Description of European Sminthuridae Symphypleona), 1: Genera Lipothrix

Total Page:16

File Type:pdf, Size:1020Kb

Description of European Sminthuridae Symphypleona), 1: Genera Lipothrix Bijdragen tot de Dierkunde, 63 (1) 43-60 (1993) SPB Academie Publishing bv, The Hague A standardized description of European Sminthuridae (Collembola, 1: Lipothrix, Gisinurus and Caprainea Symphypleona), genera , Pierre Nayrolles Laboratoire de Zoologie, Ecobiologie des Arthropodes édaphiques, UPR CNRS 90 14, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cédex, France Keywords: Collembola, Symphypleona, Lipothrix, Gisinurus, Caprainea, chaetotaxy, taxonomy Abstract been able to establish the setal patterns of append- 1990b, ages (Nayrolles, 1988, 1990a, 1991). the we have a A new standard description of Collembola Symphypleona is During present work, given great a appendicular proposed. In particular, standard table of the deal of attention to the ontogeny of chaetotaxy, chaetotaxy (antennae, legs, and furcula) is given. According to and our studies were based upon a wide taxonomie this presentation, the following species are redescribed: Lipo- This is different from Bretfeld's range. approach thrix lubbocki (Tullberg, 1872), Gisinurus malatestai Dallai, one since he studied four species belonging 1970, Caprainea marginata (Schött, 1893), and Caprainea (1990), bremondi (Delamare & Bassot, 1957). to only one family. Such a study, based on a too build small taxonomierange, does not allow to up chaetotaxic which would be a system applicable to Résumé all Symphypleona. We could make other criticisms (e.g. the problem of setae counting), but review of Bretfeld's work is the of the Nous exposons un nouveau standard de description pour les beyond scope present Nous Collemboles Symphypléones. notamment un proposons paper. de la chétotaxie des tableau type appendices (antennes, pattes et The nomenclatureof setae is given in our previ- furca). A l’aide de cetteprésentation standard, nousredécrivons ous papers. Until now, chaetotaxic tables required les espèces suivantes: Lipothrix lubbocki (Tullberg, 1872), two and a half So, a size reduction is neces- Gisinurus malatestai Dallai, 1970, Capraineamarginata (Schött, pages. We the the left 1893), et Caprainea bremondi (Delamare & Bassot, 1957). sary. propose to change legend on side of the tables by a set of symbols. At generic and specific level, only few taxonomie Introduction works on Symphypleona are available, viz. those by Stach (1956) and, limited to Europe, by Gisin studies the The aim of this work is not only to redescribe some (1960). Some improving knowledge of characteristics have been made Richards species of Symphypleona, but also to standardize genera by the presentation of their taxonomie characters, (1968) and Betsch (1980). most of which are based on chaetotaxy. The head In this work we will study species of the genera and body chaetotaxy, which is difficult to observe Lipothrix, Gisinurus, and Caprainea. These genera and standardize, is being studied by J.M. Betsch will be defined with emphasis on apomorphic and the trichobothrial pattern is now well known characters. for would through the works of Richards (1968), Betsch We use symbols designating setae. It (1980), and Betsch & Waller (1989). The study of be needless and too long to list all setal symbols. In- the is easier have these built appendicular chaetotaxy and we deed, symbols are up by using a logic sys- 44 P. Nayrolles - Description of European Sminthuridae tem, so the explanation of this system is sufficient. chaetotaxy shows a setal organization in genera- deal with the trices and and that In the first part of this paper we intergeneratrices, so we can say nomenclature of setae. Concerning some setae the chaetotaxy has a longitudinal structure. which do not pertain to our system of nomencla- Second, as well as the longitudinal structure, a ture, the symbols we give to them