Polymer Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Polymer Chemistry Polymer Chemistry View Article Online PAPER View Journal | View Issue Reversible crosslinking and fast stress relaxation in dynamic polymer networks via transalkylation Cite this: Polym. Chem., 2021, 12, 3640 using 1,4-diazabicyclo[2.2.2] octane† Eveline E. L. Maassen, a,b Johan P. A. Heuts *a and Rint P. Sijbesma *a Dynamically crosslinked polymers offer the possibility to design materials that have the robustness of thermosetting materials and the reshapability of thermoplastic materials. A reversible crosslinker based on transalkylation chemistry using 1,4-diazabicyclo[2.2.2]octane (DABCO) was developed. The kinetics of the exchange reaction of benzyl bromide with DABCO was studied in detail by varying molar ratios and temp- erature. The system showed efficient exchange without addition of a catalyst. Reversibility in a polymer was studied by the crosslinking of a linear, benzylic bromide functionalized polyacrylate with DABCO. The Received 3rd March 2021, resulting network was insoluble in common solvents, but it readily dissolved in the presence of DABCO. Accepted 2nd June 2021 Rheological measurements showed that the crosslinks are dynamic, with a strong temperature dependent Creative Commons Attribution 3.0 Unported Licence. DOI: 10.1039/d1py00292a relaxation that at 140 °C is faster than for other transalkylation based dynamic networks reported in the rsc.li/polymers literature. over the past years, some examples are transesterification Introduction – – reactions,7,22 26 boronic ester exchange,27 29 disulfide Thermosetting polymers are covalently crosslinked networks exchange,30 controllable reversible addition–fragmentation – with excellent properties such as solvent resistance and high reactions,31 33 transcarbonation exchange,34 and (vinylogous) This article is licensed under a – thermal and dimensional stability.1,2 Although these pro- urethane exchange.35 38 Because nucleophilic substitutions are perties are highly advantageous for a wide range of appli- usually considered to be non-reversible, they have often been cations such as in the coatings,3 adhesives,4 construction,5 overlooked for use in CANs.15 However, the reversibility of 6 39 Open Access Article. Published on 02 June 2021. Downloaded 9/24/2021 6:10:40 AM. and automotive industries, recycling or reprocessing these specific nucleophilic substitutions has been known for years, products is very challenging because they are unable to flow and has recently been employed in CANs.40 Kulchat and Lehn upon heating. By introducing exchangeable crosslinks, investigated the transalkylation of quaternary ammonium enhanced properties such as reshapability,7 recyclability,7,8 salts,41 and showed their potential for the development of (self-)healing,9,10 or stress relaxation can be obtained while dynamic covalent chemistry. Drockenmuller and coworkers retaining the advantageous properties like enhanced thermal were the first to report a dynamic polymeric network based on and chemical stability.11,12 Networks containing specially transalkylation exchange of C–N bonds.42 Network polymers designed reversible covalent crosslinks are also known as containing 1,2,3-triazolium salts as reversible crosslinks were – covalent adaptable networks (CANs).8,13 19 Depending on the synthesized and could be recycled by compression molding. nature of the exchangeable bond, a stimulus such as light,20 After two recycling cycles, samples with an extension at break temperature,21 or pH triggers the reversibility of the bond.15 similar to the starting material were obtained, indicating Many dynamic motifs for bond exchange have been developed efficient network reformation. Furthermore, efficient stress relaxation was observed in rheological experiments. At a temp- erature of 200 °C, the characteristic relaxation time τ was only a a few seconds. Following this work, Konkolewicz and co- Supramolecular Polymer Chemistry group, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University workers designed acrylic polymeric materials which were dyna- 43 of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. mically crosslinked with anilinium salts. These dynamic E-mail: [email protected], [email protected] polymeric materials show excellent malleability at 60 °C and b Brightlands Materials Center (BMC), P.O. Box 18, 6160 MD Geleen, The moreover could be quantitively healed by mild heating to Netherlands 60 °C or 80 °C. A more detailed kinetic study elucidated the †Electronic supplementary information (ESI) available: Synthetic procedures, kinetic analysis, calculation of activation energy, reaction mechanisms material exchange mechanism and it was found that although the characterization and supplementary figures. See DOI: 10.1039/d1py00292a exchange follows a