History of Shock Waves, Explosions and Impact

Total Page:16

File Type:pdf, Size:1020Kb

History of Shock Waves, Explosions and Impact History of Shock Waves, Explosions and Impact A Chronological and Biographical Reference Bearbeitet von Peter O. K. Krehl 1. Auflage 2008. Buch. xliv, 1288 S. Hardcover ISBN 978 3 540 20678 1 Format (B x L): 19,1 x 23,5 cm Weitere Fachgebiete > Physik, Astronomie > Mechanik > Klassische Mechanik Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 2 2 GENERAL SURVEY 2 GENERAL SURVEY 11 3 2.1 TERMINOLOGY AND SCOPE Max PLANCK, an eminent German physicist, appropriately said, “Theory and experiment, they belong together; the one The great book of Nature lies ever open before our eyes without the other remains unfruitful. We are fully justified in and the true philosophy is written in it… But we cannot applying KANT’s well-known words on the unity of concept read it unless we have first learned the language and the and intuition and saying: theories without experiments are characters in which it is written… It is written in mathe- empty, experiments without theory are blind. Therefore both matical language and the characters are triangles, circles and other geometric figures.1 − theory and experiment − call for proper respect with the same emphasis.” Galileo GALILEI Florence 1623 Mechanics became the most important and advanced branch of natural philosophy − a term used by Sir Isaac In physics, experiments have a larger power to per- NEWTON to denote investigations of laws that hold in the suade than reasoning.2 material world and the deduction of results that are not di- Blaise PASCAL rectly observable, and which is today covered by the field of Paris 1663 physics. According to the German philosopher Immanuel KANT, science is characterized by an ordered arrangement of ERCUSSION, concussion, collision, impact, explosion, gained knowledge, based on data and observed phenomena P implosion, detonation and shock waves are rapid me- as well as on similar cases and their critical testing through chanical phenomena that are related to each other. Since they the application of “creative inspiration.” Phenomena that ap- cannot be resolved by the naked eye, for a long time their peared similar were particularly puzzling to early naturalists, sudden and discontinuous nature was hidden behind a veil of such as vague hypotheses and suppositions. First experimental evi- the instantaneous, discontinuous character of the ve- dence on physical quantities such as motion (velocity, accel- locities observed during the percussion of tangible eration), force and thermodynamic state (density, pressure bodies and of air molecules at a steep shock front; and temperature) were not obtained until significant progress the wall-like, crested front of a tidal bore in a river and was achieved in the late 19th century in high-speed diagnos- the steep front of a shock wave in air; tics, visualization techniques and photographic recording. the bow wave generated by a body moving through Increasing individual knowledge of high-speed events led water (Kelvin envelope or Kelvin wake) and the head observers to recognize connections between different phe- wave (Mach cone) generated by a projectile flying su- nomena, which stimulated analyses of interrelations. This personically, or by a planet moving through the solar initiated a purposeful, more systematic research character- wind; ized by experimental testing of qualitative hypotheses, the irregular reflection properties of hydraulic jumps which, beginning in the mid-1940s, eventually led to com- and shock waves; and puter-supported quantitative modeling of new concepts. the propagation behavior of a shock wave and a deto- Mechanics developed in the 17th century from mere con- nation wave. templations of accounts of observations and experiences into Since the first scientific investigations of the nature of per- one of the main pillars of the physical sciences. In the late cussion of tangible bodies, an increasing number of new dis- 16th century, the Italian physicist and mathematician Galileo continuous high-rate phenomena have been observed, calling