/or mitigate the medical, psychological and biomedical challenges spacefarers face. The International Space Station provides an excellent laboratory in which to conduct such research. It is essential that the station be used to its fullest potential via cooperative studies and the sharing of equipment and instruments between the international partners. The application of the lessons learned from long-duration human spaceflight and analog research environments will not only lead to advances in technology and greater knowledge to protect future space travelers, but will also enhance life on Earth. The 12th annual International Space Medicine Summit on Oct. 25-28, 2018, brings together the leading physicians, space biomedical scientists, engineers, astronauts, cosmonauts and educators from the world’s spacefaring nations for high-level discussions to identify necessary space medicine research goals as well as ways to further enhance international cooperation and collaborative research. All ISS partners are represented at the summit. The summit is co-sponsored by the Baker Institute Space Policy Program, Texas A&M University College of Engineering and Baylor College of Medicine. Organizers Rice University’s Baker Institute for Public Policy The mission of Rice University’s Baker Institute is to help bridge the gap between the theory and practice of public policy by drawing together experts from academia, government, media, business and nongovernmental organizations.
    [Show full text]
  • Episode 2: Bodies in Orbit
    Episode 2: Bodies in Orbit This transcript is based on the second episode of Moonstruck, a podcast about humans in space, produced by Dra!House Media and featuring analysis from the Center for Strategic and International Studies’ Aerospace Security Project. Listen to the full episode on iTunes, Spotify, or on our website. BY Thomas González Roberts // PUBLISHED April 4, 2018 AS A DOCENT at the Smithsonian National Air & Space But before humans could use the bathroom in space, a Museum I get a lot of questions from visitors about the lot of questions needed to be answered. Understanding grittiest details of spaceflight. While part of me wants to how human bodies respond to the environment of outer believe that everyone is looking for a thoughtful Kennedy space took years of research. It was a dark, controversial quote to drive home an analysis of the complicated period in the history of spaceflight. This is Moonstruck, a relationship between nationalism and space travel, some podcast about humans in space. I’m Thomas González people are less interested in my stories and more Roberts. interested in other, equally scholarly topics: In the late 1940s, American scientists began to focus on Kids: I have a question. What if you need to go to the two important challenges of spaceflight: solar radiation bathroom while you're in a spacesuit? Is there a special and weightlessness.1 diaper? Aren't you like still wearing the diaper when you are wearing a spacesuit? Let'sThomas start González with radiation. Roberts is the host and executive producer of Moonstruck, and a space policy Alright, alright, I get it.
    [Show full text]
  • Various Study Papers Download
    33 rd Canadian Medical and Biological Engineering Society Conference œ Vancouver œ June 15-18 2010 Topic Area - Physiological systems and models. Plantar Biophotonic Stimulation improves Ocular-motor and Postural Control in Motor Vehicle Accident Patients. Amanmeet Garg a, Michelle Bruner a, Philippe A. Souvestre b, Andrew P. Blaber a a) Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada. b) NeuroKinetics Health Services B.C. Inc., Suite 60 Hycroft Centre, 3195 Granville Street, Vancouver, BC, Canada. Introduction: Worldwide road accident related statistics reflect a consistent increase of motor vehicle accidents (MVA). Survivors of motor vehicle accidents experience a range of head injuries from whiplash, concussion, and mild to severe traumatic brain injuries, of which the most severe may result in incapacitation or death. Central sensory-motor controls (SMC), including ocular-visual, ocular-motor, vestibular, and cerebellar systems are primarily affected. Methods: Visual-ocular convergence (VOC) and postural balance (PB) tests are used among others to measure the degree of central sensory-motor controls dysfunction. This retrospective study (n=19) investigates the effect of passive biophotonic stimulation applied to plantar postural sensory afferents on VOC and PB tests conducted during a neurophysiological evaluation. Stabilogram diffusion analysis (SDA) of the centre of pressure trajectory from the PB test was used to determine the amount of stochastic activity and dynamic behavior of postural control (Collins and De Luca, Exp Brain Res 95:308-318, 1993). Results: Visual-ocular convergence was significantly closer (p<0.001) with stimulation (5.3±1.0 cm) than without (11±1.0 cm).
