Orthogonal Polynomials and Classical Orthogonal Polynomials

Total Page:16

File Type:pdf, Size:1020Kb

Orthogonal Polynomials and Classical Orthogonal Polynomials International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 10, October 2018, pp. 1613–1630, Article ID: IJMET_09_10_164 Available online at http://iaeme.com/Home/issue/IJMET?Volume=9&Issue=10 ISSN Print: 0976-6340 and ISSN Online: 0976-6359 © IAEME Publication Scopus Indexed ORTHOGONAL POLYNOMIALS AND CLASSICAL ORTHOGONAL POLYNOMIALS DUNIA ALAWAI JARWAN Education for Girls College, Al-Anbar University, Ministry of Higher Education and Scientific Research, Iraq ABSTRACT The focus of this project is to clarify the concept of orthogonal polynomials in the case of continuous internal and discrete points on R and the Gram – Schmidt orthogonalization process of conversion to many orthogonal limits and the characteristics of this method. We have highlighted the classical orthogonal polynomials as an example of orthogonal polynomials because of they are great importance in physical practical applications. In this project, we present 3 types (Hermite – Laguerre – Jacobi) of classical orthogonal polynomials by clarifying the different formulas of each type and how to reach some formulas, especially the form of the orthogonality relation of each. Keywords: Polynomials, Classical Orthogonal, Monic Polynomial, Gram – Schmidt Cite this Article Dunia Alawai Jarwan, Orthogonal Polynomials and Classical Orthogonal Polynomials, International Journal of Mechanical Engineering and Technology, 9(10), 2018, pp. 1613–1630. http://iaeme.com/Home/issue/IJMET?Volume=9&Issue=10 1. INTRODUCTION The mathematics is the branch where the lots of concepts are included. An orthogonality is the one of the concept among them. Here we focuse on the orthogonal polynomial sequence. The orthogonal polynomial are divided in two classes i.e. classical orthogonal polynomials, Discrete orthogonal polynomials and Sieved orthogonal polynomials .There are different types of classical orthogonal polynomials such that Jacobi polynomials, Associated Laguerre polynomials and Hermite polynomials. The Jacobi polynomials are subdivided as Gegerbauer, legendre, and Chebyshev (it has its own two types). The plain Laguerre polynomial is the subclass of the Laguerre polynomials. Discrete orthogonal polynomials are based on the discrete values. In some cases these values are finite rather than an infinite sequence. The Racah polynomial is the example of discrete orthogonal polynomials. It has some special case like Hahn polynomials and dual Hahn polynomials with Meixner polynomials, Krawtchouk polynomials, and Charlier polynomials. The Sieved orthogonal polynomial is the one of orthogonal polynomial. It is classified as are sieved ultra spherical polynomials, sieved Jacobi polynomials, and polynomials. It includes modified recurrence relations. http://iaeme.com/Home/journal/IJMET 1613 [email protected] Dunia Alawai Jarwan 1.1. Definition of polynomial For a general polynomial of degree n, n n −1 Pn (x ) = a n X + a n −1 X + ..... + a 0 , an ≠ 0 [Bickel et al. 2000] We call an the leading coefficient of the polynomial. 1.2. Definition (Monic polynomial) A polynomial is monic if the coefficient of its leading term is 1. % Pn ( x ) n an − n −1 ao P ( x ) = = X + 1 X + .....+ n a a a We denote by n n n [Bickel et al. 2000], 1.3. Definition (Inner product) Let V is a real vector space. An Inner product is a real – valued function .,. on V ×V such that, for all f , g , h ∈V , I. f + g , h = f , h + g,h λ f ,g = λ f ,g II. for λ ∈ III. f , g = g, f f f IV. , g ≥ 0 and , f = 0 iff f =0 see [Milovanovic and Gradimir, 2013; Axler and Sheldon, 2015] Let us take V is our vector space, the X = (x 1 , x 2 ,...,x n ) and Y = ( y1 , y 2 ,..., y n ). Then the following is an inner product: n x , y = ∑x i y i [Axler and Sheldon, 2015] i =1 Remark 2 2 The length of vectors X by X = x , x = x 1 + ..... + x n and If X = 1 , we call X a unit vector and X is said be normalized. See [Axler and Sheldon, 2015] * The set