GALILEI reestablished mathematical rationalism over ARIS- for new definitions, explanations and classifications. To TOTLE’s logico-verbal approach and suggested that experi- some extent the technical terms used by early natural phi- mentation should be used primarily to check theoretical losophers to describe high-speed phenomena reflect their deductions, while the French philosopher Blaise PASCAL early knowledge and understanding. However, as we have favored the principle of empiricism and proposed the looked more deeply at the physical processes over decades experimental approach. Both conceptions, supplementing of increasing research activity, the meanings of some of the each other in a unique manner, established the principle terms have changed, and our insights into their complexity that was to become the guiding maxim of modern science. 3 M. PLANCK: Zum 25jährigen Jubiläum der von W. FRIEDRICH, P. KNIPPING and M. VON LAUE gemachten Entdeckung [Lecture held du- 1 G. GALILEI: Il saggiatore (“The Assayer”). Mascardi, Roma (1623). ring the meeting of the DPG in Berlin on 9th June 1937]. In: (hrsg. vom 2 “Dans la physique, les expériences ont bien plus de force pour persuader Verband dt. Physikalischer Gesellschaften) Max PLANCK. Physikalische que les raisonnements.” See B. PASCAL: Traité de la pesanteur de la mas- Abhandlungen und Vorträge. Vieweg & Sohn, Braunschweig (1958), se de l’air. Desprez, Paris (1663), chap. I. Bd. III, pp. 364-367. 12 2 GENERAL SURVEY has created a wealth of new, related terms. The main techni- elastically, like hard elastic spheres (e.g., glass marbles, bil- cal terms used in the fields of percussion, collision, impact, liard balls). In contrast, inelastic percussion between moving explosions, detonations and shock waves are discussed be- bodies produces permanent deformation. While momentum low in more detail. is conserved here as well, kinetic energy is not. Very old ex- amples of inelastic percussion are the soft-hammer percus- sion method used in flint knapping {⇨Fig. 4.2–D(d)} and 2.1.1 PERCUSSION, CONCUSSION, IMPACT, the wooden mallet used in combination with a metal chisel AND COLLISION in stone masonry {⇨Fig. 4.2–E} and wood carving. Modern vehicle design attempts to largely absorb the kinetic energy Many early terms describing high-speed phenomena were in the case of collision accidents by using materials which derived from Latin, then the language used in most learned deform plastically. works: examples include the terms collision, percussion, ex- The word percussion [Germ. der Stoß] – used almost ex- plosion, and detonation, which are still in use today. How- clusively by French and English natural philosophers ever, reflecting the state of knowledge of each time period, throughout the 17th and 18th centuries, and also partly in the they only gradually evolved into their present-day meanings. 19th century – relates to the analysis of the physical process This slow process of arriving at clear definitions, starting in involved when bodies striking each other with some degree the 17th century, was not caused by poor communication. of force, while the resulting effect is described by words Surprisingly, many early naturalists used to exchange know- such as shock, blow, impact, knock etc. Percussion refers to ledge and ideas with their colleagues abroad at an intense solid bodies, more rarely to liquids, and to air.5 It is interest- level via correspondence or by traveling. Actually, in order ing to note here that the word “percussion” will prompt most to comprehensively characterize the essentials of high-speed English-speakers to initially think of music rather than phys- phenomena it is necessary to obtain a deep understanding of ics, ballistics and engineering. On the other hand, some en- how the phenomenon in question evolves over time, both cyclopedias (such as the 1974 edition of the Encyclopedia qualitatively and quantitatively. This learning process, which Americana) only refer to the medical meaning of the term only evolved slowly because of the insufficient temporal percussion {VON AUENBRUGGER ⇨1754}. resolution of early diagnostics, will