    [Show full text]
  • Thought Experiments in Teaching Free-Fall Weightlessness: a Critical Review and an Exploration of Mercury’S Behavior in “Falling Elevator”
    OPEN ACCESS EURASIA Journal of Mathematics Science and Technology Education ISSN: 1305-8223 (online) 1305-8215 (print) 2017 13(5):1283-1311 DOI 10.12973/eurasia.2017.00671a Thought Experiments in Teaching Free-Fall Weightlessness: A Critical Review and an Exploration of Mercury’s Behavior in “Falling Elevator” Jasmina Balukovic Druga Gimnazija, Sarajevo, BOSNIA and HERZEGOVINA Josip Slisko Benemérita Universidad Autónoma de Puebla, MEXICO Adrián Corona Cruz Benemérita Universidad Autónoma de Puebla, MEXICO Received 9 May2016 ▪ Revised 7 June 2016 ▪ Accepted 7 June 2016 ABSTRACT Different “thought experiments” dominate teaching approaches to weightlessness, reducing students’ opportunities for active physics learning, which should include observations, descriptions, explanations and predictions of real phenomena. Besides the controversy related to conceptual definitions of weight and weightlessness, we report another controversy regarding the position of the person that weighs herself or himself in a freely-falling elevator, a “thought experiment” commonly used for introducing the concept of weightlessness. Two XIX-century “thought experiments”, one from America and one from Russia, show that they have a long tradition in physics teaching. We explored experimentally a “thought experiment” that deals with the behavior of a mercury drop in a freely-falling elevator. Our experimental results show that the mercury drop neither took the expected spherical shape nor performed oscillatory motions predicted by theory. Teachers should encourage
    [Show full text]
  • Human Adaptation and Safety in Space
    SICSA SPACE ARCHITECTURE SEMINAR LECTURE SERIES PART II : HUMAN ADAPTATION AND SAFETY IN SPACE www.sicsa.uh.edu LARRY BELL, SASAKAWA INTERNATIONAL CENTER FOR SPACE ARCHITECTURE (SICSA) GERALD D.HINES COLLEGE OF ARCHITECTURE, UNIVERSITY OF HOUSTON, HOUSTON, TX The Sasakawa International Center for SICSA routinely presents its publications, Space Architecture (SICSA), an research and design results and other organization attached to the University of information materials on its website Houston’s Gerald D. Hines College of (www.sicsa.uh.edu). This is done as a free Architecture, offers advanced courses service to other interested institutions and that address a broad range of space individuals throughout the world who share our systems research and design topics. In interests. 2003 SICSA and the college initiated Earth’s first MS-Space Architecture This report is offered in a PowerPoint format with degree program, an interdisciplinary 30 the dedicated intent to be useful for academic, credit hour curriculum that is open to corporate and professional organizations who participants from many fields. Some wish to present it in group forums. The document students attend part-time while holding is the second in a series of seminar lectures that professional employment positions at SICSA has prepared as information material for NASA, affiliated aerospace corporations its own academic applications. We hope that and other companies, while others these materials will also be valuable for others complete their coursework more rapidly who share our
    [Show full text]
  • Human Adaptation to Space
    Human Adaptation to Space From Wikipedia, the free encyclopedia Human physiological adaptation to the conditions of space is a challenge faced in the development of human spaceflight. The fundamental engineering problems of escaping Earth's gravity well and developing systems for in space propulsion have been examined for well over a century, and millions of man-hours of research have been spent on them. In recent years there has been an increase in research into the issue of how humans can actually stay in space and will actually survive and work in space for long periods of time. This question requires input from the whole gamut of physical and biological sciences and has now become the greatest challenge, other than funding, to human space exploration. A fundamental step in overcoming this challenge is trying to understand the effects and the impact long space travel has on the human body. Contents [hide] 1 Importance 2 Public perception 3 Effects on humans o 3.1 Unprotected effects 4 Protected effects o 4.1 Gravity receptors o 4.2 Fluids o 4.3 Weight bearing structures o 4.4 Effects of radiation o 4.5 Sense of taste o 4.6 Other physical effects 5 Psychological effects 6 Future prospects 7 See also 8 References 9 Sources Importance Space colonization efforts must take into account the effects of space on the body The sum of mankind's experience has resulted in the accumulation of 58 solar years in space and a much better understanding of how the human body adapts. However, in the future, industrialization of space and exploration of inner and outer planets will require humans to endure longer and longer periods in space.