of real – valued functions that defined on the continuous interval [a ,b ], denoted b C [a ,b ] , is a vector space. And f , g = ∫f ( x ) g ( x )dx , is an inner product. See [Milovanovic a and Gradimir, 2013] 1.4. Definition (Orthogonality in general linear spaces) Two elements a ,b of a vector space are orthogonal with respect to a given inner product .,. if a, b = 0 Definition: Orthonormal An orthonormal set is a subsect S of an inner product space, such that for all X ,y ∈S http://iaeme.com/Home/journal/IJMET 1614 [email protected] Orthogonal Polynomials and Classical Orthogonal Polynomials 0 if x ≠ y x, y = if X y 1 = [Axler and Sheldon, 2015] Remark The set of the (standard basis) vectors {e1 = (1,0,0 ), e 2 = (0,1,0 ),....,en } forms an orthonormal basis of Rn. Let υ1 , υ 2 ,...,υ k be mutually orthogonal vectors, then 2 2 2 υ + υ + ... + υ = υ + ....+ υ 1 2 k 1 k see [Axler and Sheldon, 2015] 2. ORTHOGONAL POLYNOMIAL 2.1. Orthogonality polynomial on Intervals A set of orthogonal polynomials is an (infinite of finite) sequence of polynomials, P0 (x ) , P1 (x ), P2 ( x ) ,...., where Pn (x ) has degree n and any two polynomials in the set are orthogonal to each other on the C [a ,b ] , that is b P i , P j = ∫ P i ( x ) P j ( x ) a dx =0 for i ≠ j see [Agarwal and Gradimir, 1991; Diekema and Tom, 2012; Jia and Yan-Bin, 2016] Otherwise, ∞ A sequence of polynomials P x with degree P (x ) = n for each n is called { n ( )}n= 0 n orthogonal with respect to the weight function W (x ) on the C [a, b ] if the inner product of the polynomials Pi , Pj P P P x P x w x dx h h n , m = ∫ n ( ) m ( ) ( ) = n δn ,m , n ≥ 0 0 , n ≠ m δnm = 1 , n = m With where δn ,m is the Kronecker delta function The weight function w (x ) should be continuous and positive on C [a ,b ] such that the b n moments µn = ∫w ( x )X dx , n = 0,1, 2,3,... exist. a Remark: Note that the range of the integral may be infinite. See [Bickel et al, 2000; Everitta et al, 2001; Antonia et al, 2009; Stange, 2010; Diekema and Tom, 2012; Duenas et al, 2013; Sadjang et al, 2015] 2.2. Orthogonality polynomial on Finite point sets Let X be a finite set of discrete points on R, or a countable infinite set of discrete points on R and w x , x ∈X be a set of positive constant then a system of polynomials {Pn (x )}, n = 0,1,2,.... is said to be orthogonal on X with respect the weights w x if http://iaeme.com/Home/journal/IJMET 1615 [email protected] Dunia Alawai Jarwan P n ,P m = ∑ P n (x )P m (x w) x = 0 , n ≠ m x ∈X when X is infinite ∑ Pn (x ) Pm ( x W) x = 0 , n , m = 0,1, 2,.... N , n ≠ m , or x ∈X When X is a finite set of N +1 discrete points. n In the former case we also require ∑ X w x < ∞ see ([Area et al, 1998; x ∈X Everitta et al., 2001; Arvesu et al, 2003; Clarkson, 2013; Diekema and Tom 2012; Duenas et al., 2013; Eisinberg and Giuseppe, 2007]) 2.3. Properties of orthogonal polynomials (1) All sets of orthogonal polynomials have a number of fascinating properties: Any polynomial f ( x ) of degree n can be expanded in terms of P0 , P1 ,....,Pn , that is, there exist coefficients ai such that n f ( x ) = ∑ai Pi ( x ) i =0 see [Area et al, 1998] (2) Given an orthogonal set of polynomials {P0 (x ) , P1 (x ),....} each polynomial, Pk (x ) is orthogonal to any polynomial of degree < k . (3) Any orthogonal set of polynomials {P0 ( x ), P1 ( x ) ,....} has a recurrence formula that relates any three consecutive polynomials in the sequence, that is, the relation P = a X + b P −C P n +1 ( n n ) n n n −1 exits, Where a , b ,c coefficients depend on n . Such a recurrence formula is often used to generate higher order members in the set. (4) Each polynomial in {P0 ( x ), P1 (x ),....