Hypergeometric Orthogonal Polynomials and Their Q-Analogues

Total Page:16

File Type:pdf, Size:1020Kb

Hypergeometric Orthogonal Polynomials and Their Q-Analogues Springer Monographs in Mathematics Hypergeometric Orthogonal Polynomials and Their q-Analogues Bearbeitet von Roelof Koekoek, Peter A Lesky, René F Swarttouw, Tom H Koornwinder 1. Auflage 2010. Buch. xix, 578 S. Hardcover ISBN 978 3 642 05013 8 Format (B x L): 15,5 x 23,5 cm Gewicht: 2230 g Weitere Fachgebiete > Mathematik > Mathematische Analysis Zu Leseprobe schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Contents Foreword .......................................................... v Preface ............................................................ xi 1 Definitions and Miscellaneous Formulas ........................... 1 1.1 Orthogonal Polynomials . 1 1.2 The Gamma and Beta Function . 3 1.3 The Shifted Factorial and Binomial Coefficients . 4 1.4 Hypergeometric Functions . 5 1.5 The Binomial Theorem and Other Summation Formulas . 7 1.6 SomeIntegrals............................................. 8 1.7 TransformationFormulas.................................... 10 1.8 The q-ShiftedFactorial...................................... 11 1.9 The q-Gamma Function and q-Binomial Coefficients . 13 1.10 Basic Hypergeometric Functions . 15 1.11 The q-Binomial Theorem and Other Summation Formulas . 16 1.12 MoreIntegrals............................................. 18 1.13 TransformationFormulas.................................... 19 1.14 Some q-Analogues of Special Functions . 22 1.15 The q-Derivative and q-Integral............................... 24 1.16 Shift Operators and Rodrigues-Type Formulas . 26 2 Polynomial Solutions of Eigenvalue Problems ...................... 29 2.1 Hahn’s q-Operator.......................................... 29 2.2 EigenvalueProblems........................................ 30 2.3 The Regularity Condition . 33 2.4 Determination of the Polynomial Solutions . 35 2.4.1 First Approach . 35 2.4.2 Second Approach . 37 2.5 Existence of a Three-Term Recurrence Relation . 40 2.6 Explicit Form of the Three-Term Recurrence Relation . 45 xv xvi Contents 3 Orthogonality of the Polynomial Solutions ......................... 53 3.1 Favard’s Theorem . 53 3.2 Orthogonality and the Self-Adjoint Operator Equation............ 55 3.3 The Jackson-Thomae q-Integral .............................. 59 3.4 Rodrigues Formulas . 62 3.5 Duality . 71 Part I Classical Orthogonal Polynomials 4 Orthogonal Polynomial Solutions of Differential Equations .......... 79 Continuous Classical Orthogonal Polynomials ...................... 79 4.1 Polynomial Solutions of Differential Equations . 79 4.2 Classification of the Positive-Definite Orthogonal Polynomial Solutions ................................................. 80 4.3 Properties of the Positive-Definite Orthogonal Polynomial Solutions 83 5 Orthogonal Polynomial Solutions of Real Difference Equations ....... 95 Discrete Classical Orthogonal Polynomials I........................ 95 5.1 Polynomial Solutions of Real Difference Equations . 95 5.2 Classification of the Positive-Definite Orthogonal Polynomial Solutions ................................................. 97 5.3 Properties of the Positive-Definite Orthogonal Polynomial Solutions 101 6 Orthogonal Polynomial Solutions of Complex Difference Equations ... 123 Discrete Classical Orthogonal Polynomials II ....................... 123 6.1 Real Polynomial Solutions of Complex Difference Equations . 123 6.2 Classification of the Real Positive-Definite Orthogonal Polynomial Solutions ................................................. 130 6.3 Properties of the Positive-Definite Orthogonal Polynomial Solutions 131 7 Orthogonal Polynomial Solutions in x(x + u) of Real Difference Equations ...................................................... 141 Discrete Classical Orthogonal Polynomials III ...................... 141 7.1 Motivation for Polynomials in x(x + u) Through Duality . 141 7.2 Difference Equations Having Real Polynomial Solutions with Argument x(x + u).......................................... 142 7.3 The Hypergeometric Representation . 144 7.4 The Three-Term Recurrence Relation . 148 7.5 Classification of the Positive-Definite Orthogonal Polynomial Solutions ................................................. 150 7.6 The Self-Adjoint Difference Equation . 