Symmetry, Integrability and Geometry: Methods and Applications SIGMA 12 (2016), 003, 27 pages Doubling (Dual) Hahn Polynomials: Classification and Applications Roy OSTE and Joris VAN DER JEUGT Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium E-mail:
[email protected],
[email protected] Received July 13, 2015, in final form January 04, 2016; Published online January 07, 2016 http://dx.doi.org/10.3842/SIGMA.2016.003 Abstract. We classify all pairs of recurrence relations in which two Hahn or dual Hahn polynomials with different parameters appear. Such couples are referred to as (dual) Hahn doubles. The idea and interest comes from an example appearing in a finite oscillator model [Jafarov E.I., Stoilova N.I., Van der Jeugt J., J. Phys. A: Math. Theor. 44 (2011), 265203, 15 pages, arXiv:1101.5310]. Our classification shows there exist three dual Hahn doubles and four Hahn doubles. The same technique is then applied to Racah polynomials, yielding also four doubles. Each dual Hahn (Hahn, Racah) double gives rise to an explicit new set of symmetric orthogonal polynomials related to the Christoffel and Geronimus trans- formations. For each case, we also have an interesting class of two-diagonal matrices with closed form expressions for the eigenvalues. This extends the class of Sylvester{Kac matrices by remarkable new test matrices. We examine also the algebraic relations underlying the dual Hahn doubles, and discuss their usefulness for the construction of new finite oscillator models. Key words: Hahn polynomial; Racah polynomial; Christoffel pair; symmetric orthogonal polynomials; tridiagonal matrix; matrix eigenvalues; finite oscillator model 2010 Mathematics Subject Classification: 33C45; 33C80; 81R05; 81Q65 1 Introduction The tridiagonal (N + 1) × (N + 1) matrix of the following form 0 0 1 1 BN 0 2 C B C B N − 1 0 3 C C = B C (1.1) N+1 B .