} has all n of its roots real, distinct and strictly with in the internal of orthogonality (i.e. not on its ends). th th (5) Furthermore the roots of the n degree polynomial, Pn lie strictly inside the roots of the ( n +1) degree polynomial Pn+1 . (see [Area et al, 1998; Antonia, 2009; Masjed-jamei, 2006]) 2.4. Gram - Schmidt orthogonalization process Any infinite sequence of polynomials {Pn }with Pn having degree n forms a basis for the infinite dimensional vector space of all polynomials. Such a sequence can be turned into an orthogonal basis using the Gram – Schmidt orthogonalization process, by projecting out the components of each polynomial that are orthogonal to the polynomials already chosen. Let assume V as a vector space along with an inner product. Let B = {X 1, X 2,...., X n } as a basis for V , and not necessarily orthogonal. An orthogonal basis \ B = {ν1 ,ν 2 , ν3 ,....,ν n } may be constructed from B as follows: Then V 1 = X 2 http://iaeme.com/Home/journal/IJMET 1616 [email protected] Orthogonal Polynomials and Classical Orthogonal Polynomials x 2 ,ν 1 V = X − proj X = X − ν 2 2 ν1 2 2 1 ν 1, ν1 x 3 ,ν 2 x3 ,ν1 V = X − projν X − projν X = X − ν − ν 3 3 2 3 1 3 3 ν ,ν 2 ν ,ν 1 2 2 1 1 .
Recommended publications
  • Hermite Functions and the Quantum Oscillator REVISE
    Hermite Functions and the Quantum Oscillator Background Differentials Equations handout The Laplace equation – solution and application Concepts of primary interest: Separation constants Sets of orthogonal functions Discrete and continuous eigenvalue spectra Generating Functions Rodrigues formula representation Recurrence relations Raising and lowering operators Sturm-Liouville Problems Sample calculations: Tools of the trade: k ½ REVISE: Use the energy unit ( /m) and include the roots of 2 from the beginning. The Quantum Simple Harmonic Oscillator is one of the problems that motivate the study of the Hermite polynomials, the Hn(x). Q.M.S. (Quantum Mechanics says.): 2 du2 n ()()01 kx2 E u x [Hn.1] 2mdx2 2 nn This equation is to be attacked and solved by the numbers. STEP ONE: Convert the problem from one in physics to one in mathematics. The equation as written has units of energy. The constant has units of energy * time, m 2 has units of mass, and k has units of energy per area. Combining, has units of mk Contact: [email protected] 1/4 4 mk -1 (length) so a dimensioned scaling constant = 2 is defined with units (length) as a step toward defining a dimensionless variable z = x. The equation itself is k ½ divided by the natural unit of energy ½ ( /m) leading to a dimensionless constant 2 En n = which is (proportional to) the eigenvalue, the energy in natural units. (/km )1/2 The equation itself is now expressed in a dimensionless (mathspeak) form: du2 n ()()0 zuz2 . [Hn.2] (**See problem 2 for important details.) dz2 nn The advantage of this form is that one does not need to write down as many symbols.
    [Show full text]
  • Journal of Computational and Applied Mathematics Extensions of Discrete
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 225 (2009) 440–451 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam Extensions of discrete classical orthogonal polynomials beyond the orthogonality R.S. Costas-Santos a,∗, J.F. Sánchez-Lara b a Department of Mathematics, University of California, South Hall, Room 6607 Santa Barbara, CA 93106, USA b Universidad Politécnica de Madrid, Escuela Técnica Superior de Arquitectura, Departamento de Matemática Aplicada, Avda Juan de Herrera, 4. 28040 Madrid, Spain article info a b s t r a c t α,β Article history: It is well-known that the family of Hahn polynomials fhn .xI N/gn≥0 is orthogonal with Received 5 November 2007 respect to a certain weight function up to degree N. In this paper we prove, by using the three-term recurrence relation which this family satisfies, that the Hahn polynomials can MSC: be characterized by a ∆-Sobolev orthogonality for every n and present a factorization for 33C45 Hahn polynomials for a degree higher than N. 42C05 We also present analogous results for dual Hahn, Krawtchouk, and Racah polynomials 34B24 and give the limit relations among them for all n 2 N0. Furthermore, in order to get Keywords: these results for the Krawtchouk polynomials we will obtain a more general property of Classical orthogonal polynomials orthogonality for Meixner polynomials. Inner product involving difference ' 2008 Elsevier B.V. All rights reserved.