can be regarded transversal structure can sometimes be observed. These listed below. Whorls of setae make this transversal structure. as abbreviations. symbols are up The following abbreviations are used: We name "whorlation" [verticillation] the differ- ent organizations of setae in this transversal struc- ad. = adult ture; indeed we can observe several degrees of struc- anal an. app. = appendage ture (easiness to recognize whorls). An appendicu- ant. = antennal segment lar segment on which we cannot recognize any ceph. diag. = cephalic diagonal whorl is described as "unwhorled" [averticillé]. cup = cup-like organ an obvi- rau = mucronal seta Conversely, appendicular segment bearing = occurrence is oc ous whorls "euwhorled" [euverticillé] . If whorls ov. org. = oval organ are at a right angle to the axis of the appendicular = subcoxal used in pre process (only tables) segment, we say that the euwhorlation is right [eu- St. = instar verticillation droite], or we say that the euwhorla- str = chaetotaxic structure (only used in tables) tion is III sloping [euverticillation inclinée]. Moreover, Xe = external (dorsal) microchaeta of antennal setae can be between whorls on tibio- organ present two Xi = internal (ventral) microchaeta of antennal III tarsi and furcula; these setae make up an "inter- organ whorl" [interverticille]. From apex to basis, inter- whorls are numbered with Arab numerals, and whorls with of Roman numerals (except one part Nomenclature and vocabulary used for describing ant. IV, where the whorls are generally numerous; chaetotaxy for practical reasons we use Arab numerals here). the chaetotaxic nomenclature combines Principles of chaetotaxic nomenclature Third, the number of whorls or interwhorls with the letters We recall the of setal of general principles arrange- generatrices or intergeneratrices. For instance, ments on appendices and the nomenclaturewhich is Iae is the seta on whorl I and on generatrix Gae. In based on Nayrolles (1988, 1990a, 1990b, 1991). In addition, letters like A (for apical) or B (for basal) our previous papers we used words for describing are added when the segment is divided in several the chaetotaxy; several words were neologisms. We parts. For instance, on ant. IV the seta Alle is situ- will translate ated the withinthe whorl them and quote French words be- on apical part (A), second of this and the external tween brackets. part (II), on generatrix (e). First, we distinguish "G setae" from "H setae". Fourth, suppose that one wants to refer to a seta, G setae belong to generatrices and H setae to inter- if the context does not say which segmentbears this generatrices. We call a "generatrix" [génératrice] a seta, it is necessary to indicate it. Two letters are row of setae along an appendix. Fundamentally, used for symbolizing segments; for instance: AQ there are 8 generatrices, viz.: Ge (external), Gae for ant. IV, TI for tibiotarsi, DE for the dens, etc. (anterior-external), Ga (anterior), Gai (anterior- (see below). Within a setal symbol, the segment let- internal), Gi (internal), Gpi (posterior-internal), Gp ters are written between parentheses, e.g.: and "in- (posterior), Gpe (posterior-external). An (AQ)AIIe. As far as the legs are concerned, the tergeneratrix" [intergénératrice] is a setal row be- numbers 1,2, and 3 refer to the pair in question. tween two generatrices. We can observe intergener- For example, Til is used for the foretibiotarsus, atrices only on ant. IV. The intergeneratrix between and then (Tll)IIa is the seta on the foretibiotarsus, Ge and Gae is written the Heae, one between Gae on the second whorl, and on Ga. When we consider and Ga is written Haea, etc. Thus, the appendicular two homeotypic setae together, like the couple Bijdragen tot de Dierkunde, 63 (1) - 1993 45 (Tll)IIaand (TI2)IIa, we write the numbersof both cal), M (median), and B (basal). Generally, we can legs separated by a comma, e.g.: (TIl,2)IIa. When