be discussed in more de- In modern textbooks on mechanics, the classical theory of tail in Sect. 2.8. percussion is often referred to as the “theory of impact,” while in physics textbooks it is usually called the “theory of colli- 4 Percussion. The term percussion designates the action of sion.” Indeed, Edward J. ROUTH {⇨1860} used the term im- striking of one moving object against another with signifi- pact rather than percussion in his widely used textbook Dy- cant force. Since the birth of classical percussion in the 17th namics of a System of Rigid Bodies. Thomas J. MCCORMACK, century {HUYGENS ⇨1668/1669; WREN, WALLIS ⇨1669; who translated Ernst MACH’s book Die Mechanik in ih- Sir NEWTON ⇨1687; ⇨Fig. 2.16}, the term has been con- rer Entwicklung, historisch-kritisch dargestellt {E. MACH ventionally applied in reference to solid bodies, and in this ⇨1883} into English, followed ROUTH’s terminology and sense it has also been used throughout the evolution of (ter- translated Die Theorie des Stoßes
Recommended publications
  • Aitken Basin
    Geological and geochemical analysis of units in the South Pole – Aitken Basin A.M. Borst¹,², F.S. Bexkens¹,², B. H. Foing², D. Koschny² ¹ Department of Petrology, VU University Amsterdam ² SCI-S. Research and Scientific Support Department, ESA – ESTEC Student Planetary Workshop 10-10-2008 ESA/ESTEC The Netherlands The South Pole – Aitken Basin Largest and oldest Lunar impact basin - Diameter > 2500 km - Depth > 12 km - Age 4.2 - 3.9 Ga Formed during Late heavy bombardment? Window into the interior and evolution of the Moon Priority target for future sample return missions Digital Elevation Model from Clementine altimetry data. Produced in ENVI, 50x vertical exaggeration, orthographic projection centered on the far side. Red +10 km, purple/black -10km. (A.M.Borst et.al. 2008) 1 The Moon and the SPA Basin Geochemistry Iron map South Pole – Aitken Basin mafic anomaly • High Fe, Th, Ti and Mg abundances • Excavation of mafic deep crustal / upper mantle material Thorium map Clementine 750 nm albedo map from USGS From Paul Lucey, J. Geophys. Res., 2000 Map-a-Planet What can we learn from the SPA Basin? • Large impacts; Implications and processes • Volcanism; Origin, age and difference with near side mare basalts • Cratering record; Age, frequency and size distribution • Late Heavy Bombardment; Intensity, duration and origin • Composition of the deeper crust and possibly upper mantle 2 Topics of SPA Basin study 1) Global structure of the basin (F.S. Bexkens et al, 2008) • Rims, rings, ejecta distribution, subsequent craters modifications, reconstructive
    [Show full text]
  • Richard G. Hewlett and Jack M. Holl. Atoms
    ATOMS PEACE WAR Eisenhower and the Atomic Energy Commission Richard G. Hewlett and lack M. Roll With a Foreword by Richard S. Kirkendall and an Essay on Sources by Roger M. Anders University of California Press Berkeley Los Angeles London Published 1989 by the University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Prepared by the Atomic Energy Commission; work made for hire. Library of Congress Cataloging-in-Publication Data Hewlett, Richard G. Atoms for peace and war, 1953-1961. (California studies in the history of science) Bibliography: p. Includes index. 1. Nuclear energy—United States—History. 2. U.S. Atomic Energy Commission—History. 3. Eisenhower, Dwight D. (Dwight David), 1890-1969. 4. United States—Politics and government-1953-1961. I. Holl, Jack M. II. Title. III. Series. QC792. 7. H48 1989 333.79'24'0973 88-29578 ISBN 0-520-06018-0 (alk. paper) Printed in the United States of America 1 2 3 4 5 6 7 8 9 CONTENTS List of Illustrations vii List of Figures and Tables ix Foreword by Richard S. Kirkendall xi Preface xix Acknowledgements xxvii 1. A Secret Mission 1 2. The Eisenhower Imprint 17 3. The President and the Bomb 34 4. The Oppenheimer Case 73 5. The Political Arena 113 6. Nuclear Weapons: A New Reality 144 7. Nuclear Power for the Marketplace 183 8. Atoms for Peace: Building American Policy 209 9. Pursuit of the Peaceful Atom 238 10. The Seeds of Anxiety 271 11. Safeguards, EURATOM, and the International Agency 305 12.