    [Show full text]
  • HERMITE POLYNOMIALS Schrödinger's Equation for A
    MATH 105B EXTRA/REVIEW TOPIC: HERMITE POLYNOMIALS PROF. MICHAEL VANVALKENBURGH Schr¨odinger'sequation for a quantum harmonic oscillator is 1 d2 − + x2 u = u. 2 dx2 This says u is an eigenfunction with eigenvalue . In physics, represents an energy value. Let 1 d a = p x + the \annihilation" operator, 2 dx and 1 d ay = p x − the \creation" operator. 2 dx Note that, as an operator, d2 aya + aay = − + x2; dx2 which we can use to rewrite Schr¨odinger'sequation. Fact. The function −1=4 −x2=2 u0(x) = π e represents a quantum particle in its \ground state." (Its square is the probability density function of a particle in its lowest energy state.) Note that au0(x) = 0; which justifies calling the operator a the \annihilation" operator! On the other hand, y u1(x) : = a u0(x) 2 = π−1=42−1=2(2x)e−x =2 represents a quantum particle in its next highest energy state. So the operator ay \creates" one unit of energy! 1 MATH 105B EXTRA/REVIEW TOPIC: HERMITE POLYNOMIALS 2 Each application of ay creates a unit of energy, and we get the \Hermite functions" −1=2 y n un(x) : = (n!) (a ) u0(x) −1=4 −n=2 −1=2 −x2=2 = π 2 (n!) Hn(x)e ; where Hn(x) is a polynomial of order n called \the nth Hermite polynomial." In particular, H0(x) = 1 and H1(x) = 2x. Fact: Hn satisfies the ODE d2 d − 2x + 2n H = 0: dx2 dx n For review, let's use the power series method: We look for Hn of the form 1 X k Hn(x) = Akx : k=0 We plug in and compare coefficients to find: A2 = −nA0 2(k − n) A = A for k ≥ 1: k+2 (k + 2)(k + 1) k Note how there is a natural split into odd and even terms, similar to what happened for Legendre's equation in x5.2.
    [Show full text]
  • Chebyshev Polynomials of the Second, Third and Fourth Kinds in Approximation, Indefinite Integration, and Integral Transforms *
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 49 (1993) 169-178 169 North-Holland CAM 1429 Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms * J.C. Mason Applied and Computational Mathematics Group, Royal Military College of Science, Shrivenham, Swindon, Wiltshire, United Kingdom Dedicated to Dr. D.F. Mayers on the occasion of his 60th birthday Received 18 February 1992 Revised 31 March 1992 Abstract Mason, J.C., Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration, and integral transforms, Journal of Computational and Applied Mathematics 49 (1993) 169-178. Chebyshev polynomials of the third and fourth kinds, orthogonal with respect to (l+ x)‘/‘(l- x)-‘I* and (l- x)‘/*(l+ x)-‘/~, respectively, on [ - 1, 11, are less well known than traditional first- and second-kind polynomials. We therefore summarise basic properties of all four polynomials, and then show how some well-known properties of first-kind polynomials extend to cover second-, third- and fourth-kind polynomials. Specifically, we summarise a recent set of first-, second-, third- and fourth-kind results for near-minimax constrained approximation by series and interpolation criteria, then we give new uniform convergence results for the indefinite integration of functions weighted by (1 + x)-i/* or (1 - x)-l/* using third- or fourth-kind polynomial expansions, and finally we establish a set of logarithmically singular integral transforms for which weighted first-, second-, third- and fourth-kind polynomials are eigenfunctions.