156 7.7 Orthogonality Relations for Dual Hahn Polynomials . 158 7.8 Orthogonality Relations for Racah Polynomials . 162 Contents xvii 8 Orthogonal Polynomial Solutions in z(z + u) of Complex Difference Equations ...................................................... 171 Discrete Classical Orthogonal Polynomials IV ...................... 171 8.1 Real Polynomial Solutions of Complex Difference Equations . 171 8.2 Orthogonality Relations for Continuous Dual Hahn Polynomials . 173 8.3 Orthogonality Relations for Wilson Polynomials . 177 Askey Scheme of Hypergeometric Orthogonal Polynomials ............. 183 9 Hypergeometric Orthogonal Polynomials .......................... 185 9.1 Wilson ................................................... 185 9.2 Racah . 190 9.3 Continuous Dual Hahn . 196 9.4 Continuous Hahn . 200 9.5 Hahn..................................................... 204 9.6 DualHahn................................................ 208 9.7 Meixner-Pollaczek . 213 9.8 Jacobi . 216 9.8.1 Gegenbauer / Ultraspherical . 222 9.8.2 Chebyshev . 225 9.8.3 Legendre / Spherical . 229 9.9 Pseudo Jacobi . 231 9.10 Meixner . 234 9.11 Krawtchouk . 237 9.12 Laguerre . 241 9.13 Bessel.................................................... 244 9.14 Charlier................................................... 247 9.15 Hermite................................................... 250 Part II Classical q-Orthogonal Polynomials 10 Orthogonal Polynomial Solutions of q-Difference Equations .......... 257 Classical q-Orthogonal Polynomials I .............................. 257 10.1 Polynomial Solutions of q-Difference Equations . 257 10.2 The Basic Hypergeometric Representation . 258 10.3 The Three-Term Recurrence Relation . 266 10.4 Classification of the Positive-Definite Orthogonal Polynomial Solutions ................................................. 267 10.5 Solutions of the q-Pearson Equation . 293 10.6 Orthogonality Relations . 307 11 Orthogonal Polynomial Solutions in q−x of q-Difference Equations .... 323 Classical q-Orthogonal Polynomials II ............................. 323 11.1 Polynomial Solutions in q−x of q-Difference Equations . 323 11.2 The Basic Hypergeometric Representation . 324 11.3 The Three-Term Recurrence Relation . 328 xviii Contents 11.4 Orthogonality and the Self-Adjoint Operator Equation............ 329 11.5 Rodrigues Formulas . 333 11.6 Classification of the Positive-Definite Orthogonal Polynomial Solutions ................................................. 334 11.7 Solutions of the q−1-Pearson Equation . 344 11.8 Orthogonality Relations . 354 12 Orthogonal Polynomial Solutions in q−x + uqx of Real q-Difference Equations ...................................................... 369 Classical q-Orthogonal Polynomials III ............................ 369 12.1 Motivation for Polynomials in q−x + uqx Through Duality . 369 12.2 Difference Equations Having Real Polynomial Solutions with Argument q−x + uqx ........................................ 370 12.3 The Basic Hypergeometric Representation . 373 12.4 The Three-Term Recurrence Relation . 377 12.5 Classification of the Positive-Definite Orthogonal Polynomial Solutions ................................................. 379 12.6 Solutions of the q-Pearson Equation . 383 12.7 Orthogonality Relations . 389 a uz 13 Orthogonal Polynomial Solutions in z + a of Complex q-Difference Equations ...................................................... 395 Classical q-Orthogonal Polynomials IV ............................ 395 a uz ∈ R \{ } 13.1 Real Polynomial Solutions in z + a with u 0 and a,z ∈ C \{0} .............................................. 395 13.2 Classification of the Positive-Definite Orthogonal Polynomial Solutions ................................................. 398 13.3 Solutions of the q-Pearson Equation . 401 13.4 Orthogonality Relations . 407 Scheme of Basic Hypergeometric Orthogonal Polynomials .............. 413 14 Basic Hypergeometric Orthogonal Polynomials ..................... 415 14.1 Askey-Wilson............................................. 415 14.2 q-Racah . 422 14.3 Continuous Dual q-Hahn.................................... 429 14.4 Continuous q-Hahn......................................... 433 14.5 Big q-Jacobi . 438 14.5.1 Big q-Legendre . 