Mount Bailey - FOREST LOOKOUTS 2/15/20, 5 46 AM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fate and Behavior of Rotenone in Diamond Lake, Oregon, Usa Following Invasive Tui Chub Eradication
Environmental Toxicology and Chemistry, Vol. 33, No. 7, pp. 1650–1655, 2014 # 2014 SETAC Printed in the USA FATE AND BEHAVIOR OF ROTENONE IN DIAMOND LAKE, OREGON, USA FOLLOWING INVASIVE TUI CHUB ERADICATION BRIAN J. FINLAYSON,*y JOSEPH M. EILERS,z and HOLLY A. HUCHKOx yCalifornia Department of Fish and Game (retired), Rancho Cordova, California, USA zMaxDepth Aquatics, Bend, Oregon, USA xOregon Department of Fish and Wildlife, Roseburg, Oregon, USA (Submitted 5 August 2013; Returned for Revision 15 September 2013; Accepted 7 April 2014) Abstract: In September 2006, Diamond Lake (OR, USA) was treated by the Oregon Department of Fish and Wildlife with a mixture of powdered and liquid rotenone in the successful eradication of invasive tui chub Gila bicolor. During treatment, the lake was in the middle of a phytoplankton (including cyanobacteria Anabaena sp.) bloom, resulting in an elevated pH of 9.7. Dissipation of rotenone and its major metabolite rotenolone from water, sediment, and macrophytes was monitored. Rotenone dissipated quickly from Diamond Lake water; fi approximately 75% was gone within 2 d, and the average half-life (t1/2) value, estimated by using rst-order kinetics, was 4.5 d. Rotenolone > persisted longer ( 46 d) with a short-term t1/2 value of 16.2 d. Neither compound was found in groundwater, sediments, or macrophytes. The dissipation of rotenone and rotenolone appeared to occur in 2 stages, which was possibly the result of a release of both compounds from decaying phytoplankton following their initial dissipation. Fisheries managers applying rotenone for fish eradication in lentic environments should consider the following to maximize efficacy and regulatory compliance: 1) treat at a minimum of twice the minimum dose demonstrated for complete mortality of the target species and possibly higher depending on the site’s water pH and algae abundance, and 2) implement a program that closely monitors rotenone concentrations in the posttreatment management of a treated water body. -
Primitive Magmas at Five Cascade Volcanic Fields 413
397 The Canadian M ine ralo g i st Vol. 35, pp. 397423 (1997) PRIMITIVEMAGMAS AT FIVECASCADE VOLCANIC FIELDS: MELTSFROM HOT, HETEROGENEOUS SUB.ARC MANTLE CHARLES R. BACONI, PEGGY E. BRUGGMAN, ROBERT L. CHRISTIANSEN, MICHAEL A. CLYNNE" JULIE M. DONNELLY-NOLAN ANDWES HILDRETH U.S.Geological Survey, 345 Mitdl.efield Road" Mmlo Parh Califurnia94025-3591,U.SA. ABSTRACT Major and trace elementconcenftations, including REE by isotopedilution, and Sr, Nd, Pb, and O isotoperatios have been determinedfor 38 mafic lavasfrom the Mount Adams,Crater Lake, Mount ShastaMedicine Lake, and Lassenvolcanic flelds, in the Cascadearc, northwestempart of the United States.Many of the sampleshave a high Mg# tl@Mg/(Mg + FeD > 601and Ni content(>140 ppm) suchthat we considerthem to be primitive. We rccognlzerhree end-member p:,jmillrve magma groups in the Cascades,characterized mainly by their trace-elementand alkali-metal abundances:(1) High-alumina olivine tholeiite (HAOT) hastrace element abundaaces similarto N-MORB, exceptfor slightly elevatedLllE, andhas Eu/Eu* > 1. (2) Arc basalt andbasaltic andesite have notably higher L/lE contents,generally have higher SiO2contents, are more oxidized andhave higher Cr for a given Ni abundancethan HAOT. Theselavas show relative depletioninl/F.i4 havelowerl/ftEE andhigherl,ftEEthan HAOT, andhave smallerEulEu* (0.94-1.06).(3) Alkali basaltfrom the Simcoevolcanic field eastof Mount Adamsreprcsents the third end-membr, which contributesan intraplate geochemicalsigpature to magna compositions.Notable geochemical featuresamong -
Oregon Geography