also divide B in three parts, which are from apex write: The towards basis: and BB. The section A we consider all tibiotarsi, we (Tl.)IIa. BA, BM, bears three whorls and and its point means "all legs" (this is shorter thanto write (AI, All, AIII) at tip 1, 2, 3). one seta written AA (no definite generatrix for The section B has variable number of We give the symbols for appendicular segments AA). a in the following list: whorls. From apex to basis, these whorls are writ- ten: M3 Concerning the section BA Ml, M2, ... B, is a whorl, BB is a whorl as well, but incom- Antenna AP = first antennal segment very = and has the AD second antennal segment plete, BM a special chaetotaxy. Indeed, AT = third antennal segment setae of BM are not idionymic (Grandjean, 1949). AQ = fourth antennal segment So, one cannot give any of these setae a name. Ex- Legs SB = basal subcoxa of cept AA and the setae of BM, we name the setae SA = apical subcoxa ant. IV with reference to whorls and generatrices or CX = coxa BBe TR = trochanter intergeneratrices, e.g.: Allpe, M3ae, BAp, ... FE = femur TI = tibiotarsus - of from femur Legs. As far as the segments legs, PT = pretarsus to subcoxae, are concerned, we cannot observe Furca MA = manubrium whorls. each For one segment (viz. femur), on DE = dens generatrix, setae are numbered from apex to basis, MU = mucron and the number follows the generatrix letter(s); for instance: ail, ai2, ai3 ... Moreover, we can observe The nomenclature of appendicular setae oval organs on these segments. The letter O is used for referring to such organs. For example: Oil and Now we can accurately expose the chaetotaxic Oi2 on trochanter; both belong to Gi, and Oi 1 is the nomenclature of every appendix. most apical. Whorls and interwhorls are present on tibiotarsi. Antenna. - Ant. I bears 7 setae which are written The fourth interwhorl has two setae on Gai, and of e, ae, a, etc., each them belonging to one two setae on Gpi. So, we consider that two layers generatrix. make up the fourth interwhorl. We number 1 the The primary setae on ant. II and ant. Ill can be apical layer, and 2 the basal one. Concerning the divided into an apical set (setae Ae, Aae, etc.) and other generatrices, we consider that their setae be- a basal set (setae Be, Bae, etc.).
Recommended publications
  • Gene-Rich X Chromosomes Implicate Intragenomic Conflict in the Evolution of Bizarre Genetic Systems
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.04.325340; this version posted October 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Gene-rich X chromosomes implicate intragenomic conflict in the evolution of bizarre genetic systems Noelle Anderson1, Kamil S. Jaron2, Christina N. Hodson2, Matthew B. Couger3, Jan Ševčík4, Stacy Pirro5, Laura Ross2 and Scott William Roy1,6 1Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343 2Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL 3Brigham and Women's Hospital, Department of Thoracic Surgery, Boston MA 02115 4Faculty of Science, Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic 5Iridian Genomes, Inc., Bethesda, MD, 20817, USA 6Department of Biology, San Francisco State University, San Francisco, CA 94117 Abstract Haplodiploidy and paternal genome elimination (HD/PGE) are common in animals, having evolved at least two dozen times. HD/PGE typically evolves from male heterogamety (i.e., systems with X chromosomes), however why X chromosomes are important for the evolution of HD/PGE remains debated. The Haploid Viability Hypothesis argues that X chromosomes promote the evolution of male haploidy by facilitating purging recessive deleterious mutations. The Intragenomic Conflict Hypothesis instead argues that X chromosomes promote the evolution of male haploidy due to conflicts with autosomes over sex ratios and transmission. To test these hypotheses, we studied lineages that combine germline PGE with XX/X0 sex determination (gPGE+X systems).