443 14.6 q-Hahn................................................... 445 14.7 Dual q-Hahn .............................................. 450 14.8 Al-Salam-Chihara.......................................... 455 14.9 q-Meixner-Pollaczek . 460 14.10 Continuous q-Jacobi . 463 14.10.1 Continuous q-Ultraspherical / Rogers . 469 14.10.2 Continuous q-Legendre . 475 Contents xix 14.11 Big q-Laguerre . 478 14.12 Little q-Jacobi . 482 14.12.1 Little q-Legendre . 486 14.13 q-Meixner. 488 14.14 Quantum q-Krawtchouk . 493 14.15 q-Krawtchouk . 496 14.16 Affine q-Krawtchouk . 501 14.17 Dual q-Krawtchouk . 505 14.18 Continuous Big q-Hermite................................... 509 14.19 Continuous q-Laguerre . 514 14.20 Little q-Laguerre / Wall . 518 14.21 q-Laguerre . 522 14.22 q-Bessel.................................................. 526 14.23 q-Charlier................................................. 530 14.24 Al-Salam-Carlitz I . 534 14.25 Al-Salam-Carlitz II . 537 14.26 Continuous q-Hermite ...................................... 540 14.27 Stieltjes-Wigert . 544 14.28 Discrete q-HermiteI........................................ 547 14.29 Discrete q-HermiteII....................................... 550.
Recommended publications
  • An Algebraic Interpretation of the Multivariate Q-Krawtchouk Polynomials
    An algebraic interpretation of the multivariate q-Krawtchouk polynomials The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Genest, Vincent X., Sarah Post, and Luc Vinet. “An Algebraic Interpretation of the Multivariate Q-Krawtchouk Polynomials.” The Ramanujan Journal (2016): n. pag. As Published http://dx.doi.org/10.1007/s11139-016-9776-2 Publisher Springer US Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/104790 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Ramanujan J DOI 10.1007/s11139-016-9776-2 An algebraic interpretation of the multivariate q-Krawtchouk polynomials Vincent X. Genest1 · Sarah Post2 · Luc Vinet3 Received: 31 August 2015 / Accepted: 18 January 2016 © Springer Science+Business Media New York 2016 Abstract The multivariate quantum q-Krawtchouk polynomials are shown to arise as matrix elements of “q-rotations” acting on the state vectors of many q-oscillators. The focus is put on the two-variable case. The algebraic interpretation is used to derive the main properties of the polynomials: orthogonality, duality, structure relations, difference equations, and recurrence relations. The extension to an arbitrary number of variables is presented. Keywords Multivariate q-Krawtchouk polynomials · q-Oscillator algebra · q-Rotations Mathematics Subject Classification 33D45 · 16T05 1 Introduction The purpose of this paper is to provide an algebraic model for the multi-variable q- Krawtchouk polynomials and to show how this model provides a cogent framework VXG is supported by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC).
    [Show full text]
  • Journal of Computational and Applied Mathematics Extensions of Discrete
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 225 (2009) 440–451 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam Extensions of discrete classical orthogonal polynomials beyond the orthogonality R.S. Costas-Santos a,∗, J.F. Sánchez-Lara b a Department of Mathematics, University of California, South Hall, Room 6607 Santa Barbara, CA 93106, USA b Universidad Politécnica de Madrid, Escuela Técnica Superior de Arquitectura, Departamento de Matemática Aplicada, Avda Juan de Herrera, 4. 28040 Madrid, Spain article info a b s t r a c t α,β Article history: It is well-known that the family of Hahn polynomials fhn .xI N/gn≥0 is orthogonal with Received 5 November 2007 respect to a certain weight function up to degree N. In this paper we prove, by using the three-term recurrence relation which this family satisfies, that the Hahn polynomials can MSC: be characterized by a ∆-Sobolev orthogonality for every n and present a factorization for 33C45 Hahn polynomials for a degree higher than N. 42C05 We also present analogous results for dual Hahn, Krawtchouk, and Racah polynomials 34B24 and give the limit relations among them for all n 2 N0. Furthermore, in order to get Keywords: these results for the Krawtchouk polynomials we will obtain a more general property of Classical orthogonal polynomials orthogonality for Meixner polynomials. Inner product involving difference ' 2008 Elsevier B.V. All rights reserved.