    [Show full text]
  • Image – Action – Space
    Image – Action – Space IMAGE – ACTION – SPACE SITUATING THE SCREEN IN VISUAL PRACTICE Luisa Feiersinger, Kathrin Friedrich, Moritz Queisner (Eds.) This publication was made possible by the Image Knowledge Gestaltung. An Interdisciplinary Laboratory Cluster of Excellence at the Humboldt-Universität zu Berlin (EXC 1027/1) with financial support from the German Research Foundation as part of the Excellence Initiative. The editors like to thank Sarah Scheidmantel, Paul Schulmeister, Lisa Weber as well as Jacob Watson, Roisin Cronin and Stefan Ernsting (Translabor GbR) for their help in editing and proofreading the texts. This work is licensed under a Creative Commons Attribution-NonCommercial-No-Derivatives 4.0 License. For details go to https://creativecommons.org/licenses/by-nc-nd/4.0/. Copyrights for figures have been acknowledged according to best knowledge and ability. In case of legal claims please contact the editors. ISBN 978-3-11-046366-8 e-ISBN (PDF) 978-3-11-046497-9 e-ISBN (EPUB) 978-3-11-046377-4 Library of Congress Control Number: 2018956404 Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche National bibliothek lists this publication in the Deutsche Nationalbibliographie; detailed bibliographic data are available on the internet at http://dnb.dnb.de. © 2018 Luisa Feiersinger, Kathrin Friedrich, Moritz Queisner, published by Walter de Gruyter GmbH, Berlin/Boston The book is published with open access at www.degruyter.com, https://www.doabooks.org and https://www.oapen.org. Cover illustration: Malte Euler Typesetting and design: Andreas Eberlein, aromaBerlin Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza Printed in Germany www.degruyter.com Inhalt 7 Editorial 115 Nina Franz and Moritz Queisner Image – Action – Space.
    [Show full text]
  • The Paleoecology and Fire History from Crater Lake
    THE PALEOECOLOGY AND FIRE HISTORY FROM CRATER LAKE, COLORADO: THE LAST 1000 YEARS By Charles T. Mogen A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science and Policy Northern Arizona University August 2018 Approved: R. Scott Anderson, Ph.D., Chair Nicholas P. McKay, Ph.D. Darrell S. Kaufman, Ph.D. Abstract High-resolution pollen, plant macrofossil, charcoal and pyrogenic Polycyclic Aromatic Hydrocarbon (PAH) records were developed from a 154 cm long sediment core collected from Crater Lake (37.39°N, 106.70°W; 3328 m asl), San Juan Mountains, Colorado. Several studies have explored Holocene paleo-vegetation and fire histories from mixed conifer and subalpine bogs and lakes in the San Juan and southern Rocky Mountains utilizing both palynological and charcoal studies, but most have been at relatively low resolution. In addition to presenting the highest resolution palynological study over the last 1000 years from the southern Rocky Mountains, this thesis also presents the first high-resolution pyrogenic PAH and charcoal paired analysis aimed at understanding both long-term fire history and the unresolved relationship between how each of these proxies depict paleofire events. Pollen assemblages, pollen ratios, and paleofire activity, indicated by charcoal and pyrogenic PAH records, were used to infer past climatic conditions. Although the ecosystem surrounding Crater Lake has remained a largely spruce (Picea) dominated forest, the proxies developed in this thesis suggest there were two distinct climate intervals between ~1035 to ~1350 CE and ~1350 to ~1850 CE in the southern Rocky Mountains, associated with the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) respectively.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Technical Note
    NASA TN D-1493 O5 C,/ 1-4 I Q LOAJN' ? < TECHNICAL NOTE D-1493 ENVIRONMENTAL PROBLEMS OF SPACE FLIGHT STRUCTURES H. METEOROID HAZARD Prepared by John R. Davidson and Paul E. Sandorff in collaboration with the NASA Research Advisory Committee on Missile and Space Vehicle Structures Langley Research Center Langley Station, Hampton, Va. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON January 1963 TECH LIBRARY KAFB, NM Illllllll TABLE OF CONTENTS 0153^57 Page PREFACE li MEMBERS OF THE NASA RESEARCH ADVISORY COMMITTEE ON MISSILE AND SPACE VEHICLE STRUCTURES in SUMMARY 1 INTRODUCTION 1 SYMBOLS -. 2 METEOROID ENVIRONMENT ^ Asteroidal Particles ; . k Cometary Particles 5 Tektites 8 Pertubation Forces 9 Observations of Meteors From the Earth 10 Satellites and Space Probes 15 Research in Progress 18 INTERACTION BETWEEN METEOROID ENVIRONMENT AND STRUCTURE 19 Historical Aspects of the Plate Perforation Problem 19 Physical Description of High-Speed Impact Phenomena 20 Modern Theories of Penetration 22 Experimental Data .__ 26 PROTECTION METHODS 30 Types of Structural Damage 30 Application of Meteoroid Flux Data and Impact Data to Design Problems 30 RESEARCH IN PROGRESS 36 Ground Research 36 Flight Test Research 36 RECOMMENDED METEOROID RESEARCH PROGRAM 36 REFERENCES kO BIBLIOGRAPHY 1*7 TABLES 49 FIGURES 61 PREFACE The exploration, study, and definition of the environmental conditions which exist in space beyond the earth's atmosphere form an essential part of the current space-age effort. The development of this science is of especial interest to the vehicle structures designer, who must make decisions today that will establish the capability and efficiency of the space hardware in use 5 °r 10 years hence.