dissociative pathway, they have low degrees 3640 | Polym. Chem.,2021,12,3640–3649 This journal is © The Royal Society of Chemistry 2021 View Article Online Polymer Chemistry Paper of de-crosslinking and therefore the networks have properties of 103 and 106 respectively)52 will transalkylate much faster resembling those of associative CANs.44 Du Prez and coworkers than DMAP derivatives. An additional advantage is that one developed a reversible network via C–S transalkylation of DABCO molecule can form a crosslink between two polymer trialkylsulfonium salts.45 With kinetic studies they showed chains, because it contains two tertiary amine functional that alkylbrosylates are efficient transalkylation agents to groups. Finally, DABCO can easily be alkylated at low tempera- convert thioesters into trialkylsulfonium salts. These salts tures, making the alkylation process compatible with (meth) showed complete relaxation at elevated temperatures in rheolo- acrylates.53 gical stress relaxation experiments, and remolding by com- The work reported here investigates the potential of DABCO pression molding yielded defect free samples. Recycled in transalkylation reactions to create dynamically crosslinked samples showed no significant change in mechanical pro- acrylate networks. The kinetics of the exchange reaction of perties when measured in DMTA and tensile tests. Zhang and benzyl bromide with DABCO was studied in detail using a coworkers utilized similar C–S transalkylation reactions to small molecule model system. Additionally, we demonstrate recycle sulfur-cured rubber.46 the formation of a dynamic covalent network by crosslinking a Inspired by these systems, we aimed at developing a trans- linear benzylic bromide functionalized methacrylic prepolymer alkylation system that can be implemented in (meth)acrylate in a single step with DABCO. The cured network can be repro- polymers. Multifunctional (meth)acrylate polymers are a cessed and shows efficient stress relaxation in rheological typical example of thermosetting polymers and due to their measurements. fast curing behavior and compatibility with many different functionalities,47 they have many industrial applications e.g. in dentistry,48 coatings,3,49 liquid-crystal displays,50 inks and adhesives.4,51 The use of a two-step approach of linear Experimental polymerization followed by reversible crosslinking offers Materials Creative Commons Attribution 3.0 Unported Licence. opportunities for the introduction of dynamic behavior into All commercial chemicals and solvents were used as received, commercially available methacrylic polymers.38 A number of unless stated otherwise. 4-(Bromomethyl)benzoic acid and different tertiary amines were considered as reversible cross- 2-hydroxyethyl methacrylate were obtained from TCI EUROPE. linking agent. 1,4-Diazabicyclo[2.2.2]octane (DABCO) was All other chemicals for the synthesis were purchased from selected as the most promising candidate for fast exchange Sigma Aldrich. Solvents were obtained from Biosolve. reactions (Scheme 1). Compared to the popular nucleophilic catalyst 4-dimethylaminopyridine (DMAP), a pyridine derivate, the bicyclic aliphatic amine DABCO is a significantly better Characterization methods ff nucleophile, yet also a much better leaving group (by a factor Di erential scanning calorimetry (DSC). Tg of the polymers This article is licensed under a was measured using a TA Instruments Q2000 differential scan- ning calorimeter equipped with an RCS90 cooling accessory using aluminum hermetic pans. 5–10 mg of sample was used Open Access Article. Published on 02 June 2021. Downloaded 9/24/2021 6:10:40 AM. per measurement. The general method consisted of four cycles in which a sample was measured from −50 to 200 °C with − heating and cooling rates of 10 °C min 1 (cycles 1 and 2), − − 20 °C min 1 and 40 °C min 1. The first heating run was dis- carded. Universal Analysis TRIOS software was used for data acquisition, midpoint at half height was used to determine Tg. Gel fraction. The mass fraction of the crosslinked part of the material is defined as the gel fraction. Approximately 250 mg of crosslinked material was weighed and immersed in 10 mL THF for 75 hours at room temperature. The samples were fil- tered and dried in a vacuum oven at 60 °C in a vacuum oven. The gel fraction was determined using the following equation:54 m Gel fraction ¼ dry ð1Þ minitial where minitial is the initial weight of the sample, and mdry is the mass of the sample after extraction and subsequent drying. Matrix assisted laser absorption/ionization-time of flight mass spectra (MALDI-TOF). Molar masses of the synthesized Scheme 1 Schematic representation of the topology rearrangements small molecules were determined
Recommended publications
  • Disproportionation and Transalkylation of Alkylbenzenes Over Zeolite Catalysts