Oregon Geography 4th Grade Social Studies Medford School District 549c Created by: Anna Meunier and Sarah Flora Oregon Geography 4th Grade Social Studies Medford School District 549c Table of Contents Oregon Geography Unit Syllabus ........................................................................ 1 Oregon Geography Unit Objectives ..................................................................... 2 Oregon Geography Unit Lesson Plans.................................................................. 3 Print Shop Order ................................................................................................. 4 Oregon Geography Unit Lessons ......................................................................... 6 Oregon Geography Daily Lessons ...................................................................... 19 Lesson #1 ........................................................................................................................................ Lessons #2 & #3 .............................................................................................................................. Lesson #4 ........................................................................................................................................ Lesson #5 ........................................................................................................................................ Lesson #6 ....................................................................................................................................... -
USGS Scientific Investigations Map 2832, Pamphlet
Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon By Charles R. Bacon Pamphlet to accompany Scientific Investigations Map 2832 View from the south-southwest rim of Crater Lake caldera showing the caldera wall from Hillman Peak on the west to Cleetwood Cove on the north. Crater Lake fills half of the 8- by 10-km-diameter caldera formed during the climactic eruption of Mount Mazama volcano approximately 7,700 years ago. Volcanic rocks exposed in the caldera walls and on the flanks record over 400,000 years of eruptive history. The exposed cinder cone and andesite lava flows on Wizard Island represent only 2 percent of the total volume of postcaldera volcanic rock that is largely covered by Crater Lake. Beyond Wizard Island, the great cliff of Llao Rock, rhyodacite lava emplaced 100–200 years before the caldera-forming eruption, dominates the northwest caldera wall where andesite lava flows at the lakeshore are approximately 150,000 years old. 2008 U.S. Department of the Interior U.S. Geological Survey This page intentionally left blank. CONTENTS Introduction . 1 Physiography and access . 1 Methods . 1 Geologic setting . 4 Eruptive history . 5 Regional volcanism . 6 Pre-Mazama silicic rocks . 6 Mount Mazama . 7 Preclimactic rhyodacites . 9 The climactic eruption . 10 Postcaldera volcanism . .11 Submerged caldera walls and floor . .11 Glaciation . .11 Geothermal phenomena . 12 Hazards . 13 Volcanic hazards . 13 Earthquake hazards . 14 Acknowledgments . 14 Description of map units . 14 Sedimentary deposits . 15 Volcanic rocks . 15 Regional volcanism, northwest . 15 Regional volcanism, southwest . 17 Mount Mazama . 20 Regional volcanism, east . 38 References cited . -
Oregon – Crater Lake National Park
Oregon – Crater Lake National Park Trip Summary This adventure in and around Crater Lake highlights the beauty of Oregon in more ways than one! From hiking to the tops of peaks with 360 degree views in all directions to pedaling down pleasant bike paths without a care in the world, this trip is sure to challenge yet relax you at the same time. Hike forested trails on the lookout for colorful flowers like Macloskey’s Violet, broadleaf lupine, and Lewis’ monkeyflower. Stare into the bright blue depths of the deepest lake in the United States, formed by the collapse of an ancient volcano. Walk the streets of the beautiful town of Ashland, nestled at the base of the convergence of Siskiyou and Cascade Mountain Ranges. Take on the thrill of class III and IV whitewater on the famous Rogue River. Take in the beauty of Crater Lake National Park with Austin Adventures! Itinerary Day 1: Medford / Crater Lake National Park Shuttle from Medford to Crater Lake National Park (1hr 40min) • After a short welcome meeting, embark on your first short hike to Natural Bridge • Then, enjoy a delicious guide-prepared picnic lunch at Cloudcap Overlook • This afternoon, a strenuous hike takes you up and away from the crowds • 8,929 foot Mount Scott summit is the highest point in Crater Lake National Park • The views from the summit are the most far reaching in the park, encompassing not only the entire lake but such surrounding peaks as Mount Thielson, Mount Shasta, and Mount McLoughlin • For the next two evenings we overnight rooms at Crater Lake Lodge, perched -