    [Show full text]
  • Space Medicine Association 2011 Executive Committee Ballot
    Space Medicine Association 2011 Executive Committee Ballot Candidates President Elect (1 vote): 1. Kaz Shimada 2. Vernon McDonald Treasurer (1 vote): 1. Serena Aunon 2. Shannan Moynihan 3. Yael Barr Members at Large (2 votes): 1. Michelle Christgen 2. Steve Vanderark 3. Tara Castleberry 4. Frederick Bonato 5. Azhar Rafiq Please see the short biographies on the next pages To cast your vote, please reply to this email or send an email to: [email protected] with the names of your selected candidates. President Elect Position Kazuhito Shimada, M.D., Ph.D. Dr. Shimada is currently the chief of medical operations at Japanese space agency (JAXA). He has supported Japanese spaceflight crewmembers for STS-72, 87, 95, 92, 114, 123, 124, 119, 127, 131, and for ISS-19/20/21 and 22/23(21S). He supervised hypobaric and hyperbaric chamber operations, as well as weightlessness simulation diving at Tsukuba Space Cener. He served as Japanese and FAA AME, and is a vice president of FAI Medicophysiological Commission. He logged 700 hours on gliders and airplanes as a private pilot. 2010 Chief, JAXA Medical Operations 2008 AsMA Fellow 1997 ABPM board certification in Aerospace Medicine 1996 State of Ohio physician license 1993-1996 RAM at Wright State Univ.; 1995 MSci. in Aerospace Medicine 1993-present Flight Surgeon, JAXA (ex. NASDA, Japanese space agency) 1983-1992 Otolaryngology residence at Univ. of Tsukuba and Saku Central Hospital, then ENT practice at Ibaraki Kenritsu Chuo Hospital 1987 Ph.D.; Univ. of Tsukuba (auditory evoked response) 1983 M.D.; Univ. of Tsukuba, Japan President Elect Position Dr.
    [Show full text]
  • Spaceflight Induced Changes in the Central Nervous System
    DOI: 10.5772/intechopen.74232 ProvisionalChapter chapter 5 Spaceflight InducedInduced ChangesChanges inin thethe CentralCentral NervousNervous System Alex P. Michael Additional information isis available atat thethe endend ofof thethe chapterchapter http://dx.doi.org/10.5772/intechopen.74232 Abstract Although once a widely speculated about and largely theoretical topic, spaceflightinduced intracranial hypertension is more accepted as a distinct clinical phenomenon; yet, the under- lying physiological mechanisms are still poorly understood. In the past, many terms were used to describe the symptoms of malaise, nausea, vomiting, and vertigo though longer duration spaceflights have increased the prevalence of overlapping symptoms of headache and visual disturbance. Spaceflight-induced visual pathology is thought to be a manifesta- tion of increased intracranial pressure (ICP) because of its similar presentation to cases of known intracranial hypertension on Earth as well as the documentation of increased ICP by lumbar puncture in symptomatic astronauts upon return to gravity. The most likely mecha- nisms of spaceflight-induced increased ICP include a cephalad shift of body fluids, venous outflow obstruction, blood-brain barrier breakdown, and disruption to CSF flow. The rela- tive contribution of increased ICP to the symptoms experienced during spaceflight is cur- rently unknown though as other factors recently posited to contribute include local effects on ocular structures, individual differences in metabolism, and the vasodilator effects of carbon dioxide. Spaceflight-induced intracranial hypertension must be distinguished from other pathologies with similar symptomatology. The following chapter discusses the pro- posed physiologic causes and the pathological manifestations of increased ICP in the space- flight environment and provides considerations for future long-term space travel.
    [Show full text]
  • Space Physiology and Operational Space Medicine
    Space Physiology and Operational Space Medicine Richard A. Scheuring, DO, MS, FAAFP NASA-Johnson Space Center Constellation Medical Operations Flight Surgeon MAJ, MC, FS, USAR US Army Aeromedical Research Laboratory Ft. Rucker, AL Terminal Learning Objective ACTION: Understand physiological effects of micro- and partial gravity on the human body and the operational space medicine environment. CONDITION: While serving as a flight surgeon in support of space operations STANDARD: lAW The Fundamentals of Aerospace Medicine, Fundamentals of Space Medicine, and the current Space Medicine Literature 13 July 2009 R.A. Scheuring 281.483.9769 Enabling Learning Objectives • Be familiar with the effects of short- and long-duration space flight on the human body • Be familiar with the major medical concerns regarding future long duration missions — Be familiar with the available countermeasures for these effects • Be familiar with the environmental issues that have potential medical impact on the crew • Be familiar with the role and capabilities of the Space Medicine Flight Surgeon • Be familiar with the environmental impacts experienced by the Apollo crews 13 July 2009 R.A. Scheuring 281.483.9769 Physiological effects of Short- and Long Duration Space Flight on the Human Body • Space Motion Sickness (SMS) • Neurovestibular • Cardiovascular • Musculoskeletal • Immune/Hematopoietic system • Behavioral/Psycho-social 13 July 2009 R.A. Scheuring 281.483.9769 Space Motion Sickness (SMS) Q Q Z 0 s0 11-13 July 2009 R.A. Scheuring 281.483.9769 Space Motion Sickness (SMS) • Incidence — Affects approximately 66- 95% of all crewmembers — 10% of cases are severe • Symptoms — From loss of appetite to nausea and vomiting • Time Course — Onset from M ECO to 24 hours; peak symptoms at 24 to 48 hours; symptoms resolve at 72 to 96 hours 13 July 2009 R.A.
    [Show full text]