    [Show full text]
  • Generalizations of Chebyshev Polynomials and Polynomial Mappings
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 359, Number 10, October 2007, Pages 4787–4828 S 0002-9947(07)04022-6 Article electronically published on May 17, 2007 GENERALIZATIONS OF CHEBYSHEV POLYNOMIALS AND POLYNOMIAL MAPPINGS YANG CHEN, JAMES GRIFFIN, AND MOURAD E.H. ISMAIL Abstract. In this paper we show how polynomial mappings of degree K from a union of disjoint intervals onto [−1, 1] generate a countable number of spe- cial cases of generalizations of Chebyshev polynomials. We also derive a new expression for these generalized Chebyshev polynomials for any genus g, from which the coefficients of xn can be found explicitly in terms of the branch points and the recurrence coefficients. We find that this representation is use- ful for specializing to polynomial mapping cases for small K where we will have explicit expressions for the recurrence coefficients in terms of the branch points. We study in detail certain special cases of the polynomials for small degree mappings and prove a theorem concerning the location of the zeroes of the polynomials. We also derive an explicit expression for the discrimi- nant for the genus 1 case of our Chebyshev polynomials that is valid for any configuration of the branch point. 1. Introduction and preliminaries Akhiezer [2], [1] and, Akhiezer and Tomˇcuk [3] introduced orthogonal polynomi- als on two intervals which generalize the Chebyshev polynomials. He observed that the study of properties of these polynomials requires the use of elliptic functions. In thecaseofmorethantwointervals,Tomˇcuk [17], investigated their Bernstein-Szeg˝o asymptotics, with the theory of Hyperelliptic integrals, and found expressions in terms of a certain Abelian integral of the third kind.
    [Show full text]
  • Chebyshev and Fourier Spectral Methods 2000
    Chebyshev and Fourier Spectral Methods Second Edition John P. Boyd University of Michigan Ann Arbor, Michigan 48109-2143 email: [email protected] http://www-personal.engin.umich.edu/jpboyd/ 2000 DOVER Publications, Inc. 31 East 2nd Street Mineola, New York 11501 1 Dedication To Marilyn, Ian, and Emma “A computation is a temptation that should be resisted as long as possible.” — J. P. Boyd, paraphrasing T. S. Eliot i Contents PREFACE x Acknowledgments xiv Errata and Extended-Bibliography xvi 1 Introduction 1 1.1 Series expansions .................................. 1 1.2 First Example .................................... 2 1.3 Comparison with finite element methods .................... 4 1.4 Comparisons with Finite Differences ....................... 6 1.5 Parallel Computers ................................. 9 1.6 Choice of basis functions .............................. 9 1.7 Boundary conditions ................................ 10 1.8 Non-Interpolating and Pseudospectral ...................... 12 1.9 Nonlinearity ..................................... 13 1.10 Time-dependent problems ............................. 15 1.11 FAQ: Frequently Asked Questions ........................ 16 1.12 The Chrysalis .................................... 17 2 Chebyshev & Fourier Series 19 2.1 Introduction ..................................... 19 2.2 Fourier series .................................... 20 2.3 Orders of Convergence ............................... 25 2.4 Convergence Order ................................. 27 2.5 Assumption of Equal Errors ...........................
    [Show full text]
  • Dymore User's Manual Chebyshev Polynomials
    Dymore User's Manual Chebyshev polynomials Olivier A. Bauchau August 27, 2019 Contents 1 Definition 1 1.1 Zeros and extrema....................................2 1.2 Orthogonality relationships................................3 1.3 Derivatives of Chebyshev polynomials..........................5 1.4 Integral of Chebyshev polynomials............................5 1.5 Products of Chebyshev polynomials...........................5 2 Chebyshev approximation of functions of a single variable6 2.1 Expansion of a function in Chebyshev polynomials...................6 2.2 Evaluation of Chebyshev expansions: Clenshaw's recurrence.............7 2.3 Derivatives and integrals of Chebyshev expansions...................7 2.4 Products of Chebyshev expansions...........................8 2.5 Examples.........................................9 2.6 Clenshaw-Curtis quadrature............................... 10 3 Chebyshev approximation of functions of two variables 12 3.1 Expansion of a function in Chebyshev polynomials................... 12 3.2 Evaluation of Chebyshev expansions: Clenshaw's recurrence............. 13 3.3 Derivatives of Chebyshev expansions.......................... 14 4 Chebychev polynomials 15 4.1 Examples......................................... 16 1 Definition Chebyshev polynomials [1,2] form a series of orthogonal polynomials, which play an important role in the theory of approximation. The lowest polynomials are 2 3 4 2 T0(x) = 1;T1(x) = x; T2(x) = 2x − 1;T3(x) = 4x − 3x; T4(x) = 8x − 8x + 1;::: (1) 1 and are depicted in fig.1. The polynomials can be generated from the following recurrence rela- tionship Tn+1 = 2xTn − Tn−1; n ≥ 1: (2) 1 0.8 0.6 0.4 0.2 0 −0.2 −0.4 CHEBYSHEV POLYNOMIALS −0.6 −0.8 −1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 XX Figure 1: The seven lowest order Chebyshev polynomials It is possible to give an explicit expression of Chebyshev polynomials as Tn(x) = cos(n arccos x): (3) This equation can be verified by using elementary trigonometric identities.