Thundering Waters
CoolCool ClearClear WaterWater ThunderingThundering WWatersaters Umpqua National Forest Roseburg District Bureau of Land Management Welcome! Ron Murphy Lemolo Falls (low flow) TThishis bbrochurerochure iiss a ccooperativeooperative pprojectroject ddevelopedeveloped bbyy tthehe RRoseburgoseburg DDistrictistrict BBureauureau ooff LLandand MManagementanagement aandnd tthehe UUmpquampqua NNationalational FForest,orest, wwithith aassistancessistance ffromrom tthehe RRoseburgoseburg VVisitorsisitors aandnd CConventiononvention BBureau.ureau. Roseburg District, (541) 440-4930 Bureau of Land Management 777 NW Garden Valley Blvd. Roseburg, OR 97470 www.or.blm.gov/roseburg (brochure downloadable here) Umpqua National Forest (541) 672-6601 2900 NW Stewart Parkway Roseburg, OR 97470 North Umpqua Ranger District (541) 496-3532 Diamond Lake Ranger District (541) 498-2531 Cottage Grove Ranger District (541) 767-5000 Tiller Ranger District (541) 825-3100 www.fs.fed.us/r6/umpqua Roseburg Visitors (541) 672-9731 ToketeeToketee FallsFalls and Convention Bureau 410 SE Spruce Street U.S.U.S. DEPARTMENTDEPARTMENT OFOF TTHEHE INTERIORINTERIOR Roseburg, OR 97470 BBUREAUUREAU OFOF LANDLAND MANAGEMENTMANAGEMENT www.visitroseburg.com BLM/OR/WA/G1-99/027+4800 UMP-05-01 2/05 Cover Photo: Dave Lines North Umpqua River Waterfalls Umpqua National Forest 23 Roseburg BLM 26-3-1 Picnic/Day-use Area r Campground C 38 78 nt n Cr Rock Creek Ca o Lone Pine Cr Scaredman 11 Steamboat Falls Rock Creek Millpond 10 at 17 2610 Fish Hatchery Rock Canton Cr. Sambote Swiftwater R Island -
Diamond Lake TMDL Supplemental Information
Appendix 4: Diamond Lake TMDL Supplemental Information This document is supplemental to the Umpqua Basin Diamond Lake TMDL (Chapter 6) The following report was prepared by J.C. Headwaters, Inc. J.C. Headwaters, Inc. TMDL Modeling and Analysis of Diamond Lake, Oregon Prepared for the Oregon Department of Environmental Quality Eugene, OR By Joseph M. Eilers1 Benn J. Eilers1 and Jake Kann2 December 2003* *Modified December 2005 _____________________________________________ 1Current Affiliation: MaxDepth Aquatics, Inc. 1900 NE 3rd St., Suite 106-10, Bend, OR 97701 2Aquatic Ecosystem Sciences, 295 East Main St., Ashland, OR 97520 TABLE OF CONTENTS ABSTRACT…………………………………………………………………….. .2 INTRODUCTION…………………………………………………………….….3 METHODS…………………………………………………………………….…7 1. Access Database………………………………………………………..7 2. Hydrologic Budget………………………………………………….….7 3. Hydrodynamic Model……………………………………………….…9 4. Assessment of Biological Communities……………………………....10 5. Paleolimnology………………………………………………………..12 6. Biological Model……………………………………………………...13 RESULTS………………………………………………………………………..18 1. Access Database……………………………………………………….18 2. Hydrologic Budget and Nutrient Fluxes………………………………18 3. Hydrodynamic Model (CE-QUAL-W2)………………………………27 4. Biological Assessment of Diamond Lake……………………………..28 INTERNAL LOADING AND THE NEED FOR A BIOLOGICAL MODEL….52 DEVELOPMENT AND APPLICATION OF THE FIN-S MODEL……………57 TOTAL MAXIMUM DAILY LOAD…….………………………….………….67 1. Fish-Based TMDL……………………………………………………67 2. Uncertainty Analysis…………………………………………………68 CONCLUSIONS…………………………………………………………………69 REFERENCES………………………………………………………………… ..71 ACKNOWLEDGEMENTS……………………………………………………. .75 APPENDICES……………………………………………………………… …75 ABSTRACT Diamond Lake, Oregon is a 1,226 ha lake in the central Cascades located at an elevation of 1580 m. The lake does not meet water quality standards for pH and algae. Since 2001 2 the lake has been experiencing large blooms of the cyanobacteria, Anabaena flos-aquae. In addition, the cyanobacteria have been producing a toxin, anatoxin-a, at levels considered potentially injurious to humans. -
Geology and Mineral Resource Potential Map of the Windigo