    [Show full text]
  • Extensions of Discrete Classical Orthogonal Polynomials Beyond the Orthogonality
    W&M ScholarWorks Arts & Sciences Articles Arts and Sciences 2009 Extensions of discrete classical orthogonal polynomials beyond the orthogonality R. S. Costas-Santos J. F. Sanchez-Lara Follow this and additional works at: https://scholarworks.wm.edu/aspubs Recommended Citation Costas-Santos, R. S., & Sánchez-Lara, J. F. (2009). Extensions of discrete classical orthogonal polynomials beyond the orthogonality. Journal of Computational and Applied Mathematics, 225(2), 440-451. This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Journal of Computational and Applied Mathematics 225 (2009) 440–451 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam Extensions of discrete classical orthogonal polynomials beyond the orthogonality R.S. Costas-Santos a,∗, J.F. Sánchez-Lara b a Department of Mathematics, University of California, South Hall, Room 6607 Santa Barbara, CA 93106, USA b Universidad Politécnica de Madrid, Escuela Técnica Superior de Arquitectura, Departamento de Matemática Aplicada, Avda Juan de Herrera, 4. 28040 Madrid, Spain article info a b s t r a c t α,β Article history: It is well-known that the family of Hahn polynomials fhn .xI N/gn≥0 is orthogonal with Received 5 November 2007 respect to a certain weight function up to degree N. In this paper we prove, by using the three-term recurrence relation which this family satisfies, that the Hahn polynomials can MSC: be characterized by a ∆-Sobolev orthogonality for every n and present a factorization for 33C45 Hahn polynomials for a degree higher than N.
    [Show full text]
  • Image Analysis by Discrete Orthogonal Dual Hahn Moments
    Pattern Recognition Letters 28 (2007) 1688–1704 www.elsevier.com/locate/patrec Image analysis by discrete orthogonal dual Hahn moments Hongqing Zhu a, Huazhong Shu a,c,*, Jian Zhou a, Limin Luo a,c, J.L. Coatrieux b,c a Laboratory of Image Science and Technology, Department of Computer Science and Engineering, Southeast University, 210096 Nanjing, People’s Republic of China b INSERM U642, Laboratoire Traitement du Signal et de l’Image, Universite´ de Rennes I, 35042 Rennes, France c Centre de Recherche en Information Biome´dicale Sino-franc¸ais (CRIBs), France Received 29 May 2005; received in revised form 26 February 2007 Available online 29 April 2007 Communicated by L. Younes Abstract In this paper, we introduce a set of discrete orthogonal functions known as dual Hahn polynomials. The Tchebichef and Krawtchouk polynomials are special cases of dual Hahn polynomials. The dual Hahn polynomials are scaled to ensure the numerical stability, thus creating a set of weighted orthonormal dual Hahn polynomials. They are allowed to define a new type of discrete orthogonal moments. The discrete orthogonality of the proposed dual Hahn moments not only ensures the minimal information redundancy, but also elim- inates the need for numerical approximations. The paper also discusses the computational aspects of dual Hahn moments, including the recurrence relation and symmetry properties. Experimental results show that the dual Hahn moments perform better than the Legendre moments, Tchebichef moments, and Krawtchouk moments in terms of image reconstruction capability in both noise-free and noisy con- ditions. The dual Hahn moment invariants are derived using a linear combination of geometric moments.
    [Show full text]
  • The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its Q-Analogue
    The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Roelof Koekoek Ren´eF. Swarttouw Abstract We list the so-called Askey-scheme of hypergeometric orthogonal polynomials and we give a q- analogue of this scheme containing basic hypergeometric orthogonal polynomials. In chapter 1 we give the definition, the orthogonality relation, the three term recurrence rela- tion, the second order differential or difference equation, the forward and backward shift operator, the Rodrigues-type formula and generating functions of all classes of orthogonal polynomials in this scheme. In chapter 2 we give the limit relations between different classes of orthogonal polynomials listed in the Askey-scheme. In chapter 3 we list the q-analogues of the polynomials in the Askey-scheme. We give their definition, orthogonality relation, three term recurrence relation, second order difference equation, forward and backward shift operator, Rodrigues-type formula and generating functions. In chapter 4 we give the limit relations between those basic hypergeometric orthogonal poly- nomials. Finally, in chapter 5 we point out how the ‘classical’ hypergeometric orthogonal polynomials of the Askey-scheme can be obtained from their q-analogues. Acknowledgement We would like to thank Professor Tom H. Koornwinder who suggested us to write a report like this. He also helped us solving many problems we encountered during the research and provided us with several references. Contents Preface 5 Definitions and miscellaneous formulas 7 0.1 Introduction . 7 0.2 The q-shifted factorials . 8 0.3 The q-gamma function and the q-binomial coefficient . 10 0.4 Hypergeometric and basic hypergeometric functions .