    Applied Catalysis A: General 181 (1999) 355±398 Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts Tseng-Chang Tsaia, Shang-Bin Liub, Ikai Wangc,* aRe®ning and Manufacturing Research Center, Chinese Petroleum Corporation, Chiayi 600, Taiwan bInstitute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei 106, Taiwan cDepartment of Chemical Engineering, National Tsing-Hua University, Hsinchu 300, Taiwan Received 13 June 1998; received in revised form 3 October 1998; accepted 5 November 1998 Abstract Disproportionation and transalkylation are important processes for the interconversion of mono-, di-, and tri-alkylbenzenes. In this review, we discuss the recent advances in process technology with special focus on improvements of para-isomer selectivity and catalyst stability. Extensive patent search and discussion on technology development are presented. The key criteria for process development are identi®ed. The working principles of para-isomer selectivity improvements involve the reduction of diffusivity and the inactivation of external surface. In conjunction with the fundamental research, various practical modi®cation aspects particularly the pre-coking and the silica deposition techniques, are extensively reviewed. The impact of para-isomer selective technology on process economics and product recovery strategy is discussed. Furthermore, perspective trends in related research and development are provided. # 1999 Elsevier Science B.V. All rights reserved. Keywords: Disproportionation; Transalkylation;
    [Show full text]
  • Alkyne Metathesis Catalysts: Scope and Future André Mortreux, Olivier Coutelier
    Alkyne Metathesis Catalysts: Scope And Future André Mortreux, Olivier Coutelier To cite this version: André Mortreux, Olivier Coutelier. Alkyne Metathesis Catalysts: Scope And Future. Journal of Molecular Catalysis A: Chemical, Elsevier, 2006, 254, pp.96-104. 10.1016/j.molcata.2006.03.054. hal-00107451 HAL Id: hal-00107451 https://hal.archives-ouvertes.fr/hal-00107451 Submitted on 18 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ALKYNE METATHESIS CATALYSTS: SCOPE AND FUTURE. André Mortreux*, Olivier Coutelier Laboratoire de Catalyse de Lille UMR 8010 CNRS USTL-ENSCL, BP 90108, 59652 Villeneuve d’Ascq Cedex France Corresponding author.Tel +33320434993 ;Fax+33320434486 E-mail adress: [email protected] ABSTRACT This paper presents the evolution of alkyne metathesis since the early discoveries, essentially from the catalyst point of view. It is shown that although well defined carbynes may be useful for this reaction, further work has been made, aimed at the synthesis of new catalysts or catalytic systems, based on molybdenum precursors , associated or not with phenolic co- catalysts. The major objectives have been to obtain more functional groups tolerants catalysts, for their application in organic synthesis, including RCM for further stereoselective hydrogenation of the triple bond in the cycle, as well as for polymerization of aromatic diynes.
    [Show full text]
  • Gas Phase Alkylation-Liquid Phase Transalkylation Process
    ~™ IIINMNNIIMIIIINIIINNII (19) J European Patent Office Office europeen des brevets (11) EP 0 879 809 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt. CI.6: C07C 15/073, C07C 2/66 25.11.1998 Bulletin 1998/48 //B01J29/035 (21) Application number: 98109045.9 (22) Date of filing: 19.05.1998 (84) Designated Contracting States: • Merrill, James T. AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU Katy, Texas 77449 (US) MCNLPTSE • Butler, James R. Designated Extension States: Houston, Texas 77059 (US) AL LT LV MK RO SI (74) Representative: (30) Priority: 21.05.1997 US 861206 Leyder, Francis et al c/o Fina Research S.A. (71) Applicant: FINA TECHNOLOGY, INC. Dept. Brevets Dallas, Texas 75206 (US) Zone Industrielle C 7181 Seneffe (Feluy) (BE) (72) Inventors: • Ghosh, Ashim Kumar Houston, Texas 77059 (US) (54) Gas phase alkylation-liquid phase transalkylation process (57) Process for the production of ethylbenzene by aromatic fraction is subject to disproportionation to pro- alkylation over a silicalite alkylation catalyst with the vide a reduced diethylbenzene content and an subsequent transalkylation of diethylbenzene with the enhanced ethylbenzene content. A specific monoclinic alkylation catalyst and conditions selected to retard silicalite alkylation catalyst has a silica/alumina ratio of xylene production and also heavies production. A feed- at least 300 and has a crystal size of less than one stock containing benzene and ethylene is applied to a micron. multi-stage alkylation reaction zone having a plurality of series-connected catalyst beds containing a pentasil molecular sieve alkylation catalyst which is silicalite of a predominantly monoclinic symmetry having a silica/alu- mina ratio of at least 275.