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Geology and mineral resource potential map of the Windigo-Thielsen Roadless Area, Douglas and Klamath Counties, Oregon By David R. Sherrod, 1 o John R. Benham, and Norman S. MacLeod* Open-File Report 83-660 1-U.S. Geological Survey ^U.S. Bureau of Mines 1983 STUDIES RELATED TO WILDERNESS Under the provisions of the Wilderness Act (Public Law 88-577, Sept. 3, 1964) and related acts, the U.S. Geological Survey and the U.S. Bureau of Mines have been conducting mineral surveys of wilderness and primitive areas. Areas officially designated as "wilderness," "wild," or "canoe" when the act was passed were incorporated into the National Wilderness Preservation System and some of them are presently being studied. The act provided that areas under consideration for wilderness designation should be studied for suitability for incorporation into the Wilderness System. The mineral surveys constitute one aspect of the suitability studies. The act directs that the results of such surveys are to be made available to the public and be submitted to the President and the Congress. This report discusses the results of a mineral survey of the Windigo-Thielsen Roadless Area (6132) in the Deschutes, Umpqua, and Winema National Forests, Douglas and Klamath Counties, Oregon. The Windigo-Thielsen Roadless Area was classified as a further planning area during the Second Roadless Area Review and Evaluation (RARE II) by the U.S. Forest Service, January, 1979; part of the area was administratively endorsed as wilderness in April 1979. SUMMARY The Windigo-Thielsen Roadless Area has no identified metallic mineral resources and there is no evidence of a potential for their occurrence. -
Lemolo Lake Resort Douglas County
™ ® proudly presents Lemolo Lake Resort douglas county . oregon FARM, RANCH, AND RECREATIONAL REAL ESTATE • Stunning Setting - 500 Acre Lake 140’ Deep with both water skiing and jet skiing. Set just to the North of Crater Lake National Park This is a Tremendous Opportunity, the Lemolo Lake • Huge One of a Kind Development Opportunity In an Area of Resort is primed and ready for enormous advances! Virtually No Competition • The Resort is NOT on the Historic Registry - Which means Owners will consider terms with a qualifying credit modifications the existing infostructor are allowed and easy to do and strong down payment. • +/-80 Developable Acres (Has already passed NEPA Study, Scoping and Public Comment) Permit will allow for New Lodge, Homesite, and additional 200+ cabins Lemolo Lake Resort, located just 15 miles from the • Approved “Master Development Plan” signed 01-01-2007 and 20 North Entrance of Crater Lake National Park, and Year Change to “Master Development Plan” situated at 4300 feet in the beautiful Oregon Cascade • 15 Miles N.E. of Crater Lake National Park Range, offers a myriad of activities for the outdoor • On the North Umpqua Trail enthusiast. • World Class German Brown Fishing (We could have the new State Record?) In the summer, guests enjoy boating and jet skis; in • Excellent Kokanee Production 16-18” • Hiking, Cross Country Skiing, Snow Machine Trails, Hunting, Jet the winter, cozy cabins warm guests from all over the Skiing, Boating, Water Skiing and Fishing world. From right outside their cabin door, there are • Elk, Deer, Bear, Cougar, Birds... miles to discover snowshoeing and 350 plus miles of • 12 Miles from Diamond Lake Resort groomed snowmobile trails. -
CRATER LAKE NATIONAL PARK 1920 Season: July 1 to September 30
DEPARTMENT OF THE INTERIOR JOHN BARTON PAYNE. SECRETARY NATIONAL PARK SERVICE STEPHEN T. MATHER. DIRECTOR RULES AND REGULATIONS CRATER LAKE NATIONAL PARK 1920 Season: July 1 to September 30 WASHINGTON GOVERNMENT PRINTING OFFICE 1920 THE PHANTOM SHIP. LLAO HOCK FLOW FILLING AN EAIILIER VALLEY OF THE RIM. THE NATIONAL PARKS AT A GLANCE. [Number, 19, total area 10,839 square miles.] Area in National parks in Location. square Distinctive characteristics. order of creation. miles. Hot Springs. Middle Arkansas. 