    [Show full text]
  • Downloaded from Brill.Com10/07/2021 07:28:06AM Via Free Access - 152 P
    Bijdragen tot de Dierkunde, 64 (3) 151-162 (1994) SPB Academie Publishing bv, The Hague A standardized description of European Sminthuridae (Collembola, Symphypleona), 2: review of four species of the genera Allacma and Spatulosminthurus Pierre Nayrolles Laboratoire de Zoologie, Ecobiologie des Arthropodes édaphiques, UPR CNRS 90 14, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cédex, France Keywords: Collembola, Symphypleona, Allacma, Spatulosminthurus, taxonomy, chaetotaxy, Europe Abstract et al., 1970), thick cuticle with a particular archi- tecture, and well-developed tracheal system with According to our standard of the appendicular chaetotaxy, the chiasmata at the forelegs. Moreover, Betsch & following species are redescribed: Allacma fusca (Linné, 1758), Waller (in press) point out the presence of a secon- Allacma gallica (Carl, 1899), Spatulosminthurus lesnei (Carl, dary (ontogenetic) neochaetosis on the great abdo- 1899), and Spatulosminthurus betschi Nayrolles, 1990. men as a synapomorphy of these three genera (like- ly the consequence of an ontogenetic delay in- The Résumé volving originally primary setae). following putative evolved characters can be added: setae (AD)iO, (AD)i+ 1, and (AD)i + 2 small and slender Nous redécrivons, d’après la standardisation donnée pour la chétotaxie appendiculaire, les espèces suivantes: Allacma fusca on a large base, and mucronal anterior lamella (Linné, 1758), Allacma gallica (Cari, 1899), Spatulosminthurus double. lesnei (Cari, 1899) et Spatulosminthurus betschi Nayrolles, I recall the abbreviations which correspond 1990. neither to setal symbols nor to the legend of the chaetotaxic tables; these were accurately explained in my first Introduction paper. abd. = abdomen This is the second part of a series dealing with the ad.
    [Show full text]
  • Collembola, Symphypleona, Sminthurus, Chaetotaxy, New Species, Taxonomy, Ontogeny
    tot de Dierkunde 64 215-237 Bijdragen , (4) (1995) SPB Academie Publishing b\, The Hague A standardized description of European Sminthuridae (Collembola, 3: of seven of Sminthurus Symphypleona), description species , including four new to science Pierre Nayrolles Laboratoire de Zoologie, Ecobiologie des Arthropodes édaphiques, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex, France Keywords: Collembola, Symphypleona, Sminthurus, chaetotaxy, new species, taxonomy, ontogeny, France, Spain Abstract tion proposed in the first paper (Nayrolles, 1993a) will be used here again. The following three species are redescribed: Sminthurus viridis Sminthurus Latreille, 1804 is the most ancient (Linnaeus, 1758), Sminthurus nigromaculatus Tullberg, 1871, genus of Symphypleona. The genus was hetero- and Sminthurus multipunctatus Schäffer, 1896. Four new spe- geneous, and progressively species were transferred cies are described from France and Spain: Sminthurus bour- to different review of genera. The last the genuswas geoisin. sp., Sminthurus bozoulensis n. sp., Sminthurus leuco- by Betsch & Betsch-Pinot in 1984. Within the sub- melanus n.sp.,and Sminthurus hispanicus n. sp. The importance of the ontogeny of chaetotaxyis stressed. Indeed, not all species family Sminthurinae, these authors distinguished acquire the secondary chaetotaxy in the same instar, and for three genera sharing the character "presence of a these characters the most informative instar is not the adult but of setae". These Allacma pair postantennal genera, the third juvenile instar. The study of such characters involves Borner, 1906, Spatulosminthurus Betsch & Betsch- the clustering of similar characters. A short discussion is given and Sminthurus about this issue (selection of characters and clustering criteria). Pinot, 1984, Latreille, 1804, sensu Betsch & Betsch-Pinot, 1984 were well established, because each one was defined by evolved charac- Résumé ters, making it monophyletic.
