Upper Ocean Response to Typhoon Kalmaegi and Sarika in the South China Sea from Multiple-Satellite Observations and Numerical Simulations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NASA Catches the Eye of Typhoon Lingling 5 September 2019
NASA catches the eye of Typhoon Lingling 5 September 2019 Warning Center or JTWC said that Typhoon Lingling, known locally in the Philippines as Liwayway, had moved away from the Philippines enough that warnings have been dropped. Lingling was located near 23.0 degrees north latitude and 125.4 degrees east longitude. That is 247 nautical miles southwest of Kadena Air Base, Okinawa, Japan. Lingling was moving to the north- northeast and maximum sustained winds had increased to near 80 knots (75 mph/120.3 kph). JTWC forecasters said that Lingling is moving north and is expected to intensify to 105 knots (121 mph/194 kph) upon passing between Taiwan and Japan. Provided by NASA's Goddard Space Flight Center On Sept. 4, 2019 at 1:20 a.m. EDT (0520 UTC) the MODIS instrument that flies aboard NASA's Terra satellite showed powerful thunderstorms circling Typhoon Lingling's visible eye. Credit: NASA/NRL Typhoon Lingling continues to strengthen in the Northwestern Pacific Ocean and NASA's Terra satellite imagery revealed the eye is now visible. On Sept. 4 at 1:20 a.m. EDT (0520 UTC) the Moderate Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Terra satellite showed powerful thunderstorms circling Typhoon Lingling's visible 15 nautical-mile wide eye. The Joint Typhoon Warning Center (JTWC) noted, "Animated enhanced infrared satellite imagery depicts tightly-curved banding wrapping into a ragged eye." In addition, microwave satellite imagery showed a well-defined microwave eye feature. At 11 a.m. EDT (1500 UTC), the Joint Typhoon 1 / 2 APA citation: NASA catches the eye of Typhoon Lingling (2019, September 5) retrieved 2 October 2021 from https://phys.org/news/2019-09-nasa-eye-typhoon-lingling.html This document is subject to copyright. -
OCHA PHL TY Sarika Haima 17Oct2016
Philippines: Typhoons Sarika (Karen) and Haima (Lawin) (17 October 2016) Typhoon Sarika Japan Typhoon Haima Typhoon category Typhoon Sarika (Karen) made landfall in (Saffir-Simpson Scale) Typhoon Haima (Lawin) has intensified 22 October 2016 Baler, Aurora province, at 2:30 a.m. on Category 1: 119-153 km/hr from a severe tropical storm. It was last 16 October. It slightly weakend while spotted 1,265 km east of the Visayas with China Category 3: 178-208 km/hr crossing Central Luzon but slightly maximum sustained winds of up to 150 intensified as it moves away from the Category 4: 209-251 km/hr km/h and gusts of up to 185 km/h. It is Philippines. As of 6am 17 October 2016, Taiwan moving west northwest at 22 km/h and is Typhoon Sarika is out of the Philippines Category 5: > 252 km/hr expected to enter PAR by the afternoon Area of Responsibility (PAR) and all PAGASA category of 17 October. The typhoon is projected Tropical Cyclone Warning Signals Hong Kong Typhoon Karen (SARIKA) to intensify into a category 5 as it moves Macao (TCWS) have been lifted. Tropical depression closer to northern Philippines. 21 October 2016 Lawin (HAIMA) Tropical storm EFFECTS Forecasted to make landfall Severe tropical storm PROFILE Regions I, II, III, IV-A, V and CAR in Northern Cagayan Typhoon within the 100 km radius of typhoon track affected areas 20 October 2016 P.A.R. 4 47 Actual typhoon track provinces cities/municipalities 75,000 Typhoon Haima people affected Forecasted track 17 October 2016 1.9 Million 406,000 19 October 2016 people households 70,800 LUZON people displaced 18 October 2016 Lawin (HAIMA) Forecasted to enter P.A.R. -
Field Investigations of Coastal Sea Surface Temperature Drop
1 Field Investigations of Coastal Sea Surface Temperature Drop 2 after Typhoon Passages 3 Dong-Jiing Doong [1]* Jen-Ping Peng [2] Alexander V. Babanin [3] 4 [1] Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, 5 Taiwan 6 [2] Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Rostock, Germany 7 [3] Department of Infrastructure Engineering, Melbourne School of Engineering, University of 8 Melbourne, Australia 9 ---- 10 *Corresponding author: 11 Dong-Jiing Doong 12 Email: [email protected] 13 Tel: +886 6 2757575 ext 63253 14 Add: 1, University Rd., Tainan 70101, Taiwan 15 Department of Hydraulic and Ocean Engineering, National Cheng Kung University 16 -1- 1 Abstract 2 Sea surface temperature (SST) variability affects marine ecosystems, fisheries, ocean primary 3 productivity, and human activities and is the primary influence on typhoon intensity. SST drops 4 of a few degrees in the open ocean after typhoon passages have been widely documented; 5 however, few studies have focused on coastal SST variability. The purpose of this study is to 6 determine typhoon-induced SST drops in the near-coastal area (within 1 km of the coast) and 7 understand the possible mechanism. The results of this study were based on extensive field data 8 analysis. Significant SST drop phenomena were observed at the Longdong buoy in northeastern 9 Taiwan during 43 typhoons over the past 20 years (1998~2017). The mean SST drop (∆SST) 10 after a typhoon passage was 6.1 °C, and the maximum drop was 12.5 °C (Typhoon Fungwong 11 in 2008). -