    [Show full text]
  • Monitoring the Structure–Reactivity Relationship in Epoxidized Perilla and Safflower Oil Thermosetting Resins
    Monitoring the structure–reactivity relationship in epoxidized perilla and safflower oil thermosetting resins Thi-Nguyet Tran, Chiara Di Mauro, Alain Graillot, Alice Mija To cite this version: Thi-Nguyet Tran, Chiara Di Mauro, Alain Graillot, Alice Mija. Monitoring the structure–reactivity relationship in epoxidized perilla and safflower oil thermosetting resins. Polymer Chemistry, Royal Society of Chemistry - RSC, 2020, 11 (31), pp.5088-5097. 10.1039/D0PY00688B. hal-02902528v2 HAL Id: hal-02902528 https://hal.archives-ouvertes.fr/hal-02902528v2 Submitted on 27 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Polymer Chemistry PAPER Monitoring the structure–reactivity relationship in epoxidized perilla and safflower oil thermosetting Cite this: Polym. Chem., 2020, 11, 5088 resins† Thi-Nguyet Tran,a Chiara Di Mauro,a Alain Graillot b and Alice Mija *a For the first time, the effect of reactant structure, stoichiometry and heating rate on the reactivity of epox- idized perilla oil (EPLO) and epoxidized safflower oil (ESFO) with dicarboxylic acids (DCAs) was studied using in situ FT-IR. The epoxy content in the monomer structure was found to affect the copolymeriza- tion system’s reactivity, with epoxidized linseed oil (ELO) considered as a reference.
    [Show full text]
  • Journal of Catalysis 281 (2011) 21–29
    Journal of Catalysis 281 (2011) 21–29 Contents lists available at ScienceDirect Journal of Catalysis journal homepage: www.elsevier.com/locate/jcat Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst ⇑ Xinli Zhu, Lance L. Lobban, Richard G. Mallinson, Daniel E. Resasco Center for Biomass Refining, School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA article info abstract Article history: The catalytic conversion of anisole (methoxybenzene), a phenolic model compound representing a ther- Received 1 December 2010 mal conversion product of biomass lignin, to gasoline-range molecules has been investigated over a Revised 20 March 2011 bifunctional Pt/HBeta catalyst at 400 °C and atmospheric pressure. The product distribution obtained Accepted 30 March 2011 on the bifunctional catalyst was compared with those obtained on monofunctional catalysts (HBeta Available online 19 May 2011 and Pt/SiO2). This comparison indicates that the acidic function (HBeta) catalyzes the methyl transfer reaction (transalkylation) from methoxyl to the phenolic ring, yielding phenol, cresols, and xylenols as Keywords: the major products. The metal function catalyzes demethylation, hydrodeoxygenation, and hydrogena- Bifunctional hydrodeoxygenation tion in sequence, resulting in phenol, benzene, and cyclohexane. On the bifunctional catalyst, both methyl Phenolic compound Pt/HBeta transfer and hydrodeoxygenation are achieved at significantly higher rates than over the monofunctional Anisole catalysts, leading to the formation of benzene, toluene, and xylenes with lower hydrogen consumption Lignin and a significant reduction in carbon losses, in comparison with the metal function alone. In addition, Hydrogenation on the bifunctional Pt/HBeta, the rate of deactivation and coke deposition are moderately reduced.