1] 46 hot springs possessing curative properties—Many 1832 hotels and boarding houses—20 bathhouses under public control. Yellowstone. Northwestern Wyo 3,3-18 More geysers than in all rest of world together- 1872 ming. Boiling springs—Mud volcanoes—Petrified for ests—Grand Canyon of the Yrellowrstone, remark able for gorgeous coloring—Large lakes—Many large streams and waterfalls—Vast wilderness, greatest wild bird and animal preserve in world— Exceptional trout fishing. Sequoia. Middle eastern Cali 252 The Big Tree National Park—12,000 sequoia trees 1890 fornia. over 10 feet in diameter, some 25 to 36 feet in di ameter—Towering mountain ranges—Startling precipices—Cave of considerable size. Yosemlto... Middle eastern Cali 1,125 Valley of world-famed beauty—Lofty cliffs—Ro 1890 fornia. mantic vistas—Many waterfalls of extraordinary height—3 groves of big trees—High Sierra— Waterwheol falls—Good trout fishing. General Grant. Middle eastern Cali 4 Created to preserve the celebrated General Grant 1890 fornia. Tree, 35 feet in diameter—G miles from Sequoia National Park. Mount Rainier West central Wash 32-1 Largest accessible single peak glacier system—28 ington. -
Historical Snowdepth Comparison Along the Cascade Range This Compilation Is ©2002-2005 Amar Andalkar
Page 1 of 5 Historical Snowdepth Comparison along the Cascade Range This compilation is ©2002-2005 Amar Andalkar www.skimountaineer.com Snowdepths in inches for the listed period of record, measured at snow courses, snow stakes, and automated gauges Data provided by: throughout the length of the Cascade Range. Note that snowfall data is available for only a few of these sites. BCRFC British Columbia River Forecast Centre NWAC Northwest Weather & Avalanche Center NRCS Natural Resources Conservation Service WRCC Western Regional Climate Center Updated through the 2003-2004 season. Italicized numbers are estimated based on limited available data. CCSS California Cooperative Snow Surveys NPS National Park Service See the end of the chart for an explanation of the Depth and Variability classification codes. WBSR Whistler Blackcomb Ski Resort ECNCA Environment Canada National Climate Archive BRITISH COLUMBIA Jan 1 Feb 1 Mar 1 Apr 1 May 1 Depth Variab 350 Bridge Glacier, N of Mt Meager (4600 ft) 350 Tenquille Lake, E of Mt Meager (5500 ft) Bridge Glacier (Lower) Average 47 61 65 69 61 Avg Snowfall — L LV 300 300 4600 ft (15 miles north of Mt Meager) Minimum 32 48 40 47 43 Max Snowfall — 250 250 BCRFC, monthly, 1995–present Maximum 63 88 117 108 87 Max Depth 117 (1999) 200 200 This fairly new measurement site is located at the eastern end of the Lillooet Icefield, in the next drainage north of the Mount Meager 171 150 150 Volcanic Complex. Snowdepths are relatively low but quite consistent due to its northerly location and icefield margin microclimate. -
Schedule of Proposed Action (SOPA) 01/01/2020 to 03/31/2020 Umpqua National Forest This Report Contains the Best Available Information at the Time of Publication
Schedule of Proposed Action (SOPA) 01/01/2020 to 03/31/2020 Umpqua National Forest This report contains the best available information at the time of publication. Questions may be directed to the Project Contact. Expected Project Name Project Purpose Planning Status Decision Implementation Project Contact R6 - Pacific Northwest Region, Regionwide (excluding Projects occurring in more than one Region) Regional Aquatic Restoration - Wildlife, Fish, Rare plants Completed Actual: 12/18/2019 01/2020 James Capurso Project - Watershed management 503-808-2847 EA [email protected] *UPDATED* Description: The USFS is proposing a suite of aquatic restoration activities for Region 6 to address ongoing needs, all of which have completed consultation, including activities such as fish passage restoration, wood placement, and other restoration activities. Web Link: http://www.fs.usda.gov/project/?project=53001 Location: UNIT - R6 - Pacific Northwest Region All Units. STATE - Oregon, Washington. COUNTY - Adams, Asotin, Benton, Chelan, Clallam, Clark, Columbia, Cowlitz, Douglas, Ferry, Franklin, Garfield, Grant, Grays Harbor, Island, Jefferson, King, Kitsap, Kittitas, Klickitat, Lewis, Lincoln, Mason, Okanogan, Pacific, Pend Oreille, Pierce, San Juan, Skagit, Skamania, Snohomish, Spokane, Stevens, Thurston, Wahkiakum, Walla Walla, Whatcom, Whitman, Yakima, Baker, Benton, Clackamas, Clatsop, Columbia, Coos, Crook, Curry, Deschutes, Douglas, Gilliam, Grant, Harney, Hood River, Jackson, Jefferson, Josephine, Klamath, Lake, Lane, Lincoln, Linn, Malheur, Marion,