    [Show full text]
  • Collembola: Symphypleona) from Bolivia
    Zootaxa 4819 (2): 201–215 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4819.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:37D53C92-4C33-40D8-A372-31B0EA7FB7D3 A new genus and species of Katiannidae (Collembola: Symphypleona) from Bolivia JOSÉ G. PALACIOS-VARGAS1,3 & MA. RENÉ VACAFLORES-ARGANDOÑA2 1 Laboratorio de Ecología y Sistemática de Microartrópodos, Depto. Ecología y Recursos Naturales, Facultad de Ciencias, UNAM, Coyoacán 04510, México. [email protected]; https://orcid.org/0000-0001-9097-6813 2 Area de Zoología, Instituto de Ecología, Carrera de Biología, Universidad Mayor de San Andrés, Calle 27 Cota Cota, La Paz, Bo- livia. [email protected]; https://orcid.org/0000-0001-8978-7417 3Corresponding author. Abstract The new genus Borgesminthurinus gen. nov. from Bolivia shares with Sminthurinus the presence of antennal segment IV undivided, antennal segment III with one papilla; sacs of ventral tube smooth; each tenacular rami with 3 teeth and a basal appendix. They also have dens with ventral chaetotaxy reduced and lack mucronal seta; but new genus clearly differs in having thick and barbulate setae on head and body, lacking neosminthuroid setae on abdomen and the presence of seta a0 on Abd. VI acuminate. The new genus differs from Katianna which has divided antennal segment IV, vertex of head with spine-like setae and setae of the body long and smooth. Key words: Systematics, Neotropical species, La Paz, Borgesminthurinus andinus sp. nov. Introduction Bolivia is one of the countries from South American where Collembola are almost unknown.
    [Show full text]
  • COLLEMBOLA: PICTORIAL KEY to COMMON DOMESTIC SPECIES Harold George Scott, and Che Ster J
    .46 COLLEMBOLA: PICTORIAL KEY TO COMMON DOMESTIC SPECIES Harold George Scott, and Che ster J. Stojanovich I I prothorax well developed prothorax reduced eyes absent eyes present abd IV long abd IV short without anal spines with ana~ spines anus v!ntral anus terminal &'.dJ] Onychiurus Onychiurus IsotOlllodes Po1somia I'roisotOlll& fimetarius armatus teeis guadriocu1ata frisoni unguic:u1us present unguicu1us absent sc:a1es present sc:a1es sent body marbled body not marbled Hypogastrura Hypogastrura Hypogastrura manubrialis armata pseudar.ata I I i dens with ventral sc:a1es dens without- ventral sc:a1es antenna antenna 6·segmented 4-segmented Orc:bes.lla alboaa Lepidoc:yrtus c:urvic:011is !!!!. platani fora alnsIr.l , I I body not striped ao.e body aegmenta striped all body segmenta atriped EntOlllObrya griseo1ivata IDtOlllObrya atroc:inc:ta IntOlllObrya nivalis 47. COLLEMBOLA DIAGRAMS Harold George Scott ocelli, tenent haic_ , , , unguiculus __ _ , , " unguis_ -­ " "- tibiotarsus",- ___ _ "­ " ..... oce lli :- -- thorax II -- _abdomen collophore ........... tenaculum_ - -­ --- manubrium_ -------- , , ,furcula dens__ / -------- mucro___ ----------- ­ SURORDER ARTHROPLEONA mandible .... ~.antenna .... .... , --- ...... .... ..... ..... ...ocelli " " ,- " ........ ,- " " collophore, ,1# / I I I tenaculum____ _ "anal papilla_ manubrium_ '" ......... -- --- '" " dens_________ _ ..... , ...... , I ..... I ...... I mucro_ --------- ­ ---- ___ - ~furcl1la tibiotarsus SURORDER SYMPHYPLEONA .48 COLLEMBOLA: PICTORIAL KEY TO WORLD SUBFAMILIES Harold
    [Show full text]
  • Allacma Fusca (L.) and Allacma Gallica (Carl) in Holland (Collembola: Sminthuridae)
    170 ENTOMOLOGISCHE BERICHTEN, DEEL 33, 1.IX.1973 Allacma fusca (L.) and Allacma gallica (Carl) in Holland (Collembola: Sminthuridae) by WILLEM N. ELLIS Instituut voor Taxonomische Zoölogie (Zoölogisch Museum), Amsterdam The presence of Allacma fusca (Linnaeus, 1758) in Holland was ascertained as early as 1859 by Snellen van Vollenhoven. His figure of A. fusca is far inferior to the first published drawing of this species, given by De Geer, 1743, but his description is sufficient to recognize the species. As a matter of fact, fusca is very common in our country, as a rule easily found in any stretch of deciduous woodland between about April and October. The presence of Allacma gallica (Carl, 1899) in