    [Show full text]
  • Methyltransferase-Directed Covalent Coupling of Fluorophores To
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Methyltransferase-directed covalent coupling of fluorophores to DNA† Cite this: Chem. Sci.,2017,8,3804 Milena Helmer Lauer,‡ab Charlotte Vranken,‡a Jochem Deen,a Wout Frederickx,a Willem Vanderlinden,a Nathaniel Wand,c Volker Leen,a Marcelo H. Gehlen,b Johan Hofkensa and Robert K. Neely*c We report an assay for determining the number of fluorophores conjugated to single plasmid DNA molecules and apply this to compare the efficiency of fluorophore coupling strategies for covalent DNA labelling. We compare a copper-catalyzed azide–alkyne cycloaddition reaction, amine to N- hydroxysuccinimidyl ester coupling reaction and strain-promoted azide–alkyne cycloaddition reaction for fluorescent DNA labelling. We found increased labelling efficiency going from the amine to N- hydroxysuccinimidyl ester coupling reaction to the copper-catalyzed azide–alkyne cycloaddition and found the highest degree of DNA labelling with the strain-promoted azide–alkyne cycloaddition reaction. We also examined the effect of labelling on the DNA structure using atomic force microscopy. Creative Commons Attribution 3.0 Unported Licence. We observe no distortions or damage to the DNA that was labeled using the amine to N- Received 21st September 2016 hydroxysuccinimidyl ester and strain-promoted azide–alkyne cycloaddition coupling reactions. This was Accepted 13th March 2017 in contrast to the copper-catalyzed azide–alkyne cycloaddition reaction, which, despite the use of DOI: 10.1039/c6sc04229e copper-coordinating ligands in the labelling mixture, leads to some structural DNA damage (single- rsc.li/chemical-science stranded DNA breaks). Introduction reactions with extended and complex chemical moieties.
    [Show full text]
  • Acid Strength Measurements of Amberlyst 15 Resin, P-Xylene-2
    Reaction Kinetics, Mechanisms and Catalysis https://doi.org/10.1007/s11144-019-01551-7 Acid strength measurements of Amberlyst 15 resin, p‑xylene‑2‑sulfonic acid and chlorosulfonic and sulfuric acid treated SiO2, Al2O3, TiO2 and MgO Marek Marczewski1 · Monika Aleksandrowicz1 · Ewelina Brzezińska1 · Maja Podlewska1 · Mateusz Rychlik1 · Sandra Żmuda1 · Urszula Ulkowska1 · Marek Gliński1 · Osazuwa Osawaru2 Received: 22 November 2018 / Accepted: 11 February 2019 © The Author(s) 2019 Abstract The measurements of the minimum acid strength (H Omin) required for the ini- tiation of cis-stilbene at 303 K and tert-butylbenzene at 313 K, 323 K and 333 K have enabled the establishment of a much more precise acid strength scale based on test reactions. HOmin values obtained were: − 9.0 (cis-stilbene, 303 K), − 9.3, − 9.5 and − 9.9 (tert-butylbenzene, 313 K, 323 K, 333 K). The updated method was used for the determination of the acid strength of diferent catalysts obtained in the reaction of chlorosulfonic and sulfuric acid on diferent oxide carriers. It was found that the acid strength values depended on the basicity of the studied supports. For the supports treated with chlorosulfonic acid the values of acid strength were: − 11.5 < HO ≤ − 10.8 in the case of the less basic SiO 2 and − 9.3 < HO ≤ − 9.0 for the more basic TiO2, Al2O3 and MgO. For the supports treated with sulfuric acid the acid strength was: -9.3 < HO ≤ -9.0 for the less basic SiO2 and TiO2, − 9.0 < HO ≤ − 7.9 for the more basic Al 2O3 and − 7.9 < HO ≤ − 6.9 for the most basic MgO.