    [Show full text]
  • Doubling (Dual) Hahn Polynomials: Classification and Applications
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 12 (2016), 003, 27 pages Doubling (Dual) Hahn Polynomials: Classification and Applications Roy OSTE and Joris VAN DER JEUGT Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281-S9, B-9000 Gent, Belgium E-mail: [email protected], [email protected] Received July 13, 2015, in final form January 04, 2016; Published online January 07, 2016 http://dx.doi.org/10.3842/SIGMA.2016.003 Abstract. We classify all pairs of recurrence relations in which two Hahn or dual Hahn polynomials with different parameters appear. Such couples are referred to as (dual) Hahn doubles. The idea and interest comes from an example appearing in a finite oscillator model [Jafarov E.I., Stoilova N.I., Van der Jeugt J., J. Phys. A: Math. Theor. 44 (2011), 265203, 15 pages, arXiv:1101.5310]. Our classification shows there exist three dual Hahn doubles and four Hahn doubles. The same technique is then applied to Racah polynomials, yielding also four doubles. Each dual Hahn (Hahn, Racah) double gives rise to an explicit new set of symmetric orthogonal polynomials related to the Christoffel and Geronimus trans- formations. For each case, we also have an interesting class of two-diagonal matrices with closed form expressions for the eigenvalues. This extends the class of Sylvester{Kac matrices by remarkable new test matrices. We examine also the algebraic relations underlying the dual Hahn doubles, and discuss their usefulness for the construction of new finite oscillator models. Key words: Hahn polynomial; Racah polynomial; Christoffel pair; symmetric orthogonal polynomials; tridiagonal matrix; matrix eigenvalues; finite oscillator model 2010 Mathematics Subject Classification: 33C45; 33C80; 81R05; 81Q65 1 Introduction The tridiagonal (N + 1) × (N + 1) matrix of the following form 0 0 1 1 BN 0 2 C B C B N − 1 0 3 C C = B C (1.1) N+1 B .
    [Show full text]
  • Orthogonal Polynomials on the Unit Circle Associated with the Laguerre Polynomials
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 3, Pages 873{879 S 0002-9939(00)05821-4 Article electronically published on October 11, 2000 ORTHOGONAL POLYNOMIALS ON THE UNIT CIRCLE ASSOCIATED WITH THE LAGUERRE POLYNOMIALS LI-CHIEN SHEN (Communicated by Hal L. Smith) Abstract. Using the well-known fact that the Fourier transform is unitary, we obtain a class of orthogonal polynomials on the unit circle from the Fourier transform of the Laguerre polynomials (with suitable weights attached). Some related extremal problems which arise naturally in this setting are investigated. 1. Introduction This paper deals with a class of orthogonal polynomials which arise from an application of the Fourier transform on the Laguerre polynomials. We shall briefly describe the essence of our method. Let Π+ denote the upper half plane fz : z = x + iy; y > 0g and let Z 1 H(Π+)=ff : f is analytic in Π+ and sup jf(x + yi)j2 dx < 1g: 0<y<1 −∞ It is well known that, from the Paley-Wiener Theorem [4, p. 368], the Fourier transform provides a unitary isometry between the spaces L2(0; 1)andH(Π+): Since the Laguerre polynomials form a complete orthogonal basis for L2([0; 1);xαe−x dx); the application of Fourier transform to the Laguerre polynomials (with suitable weight attached) generates a class of orthogonal rational functions which are com- plete in H(Π+); and by composition of which with the fractional linear transfor- mation (which maps Π+ conformally to the unit disc) z =(2t − i)=(2t + i); we obtain a family of polynomials which are orthogonal with respect to the weight α t j j sin 2 dt on the boundary z = 1 of the unit disc.