    [Show full text]
  • Ballistic Pendulum
    PH 1113: Ballistic Pendulum Ballistic Pendulum Objective The purpose of this experiment1 is to determine the muzzle velocity of a projectile launcher, using the conservation of momentum and the conservation of energy (where applicable). Materials 1. 1-meter stick 4. Projectile (metal ball) 2. 30-cm ruler 5. Triple-beam balance 3. Ballistic pendulum machine Introduction The ballistic pendulum is a classic method for determining the velocity of a projectile; origi- nally, it was used to determine the muzzle velocity of firearms. It is also a good demonstration of many basic principles of physics. In ballistic pendula experiments a projectile (in our case a ball) is fired into a stationary, freely hanging pendulum, which swings up by a measured amount after being impacted by the projectile. From that measured angle and from the length of the pendulum, you can determine the height reached by the center of mass of the pendulum; then you can calculate its gravitational potential energy. We know that mechanical energy (ME) is conserved, so we know that the gravitational potential energy at the maximum height must be equal to the kinetic energy of the pendulum at the bottom of the swing, just after the ball collides with the pendulum. In symbolic terms, MEi = MEf ; (1) where ME = PE + KE. So, 0 0 ¨¨* ¨¨* ¨PEi + KEi = PEf + ¨KE¨f (2) 1Some of the text of this manual was taken from the Pasco Ballistic Pendulum/Projectile Launcher Instruction Manual. 1 Mississippi State University Department of Physics and Astronomy You cannot, however, equate the kinetic energy of the pendulum after the collision with the kinetic energy of the ball before the swing, because the collision between ball and pendulum is inelastic, and kinetic energy is not conserved in inelastic collisions.
    [Show full text]
  • May 2016 | Volume 15, Issue 01 | Boeing.Com/Frontiers
    MAY 2016 | VOLUME 15, ISSUE 01 | BOEING.COM/FRONTIERS Solar revolution Spectrolab employees are powering the future— with sunshine MAY 2016 | 01 TABLE OF CONTENTS 12 06 Leadership Message 08 Snapshot 09 Quotables 10 Historical Perspective PHOTO: BOB FERGUSON | BOEING 12 Sweating the metal Go behind the scenes of the ongoing 737 MAX flight-test program, where the aircraft are pushed to the limit, and then some. 18 18 Desert bloom In the high desert of New Mexico, at Boeing’s site in Albuquerque, scientists and engineers are continually looking for ways to enhance modern civilization and military technologies. And at the nearby Starfire Optical Range, Boeing and the U.S. Air Force are jointly experimenting with lasers to better monitor man-made objects in orbit, much of it space debris. 28 Solar explorer A wholly owned Boeing subsidiary, Spectrolab has provided electric power to more than 600 satellites and delivered more than 4 million PHOTO: BOB FERGUSON | BOEING solar cells for communications, science and defense needs. It also provides 80 percent of the helicopter-mounted searchlights used 38 by U.S. law enforcement. 34 Great and small The Boeing AH-6 Little Bird, a light attack and reconnaissance helicopter, packs a lot of capability for its size. It is made at the Boeing site in Mesa, Ariz., alongside the bigger Apache. 38 Irish eyes are smiling Ryanair recently took delivery of its 400th 737-800, and a writer and photographer from Frontiers were on board for the flight to Ireland. 44 Strike dynasty Boeing’s new Harpoon Block II Plus is a network-enabled variant that can receive and transmit communications while in flight, allowing it to change course to strike a different target, even a moving target.