the Netherlands was discovered only in 1969 by J. W. Bleys in the course of a study on the ecology of epigeic Collembola. He collected a fair number of specimens in the dune area near Castri- cum (territories of the “Provinciale Waterleidingduinen Noord-Holland”) with the use of a sweeping net (Bleys, in preparation). Afterwards the present author and his wife found large colonies of gallica in the deciduous woods in the old (inner) dunes at Bergen (Oude Hof), Santpoort (Duin en Kruidberg), and Vogelenzang (Amsterdamse Waterleidingduinen). It is striking that these sites are all situated within the dune region. Although we collected fusca in large numbers everywhere in the country, and specially searched for fusca and gallica on several occasions, we never found the latter species outside the dune area. It seems that outside of the Netherlands gallica is not common either. So far the species was known only from France and Switzerland.
    [Show full text]
  • Collembola (Springtails)
    SCOTTISH INVERTEBRATE SPECIES KNOWLEDGE DOSSIER Collembola (Springtails) A. NUMBER OF SPECIES IN UK: 261 B. NUMBER OF SPECIES IN SCOTLAND: c. 240 (including at least 1 introduced) C. EXPERT CONTACTS Please contact [email protected] or [email protected] for details. D. SPECIES OF CONSERVATION CONCERN Listed species None – insufficient data. Other species No species are known to be of conservation concern based upon the limited information available. Conservation status will be more thoroughly assessed as more information is gathered. E. LIST OF SPECIES KNOWN FROM SCOTLAND (* indicates species that are restricted to Scotland in UK context) PODUROMORPHA Hypogastruroidea Hypogastruidae Ceratophysella armata Ceratophysella bengtssoni Ceratophysella denticulata Ceratophysella engadinensis Ceratophysella gibbosa 1 Ceratophysella granulata Ceratophysella longispina Ceratophysella scotica Ceratophysella sigillata Hypogastrura burkilli Hypogastrura litoralis Hypogastrura manubrialis Hypogastrura packardi* (Only one UK record.) Hypogastrura purpurescens (Very common.) Hypogastrura sahlbergi Hypogastrura socialis Hypogastrura tullbergi Hypogastrura viatica Mesogastrura libyca (Introduced.) Schaefferia emucronata 'group' Schaefferia longispina Schaefferia pouadensis Schoettella ununguiculata Willemia anophthalma Willemia denisi Willemia intermedia Xenylla boerneri Xenylla brevicauda Xenylla grisea Xenylla humicola Xenylla longispina Xenylla maritima (Very common.) Xenylla tullbergi Neanuroidea Brachystomellidae Brachystomella parvula Frieseinae
    [Show full text]
  • (Springtails) of Michigan Number 6 Article 1 -- an Annotated List of the Collembola (Springtails) of Michigan
    The Great Lakes Entomologist Volume 1 Number 6 -- An Annotated List of the Collembola (Springtails) of Michigan Number 6 Article 1 -- An Annotated List of the Collembola (Springtails) of Michigan November 1967 An Annotated List of the Collembola (Springtails) of Michigan Richard J. Snider Michigan State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Snider, Richard J. 1967. "An Annotated List of the Collembola (Springtails) of Michigan," The Great Lakes Entomologist, vol 1 (6) Available at: https://scholar.valpo.edu/tgle/vol1/iss6/1 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Snider: An Annotated List of the Collembola (Springtails) of Michigan 1967 THE MICHIGAN ENTOMOLOGIST 179 AN ANNOTATED LIST OF THE COLLEMBOLA (SPRINGTAILS) OF MICHIGAN Richard J. Snider Department of Entomology, Michigan State University East Lansing. Michigan 48823 When work began on the Michigan Collembolain 1959, the Entomology Museum at Michigan State University included only one specimen of the order in its catalog of insects. The University of Michigan had a few vials of specimens determined by Harlow B. Mills, and a modest num- ber was in the Robert R. Dreisbach collection at Midland, Michigan. At the beginning of my investigation very little was known about the order in Michigan, although monographs had been written on the collembolan faunae of the nearby states of Minnesota (Guthrie, 1903), Iowa (Mills, 1934) and New York (Maynard, 1951).