    [Show full text]
  • New Formulae of Squares of Some Jacobi Polynomials Via Hypergeometric Functions
    Hacettepe Journal of Mathematics and Statistics Volume 46 (2) (2017), 165 176 New formulae of squares of some Jacobi polynomials via hypergeometric functions W.M. Abd- Elhameed∗ y Abstract In this article, a new formula expressing explicitly the squares of Jacobi polynomials of certain parameters in terms of Jacobi polynomials of ar- bitrary parameters is derived. The derived formula is given in terms of ceratin terminating hypergeometric function of the type 4F3(1). In some cases, this 4F3(1) can be reduced by using some well-known re- duction formulae in literature such as Watson's and Pfa-Saalschütz's identities. In some other cases, this 4F3(1) can be reduced by means of symbolic computation, and in particular Zeilberger's, Petkovsek's and van Hoeij's algorithms. Hence, some new squares formulae for Jacobi polynomials of special parameters can be deduced in reduced forms which are free of any hypergeometric functions. Keywords: Jacobi polynomials; linearization coecients; generalized hypergeo- metric functions; computer algebra, standard reduction formulae 2000 AMS Classication: 33F10; 33C20; 33Cxx; 68W30 Received : 23.02.2016 Accepted : 19.05.2016 Doi : 10.15672/HJMS.20164518618 1. Introduction The Jacobi polynomials are of fundamental importance in theoretical and applied mathematical analysis. The class of Jacobi polynomials contains six well-known fami- lies of orthogonal polynomials, they are, ultraspherical, Legendre and the four kinds of Chebyshev polynomials. The Jacobi polynomials in general and their six special polyno- mials in particular are extensively employed in obtaining numerical solutions of ordinary, fractional and partial dierential equations. In this respect, these polynomials are em- ployed for the sake of obtaining spectral solutions for various kinds of dierential equa- tions.
    [Show full text]
  • Some Classical Multiple Orthogonal Polynomials
    Some classical multiple orthogonal polynomials ∗ Walter Van Assche and Els Coussement Department of Mathematics, Katholieke Universiteit Leuven 1 Classical orthogonal polynomials One aspect in the theory of orthogonal polynomials is their study as special functions. Most important orthogonal polynomials can be written as terminating hypergeometric series and during the twentieth century people have been working on a classification of all such hypergeometric orthogonal polynomial and their characterizations. The very classical orthogonal polynomials are those named after Jacobi, Laguerre, and Hermite. In this paper we will always be considering monic polynomials, but in the literature one often uses a different normalization. Jacobi polynomials are (monic) polynomials of degree n which are orthogonal to all lower degree polynomials with respect to the weight function (1 x)α(1+x)β on [ 1, 1], where α,β > 1. The change of variables x 2x 1 gives Jacobi polynomials− on [0, 1]− for the weight function− w(x) = xβ(1 x)α, and we7→ will− denote (α,β) − these (monic) polynomials by Pn (x). They are defined by the orthogonality conditions 1 P (α,β)(x)xβ(1 x)αxk dx =0, k =0, 1,...,n 1. (1.1) n − − Z0 (α) The monic Laguerre polynomials Ln (x) (with α > 1) are orthogonal on [0, ) to all − α x ∞ polynomials of degree less than n with respect to the weight w(x)= x e− and hence satisfy the orthogonality conditions ∞ (α) α x k Ln (x)x e− x dx =0, k =0, 1,...,n 1. (1.2) 0 − arXiv:math/0103131v1 [math.CA] 21 Mar 2001 Z Finally, the (monic) Hermite polynomials Hn(x) are orthogonal to all lower degree polyno- x2 mials with respect to the weight function w(x)= e− on ( , ), so that −∞ ∞ ∞ x2 k H (x)e− x dx =0, k =0, 1,...,n 1.