    [Show full text]
  • UC Irvine UC Irvine Previously Published Works
    UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2006 Permalink https://escholarship.org/uc/item/5760h9v8 Journal Space Science Reviews, 132(1) ISSN 0038-6308 Authors Trimble, V Aschwanden, MJ Hansen, CJ Publication Date 2007-09-01 DOI 10.1007/s11214-007-9224-0 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Space Sci Rev (2007) 132: 1–182 DOI 10.1007/s11214-007-9224-0 Astrophysics in 2006 Virginia Trimble · Markus J. Aschwanden · Carl J. Hansen Received: 11 May 2007 / Accepted: 24 May 2007 / Published online: 23 October 2007 © Springer Science+Business Media B.V. 2007 Abstract The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries. Keywords Cosmology: general · Galaxies: general · ISM: general · Stars: general · Sun: general · Planets and satellites: general · Astrobiology · Star clusters · Binary stars · Clusters of galaxies · Gamma-ray bursts · Milky Way · Earth · Active galaxies · Supernovae 1 Introduction Astrophysics in 2006 modifies a long tradition by moving to a new journal, which you hold in your (real or virtual) hands. The fifteen previous articles in the series are referenced oc- casionally as Ap91 to Ap05 below and appeared in volumes 104–118 of Publications of V.
    [Show full text]
  • Ballistic Pendulum March 2021 Lancaster/Basnet/Brown
    Ballistic Pendulum March 2021 Lancaster/Basnet/Brown 1 Introduction This lab simulation explores the concept of conservation of energy by way of a ballistic pendulum and a projectile. 1.1 Tools This lab requires the use of the Google Chrome browser. Make certain it is installed on your computer. Navigate to http://physics.bu.edu/~duffy/HTML5/ballistic_pendulum.html to use the simulation. Intall the following Google Chrome extensions: Measure-it and Web Paint. They can be found at: https://chrome.google.com/webstore/detail/measure-it/jocbgkoackihphodedlefohapackjmna? hl=en https://chrome.google.com/webstore/detail/web-paint/emeokgokialpjadjaoeiplmnkjoaegng? hl=en. 1.2 Relevant Equations Kinetic energy: 1 K = mv2 (1) 2 Gravitational potential energy: U = mgh (2) Total energy: 1 E = K + U = mv2 + mgh (3) T otal 2 The velocity of the bullet-pendulum system immediately after the collision is: mb v = vb( ) (4) mb + M Where mb and vb are the mass and initial velocity of the bullet, and M is the mass of the ball hanging at the end of the pendulum. The kinetic energy of the bullet-pendulum system immediately after the collision is: 2 2 1 mb 2 2 1 mb vb K = (mb + M)( ) vb = (5) 2 mb + M 2 (mb + M) 2 Procedure Note: This simulation moves fast. For this reason, we'll take data using successive presses of the "step" button. Another note: For the purposes of this lab, assume that the initial gravitational potential of the pendulum is 0. 1 Ballistic Pendulum March 2021 Lancaster/Basnet/Brown 2.1 Part I: Initial Measurements 1.