    [Show full text]
  • United States Patent (19) 11 Patent Number: S.902,9179 9 Collins Et Al
    USOO5902917A United States Patent (19) 11 Patent Number: S.902,9179 9 Collins et al. (45) Date of Patent: May 11, 1999 54 ALKYLAROMATICS PRODUCTION 4,857,666 8/1989 Barger et al. ........................... 585/323 4,870,222 9/1989 Bakas et al. ............................ 585/323 75 Inventors: Nick A. Collins, Fall Branch, Tenn.; 4,891,458 1/1990 Innes et al. ............................. 585/323 Dominick N. MaZZOne, Wenonah: 5,149,894 9/1992 Holtermann et al. ................... 585/467 s 5,177.285 1/1993 Van Opdorp et al. .................. 585/467 Shya R. Venkat, Princeton, both of 5,453,554 9/1995 Cheng et al. ........................... 585/467 OTHER PUBLICATIONS 73 Assignee: Mobil Oil Corporation, Fairfax, Va. Catalysis of Organic Reactions, Mobil/Badger Ethylben 21 Appl. No.: 08/980,108 ZCC Process-Chemistry and Catalytic Implications, pp. 39-50, by Francis G. Dwyer. 22 Filed: Nov. 26, 1997 6 Primary Examiner-Glenn Caldarola 51 Int. Cl. ............................... CO7C 100, COS 2/64; Assistant Examiner Thuan D. Dang 52 U.S. CI si'sS.S., Attorney, Agent, or Firm-Peter W. Roberts; Malcolm D. O X O -- O - - - - - - - - - - - - - - - - - - - - - - - - - - Keen 585/449; 585/467; 585/475 58 Field of Search ..................................... 585/310,315, 57 ABSTRACT 585/316, 319, 323,449, 467, 475 There is provided a process for producing alkylaromatics, especially ethylbenzene and cumene, wherein a feedstock is 56) References Cited first fed to a transalkylation Zone and the entire effluent from U.S. PATENT DOCUMENTS the transalkylation Zone is then cascaded directly into an 3,200,163 8/1965 Fensk. 260/671 alkylation Zone along with an olefin alkylating agent, espe 3,751,50421 - -2 8/1973 KeownCISKC et.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,487.978 Kruse Et Al
    United States Patent (19) 11 Patent Number: 4,487.978 Kruse et al. 45) Date of Patent: Dec. 11, 1984 54 HIGH YELD PROCESS FOR PREPARING 4, 9,544 2/1979 Rutledge ............................. 260/396 4,4'-BIPHENOL AND , 50,243 4/1979 Bruck et al. ........................ 568/805 TERTALKYLATED-ALKYLBENZENES 4, 195,189 2/1979 Earley ................................. 568/730 4,205,187 5/1980 Gardenas et al. ................... 563/730 (75) Inventors: Walter M. Kruse, Wilmington, Del.: 4,243,822 6/1981 Demler et al. ...................... 568/730 John F. Stephen, West Chester, Pa. 4,354,047 10/1982 Strom .................................. 568/730 4,354,048 10/1982 Strom.................................. 568/730 73) Assignee: ICI Americas Inc., Wilmington, Del. 4,414,422 11/1983 Ash et al. ............................ 568/724 21 Appl. No.: 514,256 OTHER PUBLICATIONS 22 Filed: Jul. 15, 1983 M. Tashiro, "Selective Synthesis of Aromatic Cmpds. (51) Int. Cl. .............................................. C07C39/15 Using Positional Protective Groups', Synthesis, (1949), 52) U.S. Cl. ..................................... 568/730; 585/319 pp. 921-924. (58) Field of Search ......................... 568/730; 585/319 Primary Examiner-Werren B. Lone (56) References Cited Attorney, Agent, or Firm-Richard A. Rowe U.S. PATENT DOCUMENTS (57) ABSTRACT 2,792,427 5/1957 Houtson et al. .................... 260/613 Biphenol and para substituted alkylbenzene derivatives 3,562,338 2/1971 Zaweski .............................. 260/62O are produced in high yield and purity by heating alkyl 3,631,208 12/1971 Hay ............ ... 260/619 R 4,100,205 7/1978 Rutledge ... ... 568/730 benzene solvent solutions of tetraalkyl substituted 4,4'- 4, 101,561 7/1978 Rutledge ... ... 260/396 biphenols in the presence of strong acid catalyst.