    [Show full text]
  • 32 FA15 Abstracts
    32 FA15 Abstracts IP1 metric simple exclusion process and the KPZ equation. In Vector-Valued Nonsymmetric and Symmetric Jack addition, the experiments of Takeuchi and Sano will be and Macdonald Polynomials briefly discussed. For each partition τ of N there are irreducible representa- Craig A. Tracy tions of the symmetric group SN and the associated Hecke University of California, Davis algebra HN (q) on a real vector space Vτ whose basis is [email protected] indexed by the set of reverse standard Young tableaux of shape τ. The talk concerns orthogonal bases of Vτ -valued polynomials of x ∈ RN . The bases consist of polyno- IP6 mials which are simultaneous eigenfunctions of commuta- Limits of Orthogonal Polynomials and Contrac- tive algebras of differential-difference operators, which are tions of Lie Algebras parametrized by κ and (q, t) respectively. These polynomi- als reduce to the ordinary Jack and Macdonald polynomials In this talk, I will discuss the connection between superin- when the partition has just one part (N). The polynomi- tegrable systems and classical systems of orthogonal poly- als are constructed by means of the Yang-Baxter graph. nomials in particular in the expansion coefficients between There is a natural bilinear form, which is positive-definite separable coordinate systems, related to representations of for certain ranges of parameter values depending on τ,and the (quadratic) symmetry algebras. This connection al- there are integral kernels related to the bilinear form for lows us to extend the Askey scheme of classical orthogonal the group case, of Gaussian and of torus type. The mate- polynomials and the limiting processes within the scheme.
    [Show full text]
  • The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its Q-Analogue
    The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Roelof Koekoek Ren´eF. Swarttouw Abstract We list the so-called Askey-scheme of hypergeometric orthogonal polynomials and we give a q- analogue of this scheme containing basic hypergeometric orthogonal polynomials. In chapter 1 we give the definition, the orthogonality relation, the three term recurrence rela- tion, the second order differential or difference equation, the forward and backward shift operator, the Rodrigues-type formula and generating functions of all classes of orthogonal polynomials in this scheme. In chapter 2 we give the limit relations between different classes of orthogonal polynomials listed in the Askey-scheme. In chapter 3 we list the q-analogues of the polynomials in the Askey-scheme. We give their definition, orthogonality relation, three term recurrence relation, second order difference equation, forward and backward shift operator, Rodrigues-type formula and generating functions. In chapter 4 we give the limit relations between those basic hypergeometric orthogonal poly- nomials. Finally, in chapter 5 we point out how the ‘classical’ hypergeometric orthogonal polynomials of the Askey-scheme can be obtained from their q-analogues. Acknowledgement We would like to thank Professor Tom H. Koornwinder who suggested us to write a report like this. He also helped us solving many problems we encountered during the research and provided us with several references. Contents Preface 5 Definitions and miscellaneous formulas 7 0.1 Introduction . 7 0.2 The q-shifted factorials . 8 0.3 The q-gamma function and the q-binomial coefficient . 10 0.4 Hypergeometric and basic hypergeometric functions .
    [Show full text]
  • Orthogonal Functions: the Legendre, Laguerre, and Hermite Polynomials
    ORTHOGONAL FUNCTIONS: THE LEGENDRE, LAGUERRE, AND HERMITE POLYNOMIALS THOMAS COVERSON, SAVARNIK DIXIT, ALYSHA HARBOUR, AND TYLER OTTO Abstract. The Legendre, Laguerre, and Hermite equations are all homogeneous second order Sturm-Liouville equations. Using the Sturm-Liouville Theory we will be able to show that polynomial solutions to these equations are orthogonal. In a more general context, finding that these solutions are orthogonal allows us to write a function as a Fourier series with respect to these solutions. 1. Introduction The Legendre, Laguerre, and Hermite equations have many real world practical uses which we will not discuss here. We will only focus on the methods of solution and use in a mathematical sense. In solving these equations explicit solutions cannot be found. That is solutions in in terms of elementary functions cannot be found. In many cases it is easier to find a numerical or series solution. There is a generalized Fourier series theory which allows one to write a function f(x) as a linear combination of an orthogonal system of functions φ1(x),φ2(x),...,φn(x),... on [a; b]. The series produced is called the Fourier series with respect to the orthogonal system. While the R b a f(x)φn(x)dx coefficients ,which can be determined by the formula cn = R b 2 , a φn(x)dx are called the Fourier coefficients with respect to the orthogonal system. We are concerned only with showing that the Legendre, Laguerre, and Hermite polynomial solutions are orthogonal and can thus be used to form a Fourier series. In order to proceed we must define an inner product and define what it means for a linear operator to be self- adjoint.
    [Show full text]