    [Show full text]
  • Curriculum Vita
    CURRICULUM VITA NAME: Mourad E.H. Ismail AFFILIATION: University of Central Florida and King Saud University and ADDRESS: Department of Mathematics University of Central Florida 4000 Central Florida Blvd. P.O. Box 161364 Orlando, FL 32816-1364, USA. Telephones: Cell (407) 770-9959. POSITION: Research Professor at U of Central Florida PERSONAL DATA: Born April 27, 1944, in Cairo, Egypt. Male. Married. Canadian and Egyptian citizen, Permanent resident in the United States. EDUCATION: Ph.D. 1974 (Alberta), M.Sc. 1969 (Alberta), B.Sc. 1964 (Cairo). MATHEMATICAL GENEALOGY: Source: The Mathematics Genealogy Project, http://www.genealogy.ams.org • Yours truly, Ph. D. 1974, Advisor: Waleed Al-Salam. • Waleed Al-Salam, Ph. D. 1958, Advisor: Leonard Carlitz. • Leonard Carlitz, Ph. D. 1930, Advisor: Howard Mitchell. • Howard Mitchell, Ph. D. 1910, Advisor: Oswald Veblen. • Oswald Veblen, Ph. D. 1903, Advisor: Eliakim Hastings Moore. • Eliakim Hastings Moore, Ph. D. 1885, Advisor: H. A. Newton. • H. A. Newton, B. S. Yale 1850, Advisor: Michel Chasles. • Michel Chasles, Ph. D. 1814, Advisor: Simeon Poisson. • Simeon Poisson, Advisor: Joseph Lagrange. • Joseph Lagrange, Ph. D. Advisor: Leonhard Euler. 1 RESEARCH INTERESTS: Approximation theory, asymptotics, combinatorics, integral transforms and operational calculus, math- ematical physics, orthogonal polynomials and special functions. POSITIONS HELD: 2010{2012 Chair Professor, City University of Hong Kong 2003-2012 and 2013-present Professor, University of Central Florida 2008{2016 Distinguished Research
    [Show full text]
  • Spectral Transformations and Generalized Pollaczek Polynomials*
    METHODS AND APPLICATIONS OF ANALYSIS. © 1999 International Press Vol. 6, No. 3, pp. 261-280, September 1999 001 SPECTRAL TRANSFORMATIONS AND GENERALIZED POLLACZEK POLYNOMIALS* OKSANA YERMOLAYEVAt AND ALEXEI ZHEDANOV* To Richard Askey on his 65th birthday Abstract. The Christoffel and the Geronimus transformations of the classical orthogonal poly- nomials of a discrete variable are exploited to construct new families of the generalized Pollaczek polynomials. The recurrence coefficients wn, bn of these polynomials are rational functions of the argument n. The (positive) weight function is known explicitly. These polynomials are shown to belong to a subclass of the semi-classical orthogonal polynomials of a discrete variable. We illustrate the method by constructing a family of the modified Charlier polynomials which are orthogonal with respect to a perturbed Poisson distribution. The generating function of these polynomials provides a nontrivial extension of the class of the Meixner-Sheffer generating functions. 1. Introduction. The formal orthogonal polynomials Pn(x) are defined through the three-term recurrence relation ([8]) (1.1) iVfiOc) + unPn-i(x) + bnPn(x) = xPn(x) with the initial conditions (1.2) Po(x) = l, Pi(x)=x-bo. n n_1 The polynomials Pn(x) are monic (i.e. Pn{x) = x 4- 0(a; )). It can be shown that for arbitrary complex coefficients bn and (non-zero) un there exists a linear functional C such that k (1.3) £{Pn(x)x } = hn5nk, k<n, where (1.4) hn - u1U2"'Un ^ 0 are normalization constants. The functional £ is defined on the space of polynomials by its moments n (1.5) cn = £{x }, n = 0,l,---.