    [Show full text]
  • Transalkylation Process Transalkylierungsverfahren Procede De Transalkylation
    ~™ mi mi ii ii mil ii in ii i ii (19) J European Patent Office Office europeen des brevets (11) EP 0 467 007 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publicationation and mention (51) |nt. CI.6: C07C 15/02 of the grant of the patent: 17.04.1996 Bulletin 1996/16 (21) Application number: 90870113.9 (22) Date of filing: 18.07.1990 (54) Transalkylation process Transalkylierungsverfahren Procede de transalkylation (84) Designated Contracting States: (74) Representative: Leyder, Francis et al BE DE FR GB IT NL c/o Fina Research S.A. Zone Industrielle C (43) Date of publication of application: B-7181 Feluy (BE) 22.01.1992 Bulletin 1992/04 (56) References cited: (73) Proprietor: FIN A TECHNOLOGY, INC. DE-A-3 437 615 US-A-4169111 Dallas, Texas 75206 (US) US-A- 4 459 426 US-A- 4 555 311 (72) Inventor: Butler, James R. Remarks: Houston, Texas (US) The file contains technical information submitted after the application was filed and not included in this specification CO r»- o o CO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in o a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. Q_ 99(1) European Patent Convention). LU Printed by Rank Xerox (UK) Business Services 2.11.2/3.4 1 EP 0 467 007 B1 2 Description Another portion containing principally benzene, cumene, propane and di-and tri-isopropylbenzene is supplied to FIELD OF THE INVENTION a separation zone.
    [Show full text]
  • Vitrimers Via Transalkylation of Trialkylsulfonium Salts Benjamin Hendriks, Jelle Waelkens, Johan M
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Letter pubs.acs.org/macroletters Poly(thioether) Vitrimers via Transalkylation of Trialkylsulfonium Salts Benjamin Hendriks, Jelle Waelkens, Johan M. Winne,* and Filip E. Du Prez* Department of Organic and Macromolecular Chemistry, Polymer Chemistry Research Group and Laboratory of Organic Synthesis, Ghent University, Krijgslaan, 281, S4-bis, B-9000 Ghent, Belgium *S Supporting Information ABSTRACT: Vitrimers are permanently cross-linked organic polymers that can be reshaped, molded, and recycled without loss of network integrity. Herein, we report poly(thioether) networks, prepared through a straightforward thiol−ene photopolymerization, that can be turned into catalyst-free vitrimer materials by partial alkylation of the thioethers (1− 10%) to the corresponding trialkylsulfonium salts. Based on a classical SN2-type substitution, the resulting polyionic net- works can be reshaped upon heating via swift transalkylation reactions. This novel exchange reaction for the design of vitrimers was studied both on low MW model compounds as well as on a material level. In addition, we demonstrated the recycling of these networks without significant loss of mechanical properties. he desirable but antipodal characteristics of thermosetting T and thermoplastic polymers, respectively, resistance to deformation or dissolution, and thermal plasticity for processing and recycling can be achieved by the introduction of exchangeable chemical bonds in a polymer network. Networks containing exchangeable cross-links are also known as covalent adaptable networks (CANs).1 A subset of CANs rely on an associative (or concerted) bond exchange reaction, rather than the more common dissociative exchange reactions in which bonds are first broken and then reformed.2 Uniquely, associative bond exchanges permit network reorganizations and Figure 1.
    [Show full text]
  • How Non-Conventional Feedstocks Will Affect Aromatics Technologies E
    New Technologies and Alternative Feedstocks in Petrochemistry and Refining DGMK Conference October 9 – 11, 2013, Dresden, Germany How non-conventional Feedstocks will affect Aromatics Technologies E. Köhler Clariant Produkte (Deutschland) GmbH, Munich, Germany Abstract The abundance of non-conventional feedstocks such as coal and shale gas has begun to affect the availability of traditional base chemicals such as propylene and BTX aromatics. Although this trend is primarily fueled by the fast growing shale gas economy in the US and the abundance of coal in China, it will cause the global supply and demand situation to equilibrate across the regions. Lower demand for gasoline and consequently less aromatics- rich reformate from refineries will further tighten the aromatics markets that are expected to grow at healthy rates, however. Refiners can benefit from this trend by abandoning their traditional fuel-oriented business model and becoming producers of petrochemical intermediates, with special focus on paraxylene (PX). Cheap gas from coal (via gasification) or shale reserves is an advantaged feedstock that offers a great platform to make aromatics in a cost-competitive manner, especially in regions where naphtha is in short supply. Gas condensates (LPG and naphtha) are good feedstocks for paraffin aromatization, and methanol from coal or (shale) gas can be directly converted to BTX aromatics (MTA) or alkylated with benzene or toluene to make paraxylene. Most of today’s technologies for the production and upgrading of BTX aromatics and
    [Show full text]