    [Show full text]
  • Standardised Arthropod (Arthropoda) Inventory Across Natural and Anthropogenic Impacted Habitats in the Azores Archipelago
    Biodiversity Data Journal 9: e62157 doi: 10.3897/BDJ.9.e62157 Data Paper Standardised arthropod (Arthropoda) inventory across natural and anthropogenic impacted habitats in the Azores archipelago José Marcelino‡, Paulo A. V. Borges§,|, Isabel Borges ‡, Enésima Pereira§‡, Vasco Santos , António Onofre Soares‡ ‡ cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Madre de Deus, 9500, Ponta Delgada, Portugal § cE3c – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Rua Capitão João d’Ávila, São Pedro, 9700-042, Angra do Heroismo, Portugal | IUCN SSC Mid-Atlantic Islands Specialist Group, Angra do Heroísmo, Portugal Corresponding author: Paulo A. V. Borges ([email protected]) Academic editor: Pedro Cardoso Received: 17 Dec 2020 | Accepted: 15 Feb 2021 | Published: 10 Mar 2021 Citation: Marcelino J, Borges PAV, Borges I, Pereira E, Santos V, Soares AO (2021) Standardised arthropod (Arthropoda) inventory across natural and anthropogenic impacted habitats in the Azores archipelago. Biodiversity Data Journal 9: e62157. https://doi.org/10.3897/BDJ.9.e62157 Abstract Background In this paper, we present an extensive checklist of selected arthropods and their distribution in five Islands of the Azores (Santa Maria. São Miguel, Terceira, Flores and Pico). Habitat surveys included five herbaceous and four arboreal habitat types, scaling up from native to anthropogenic managed habitats. We aimed to contribute
    [Show full text]
  • Neozygites Stninthuri Sp. Nov. (Zygomycetes, Entomophthorales), a Pathogen of the Springtail Sminthurus Viridis L
    ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Neozygites stninthuri sp. nov. (Zygomycetes, Entomophthorales), a pathogen of the springtail Sminthurus viridis L. (Collembola, Sminthuridae) Siegfried Keller & Tove Steenberg* Federal Research Station for Agroecology and Agriculture, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland Royal Veterinary and Agricultural University, Section of Zoology, Bülowsvej 13, DK-1870 Frederiksberg C, Denmark Keller, S. & Steenberg, T. (1997). Neozygites sminthuri sp. nov. (Zygomycetes, Entomophthorales), a pathogen of the springtail Sminthurus viridis L. (Col- lembola, Sminthuridae). - Sydowia 49(1): 21-24. Neozygites sminthuri is described as a new species. The spherical hyphal bodies measure 12.1-14.6 |am and contain 4, rarely 3 nuclei. The conidiophores are unbranched and produce a single conidium. The primary conidia measure 13.2- 14.5x8.2-10.0 urn. Secondary conidia resembling the primary ones are produced on short, thick secondary conidiophores. Capilliconidia and resting spores were not found, but the fungal structures observed allow the inclusion of this species in the genus Neozygites. Keywords: Insect pathogens, taxonomy, morphology, Neozygites, Collembola, Sminthurus, lucerne. Fungal pathogens have only rarely been recorded from spring- tails (Visser & al., 1987; Balazy, 1993). An entomophthoralean fungus (Zygomycetes: Entomophthorales), however, was recently found in populations of the lucerne flea Sminthurus viridis L. (Collembola: Sminthuridae) in Denmark. Fungus infected specimens of S. viridis were collected at three sites in the western and in the eastern part of Denmark. The fungus was recorded in two consecutive seasons and only infected a small proportion of the host population (Steenberg & al.,1996). The fungus was identified as a hitherto unknown species of Neozygites Witlaczil (1885).