    [Show full text]
  • Arxiv:1903.11395V3 [Math.NA] 1 Dec 2020 M
    Noname manuscript No. (will be inserted by the editor) The Gauss quadrature for general linear functionals, Lanczos algorithm, and minimal partial realization Stefano Pozza · Miroslav Prani´c Received: date / Accepted: date Abstract The concept of Gauss quadrature can be generalized to approx- imate linear functionals with complex moments. Following the existing lit- erature, this survey will revisit such generalization. It is well known that the (classical) Gauss quadrature for positive definite linear functionals is connected with orthogonal polynomials, and with the (Hermitian) Lanczos algorithm. Analogously, the Gauss quadrature for linear functionals is connected with for- mal orthogonal polynomials, and with the non-Hermitian Lanczos algorithm with look-ahead strategy; moreover, it is related to the minimal partial realiza- tion problem. We will review these connections pointing out the relationships between several results established independently in related contexts. Original proofs of the Mismatch Theorem and of the Matching Moment Property are given by using the properties of formal orthogonal polynomials and the Gauss quadrature for linear functionals. Keywords Linear functionals · Matching moments · Gauss quadrature · Formal orthogonal polynomials · Minimal realization · Look-ahead Lanczos algorithm · Mismatch Theorem. 1 Introduction Let A be an N × N Hermitian positive definite matrix and v a vector so that v∗v = 1, where v∗ is the conjugate transpose of v. Consider the specific linear S. Pozza Faculty of Mathematics and Physics, Charles University, Sokolovsk´a83, 186 75 Praha 8, Czech Republic. Associated member of ISTI-CNR, Pisa, Italy, and member of INdAM- GNCS group, Italy. E-mail: [email protected]ff.cuni.cz arXiv:1903.11395v3 [math.NA] 1 Dec 2020 M.
    [Show full text]
  • Charting the $ Q $-Askey Scheme
    Charting the q-Askey scheme Tom H. Koornwinder, [email protected] Dedicated to Jasper Stokman on the occasion of his fiftieth birthday, in admiration and friendship Abstract Following Verde-Star, Linear Algebra Appl. 627 (2021), we label families of orthogonal polynomials in the q-Askey scheme together with their q-hypergeometric representations by k three sequences xk,hk,gk of Laurent polynomials in q , two of degree 1 and one of degree 2, satisfying certain constraints. This gives rise to a precise classification and parametrization of these families together with their limit transitions. This is displayed in a graphical scheme. We also describe the four-manifold structure underlying the scheme. 1 Introduction The Askey scheme [1, p.46], [7, p.184] and the q-Askey scheme [7, p.414] display in a graphical way the families of (q-)hypergeomtric orthogonal polynomials as they occur as limit cases of the four-parameter top level families: Wilson and Racah polynomials for the Askey scheme and Askey–Wilson and q-Racah polynomials for the q-Askey scheme. By each arrow to the next lower level one parameter is lost. The bottom level families no longer depend on parameters. Since their introduction these schemes have been of great assistance to everybody who needs to do work with one or more of the families in the scheme. These schemes are also expected and partially proven to exist in other contexts, parallel to the original schemes or generalizing them. These contexts are: (i) (q-)hypergeometric biorthog- onal rational functions [3]; (ii) the nonsymmetric case [11], [12]; (iii) the q = −1 case starting arXiv:2108.03858v1 [math.CA] 9 Aug 2021 with the Bannai–Ito polynomials [2, pp.
    [Show full text]
  • Orthogonal Polynomials and Cubature Formulae on Spheres and on Balls∗
    SIAM J. MATH. ANAL. c 1998 Society for Industrial and Applied Mathematics Vol. 29, No. 3, pp. 779{793, May 1998 015 ORTHOGONAL POLYNOMIALS AND CUBATURE FORMULAE ON SPHERES AND ON BALLS∗ YUAN XUy Abstract. Orthogonal polynomials on the unit sphere in Rd+1 and on the unit ball in Rd are shown to be closely related to each other for symmetric weight functions. Furthermore, it is shown that a large class of cubature formulae on the unit sphere can be derived from those on the unit ball and vice versa. The results provide a new approach to study orthogonal polynomials and cubature formulae on spheres. Key words. orthogonal polynomials in several variables, on spheres, on balls, spherical har- monics, cubature formulae AMS subject classifications. 33C50, 33C55, 65D32 PII. S0036141096307357 1. Introduction. We are interested in orthogonal polynomials in several vari- ables with emphasis on those orthogonal with respect to a given measure on the unit sphere Sd in Rd+1. In contrast to orthogonal polynomials with respect to measures defined on the unit ball Bd in Rd, there have been relatively few studies on the struc- ture of orthogonal polynomials on Sd beyond the ordinary spherical harmonics which are orthogonal with respect to the surface (Lebesgue) measure (cf. [2, 3, 4, 5, 6, 8]). The classical theory of spherical harmonics is primarily based on the fact that the ordinary harmonics satisfy the Laplace equation. Recently Dunkl (cf. [2, 3, 4, 5] and the references therein) opened a way to study orthogonal polynomials on the spheres with respect to measures invariant under a finite reflection group by developing a theory of spherical harmonics analogous to the classical one.
    [Show full text]