    [Show full text]
  • Active Applicant Report Type Status Applicant Name
    Active Applicant Report Type Status Applicant Name Gaming PENDING ABAH, TYRONE ABULENCIA, JOHN AGUDELO, ROBERT JR ALAMRI, HASSAN ALFONSO-ZEA, CRISTINA ALLEN, BRIAN ALTMAN, JONATHAN AMBROSE, DEZARAE AMOROSE, CHRISTINE ARROYO, BENJAMIN ASHLEY, BRANDY BAILEY, SHANAKAY BAINBRIDGE, TASHA BAKER, GAUDY BANH, JOHN BARBER, GAVIN BARRETO, JESSE BECKEY, TORI BEHANNA, AMANDA BELL, JILL 10/1/2021 7:00:09 AM Gaming PENDING BENEDICT, FREDRIC BERNSTEIN, KENNETH BIELAK, BETHANY BIRON, WILLIAM BOHANNON, JOSEPH BOLLEN, JUSTIN BORDEWICZ, TIMOTHY BRADDOCK, ALEX BRADLEY, BRANDON BRATETICH, JASON BRATTON, TERENCE BRAUNING, RICK BREEN, MICHELLE BRIGNONI, KARLI BROOKS, KRISTIAN BROWN, LANCE BROZEK, MICHAEL BRUNN, STEVEN BUCHANAN, DARRELL BUCKLEY, FRANCIS BUCKNER, DARLENE BURNHAM, CHAD BUTLER, MALKAI 10/1/2021 7:00:09 AM Gaming PENDING BYRD, AARON CABONILAS, ANGELINA CADE, ROBERT JR CAMPBELL, TAPAENGA CANO, LUIS CARABALLO, EMELISA CARDILLO, THOMAS CARLIN, LUKE CARRILLO OLIVA, GERBERTH CEDENO, ALBERTO CENTAURI, RANDALL CHAPMAN, ERIC CHARLES, PHILIP CHARLTON, MALIK CHOATE, JAMES CHURCH, CHRISTOPHER CLARKE, CLAUDIO CLOWNEY, RAMEAN COLLINS, ARMONI CONKLIN, BARRY CONKLIN, QIANG CONNELL, SHAUN COPELAND, DAVID 10/1/2021 7:00:09 AM Gaming PENDING COPSEY, RAYMOND CORREA, FAUSTINO JR COURSEY, MIAJA COX, ANTHONIE CROMWELL, GRETA CUAJUNO, GABRIEL CULLOM, JOANNA CUTHBERT, JENNIFER CYRIL, TWINKLE DALY, CADEJAH DASILVA, DENNIS DAUBERT, CANDACE DAVIES, JOEL JR DAVILA, KHADIJAH DAVIS, ROBERT DEES, I-QURAN DELPRETE, PAUL DENNIS, BRENDA DEPALMA, ANGELINA DERK, ERIC DEVER, BARBARA
    [Show full text]
  • Viscosity from Newton to Modern Non-Equilibrium Statistical Mechanics
    Viscosity from Newton to Modern Non-equilibrium Statistical Mechanics S´ebastien Viscardy Belgian Institute for Space Aeronomy, 3, Avenue Circulaire, B-1180 Brussels, Belgium Abstract In the second half of the 19th century, the kinetic theory of gases has probably raised one of the most impassioned de- bates in the history of science. The so-called reversibility paradox around which intense polemics occurred reveals the apparent incompatibility between the microscopic and macroscopic levels. While classical mechanics describes the motionof bodies such as atoms and moleculesby means of time reversible equations, thermodynamics emphasizes the irreversible character of macroscopic phenomena such as viscosity. Aiming at reconciling both levels of description, Boltzmann proposed a probabilistic explanation. Nevertheless, such an interpretation has not totally convinced gen- erations of physicists, so that this question has constantly animated the scientific community since his seminal work. In this context, an important breakthrough in dynamical systems theory has shown that the hypothesis of microscopic chaos played a key role and provided a dynamical interpretation of the emergence of irreversibility. Using viscosity as a leading concept, we sketch the historical development of the concepts related to this fundamental issue up to recent advances. Following the analysis of the Liouville equation introducing the concept of Pollicott-Ruelle resonances, two successful approaches — the escape-rate formalism and the hydrodynamic-mode method — establish remarkable relationships between transport processes and chaotic properties of the underlying Hamiltonian dynamics. Keywords: statistical mechanics, viscosity, reversibility paradox, chaos, dynamical systems theory Contents 1 Introduction 2 2 Irreversibility 3 2.1 Mechanics. Energyconservationand reversibility . ........................ 3 2.2 Thermodynamics.
    [Show full text]