    [Show full text]
  • Arthropod Species Diversity, Composition and Trophic Structure
    Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1986 Arthropod Species Diversity, Composition and Trophic Structure at the Soil Level Biotope of Three Northeastern Illinois Prairie Remnants, with Botanical Characterization for Each Site Dean George Stathakis Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Biology Commons Recommended Citation Stathakis, Dean George, "Arthropod Species Diversity, Composition and Trophic Structure at the Soil Level Biotope of Three Northeastern Illinois Prairie Remnants, with Botanical Characterization for Each Site" (1986). Master's Theses. 3435. https://ecommons.luc.edu/luc_theses/3435 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1986 Dean George Stathakis ARTHROPOD SPECIES DIVERSITY, COMPOSITION AND TROPHIC STRUCTURE AT THE SOIL LEVEL BIOTOPE OF THREE NORTHEASTERN ILLINOIS PRAIRIE REMNANTS, WITH BOTANICAL CHARACTERIZATION FOR EACH SITE by Dean George Stathakis A Thesis Submitted to the Faculty of the Graduate School of Loyola University of Chicago in Partial Fulfillment of the Requirements for the Degree of Master of Science April 1986 ACKNOWLEDGMENTS I would like to thank Drs. John Smarrelli and Walter J. Tabachnick for their valuable comments, criticisms and suggestions regarding this manuscript. Thanks also to Dr. John J. Janssen for his advice in developing the computer programs used in the data analysis; Don McFall, Illinois Department of Conservation for the information on Illinois prairies; Alberts.
    [Show full text]
  • Arrhopalites Potapovi Sp. Nov. (Collembola, Symphypleona) from Russia
    Zootaxa 3955 (1): 101–112 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3955.1.5 http://zoobank.org/urn:lsid:zoobank.org:pub:29E13473-360F-40EB-9234-2B6266560FA7 Arrhopalites potapovi sp. nov. (Collembola, Symphypleona) from Russia ROBERT S. VARGOVITSH Schmalhausen Institute of Zoology NAS of Ukraine, 15, B. Khmelnitsky Str., Kiev, 01601, Ukraine. E-mail: [email protected] Abstract A new springtail species of the family Arrhopalitidae, Arrhopalites potapovi sp. nov., is described. It belongs to the caecus species group characterized by 3,2,1,1,1 anterior setae on dens and separates from Arrhopalites caecus (Tullberg) and oth- er congeners by strongly differentiated cuticular spines on sixth abdominal segment, shape of female subanal appendages and foot complex. It was found under the loose bark of trees from two localities along Lake Baikal and it is the second representative of the genus Arrhopalites Börner sensu stricto in Russia Key words: springtails, taxonomy, Arrhopalites caecus group, East Siberia, Lake Baikal Introduction Hitherto among 33 described species of the genus Arrhopalites s. str., 19 were reported from Palaearctic region and only cosmopolitan A. caecus was recorded at several localities in Russia: from Kursk Oblast in the west to Sakhalin Island in the east (Grinbergs 1960, Buinova et al. 1963, Borisov 1967, Stebaeva 1976, Solntseva & Moldova 1979, Solntseva et al. 1982, Dobrolyubova & Shveenkova 2004, Babenko 2007, Chernov et al. 2010, Shveenkova 2010). Here the second species of the genus from this extensive territory, namely from the region of Lake Baikal in East Siberia, is presented.
    [Show full text]