A Prototype KPOPS-Climate Development
KOPRI Final Report 2020.1 A prototype KPOPS-Climate development Sub-project: Development of a prototype of KPOPS automated management system for quasi-real time climate prediction model Main-project: Development and Application of the Korea Polar Prediction System (KPOPS) for Climate Change and Weather Disaster Dongwook Shin and Steve Cocke Center for Ocean-Atmospheric Prediction Studies, Florida State University Tallahassee, FL, USA Submission To : Chief of Korea Polar Research Institute This report is submitted as the final report (Report title: “a prototype KPOPS-Climate development”) of entrusted research “Development of a prototype of KPOPS automated management system for quasi-real time climate prediction model” project of “Development and Application of the Korea Polar Prediction System (KPOPS) for Climate Change and Weather Disaster” project. 2020. 1. 31 Person in charge of Entire Research : 김 주 홍 Name of Entrusted Organization : FSU/COAPS Entrusted Researcher in charge : Dongwook Shin Participating Entrusted Researchers : Steven Cocke 1 Summary I. Title A prototype KPOPS-Climate development II. Purpose and Necessity of R&D The main purpose of this R&D is to develop a prototype quasi-operational sub- seasonal to seasonal climate modeling system in the KOPRI computer cluster. The KOPRI and the FSU/COAPS scientists work closely together to initiate, improve and optimize the first version of the KPOPS-Climate in order to make a reliable sub- seasonal to seasonal climate prediction system which necessarily provides a better weather/climate guidance to the Korean policy decision makers, environmental risk protection managers and/or the public. III. Contents and Extent of R&D An initial version of the prototype KPOPS-Climate was developed and installed in the KOPRI computer cluster. -
Appendix 8: Damages Caused by Natural Disasters
Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall. -
Member Report (Malaysia)
MEMBER REPORT (MALAYSIA) ESCAP/WMO Typhoon Committee 15th Integrated Workshop Video Conference 1-2 December 2020 Organised by Viet Nam Table of Contents I. Overview of tropical cyclones which have affected/impacted Malaysia in 2020 1. Meteorological Assessment (highlighting forecasting issues/impacts) 2. Hydrological Assessment (highlighting water-related issues/impact) (a) Flash flood in Kajang & Kuala Lumpur in July and September 2020 (b) Enhancement of Hydrological Data Management for DID Malaysia (c) Hydrological Instrumentation Updates for Malaysia (d) Drought Monitoring Updates 3. Socio-Economic Assessment (highlighting socio-economic and DRR issues/impacts) 4. Regional Cooperation Assessment (highlighting regional cooperation successes and challenges) II. Summary of progress in Priorities supporting Key Result Areas 1. Annual Operating Plan (AOP) for Working Group of Meteorology [AOP4: Radar Integrated Nowcasting System (RaINS)] 2. Annual Operating Plan (AOP) for Working Group of Hydrology (AOP2, AOP4, AOP5, AOP6) 3. The Government of Malaysia’s Commitment Towards Supporting the Sendai Framework for Disaster Risk Reduction I. Overview of tropical cyclones which have affected/impacted Malaysia in 2020 1. Meteorological Assessment (highlighting forecasting issues/impacts) During the period of 1 November 2019 to 31 October 2020, 27 tropical cyclones (TCs) formed over the Western Pacific Ocean, the Philippines waters as well as the South China Sea. Eight of the TCs entered the area of responsibility of the Malaysian Meteorological Department (MET Malaysia) as shown in Figure 1. The TCs, which consisted of seven typhoons and a tropical storm that required the issuance of strong winds and rough seas warnings over the marine regions under the responsibility of MET Malaysia, are listed in Table 1. -
Chapter 5. Focus and Perspectives
| 78 Chapter 5. Focus and perspectives Building on the CropWatch analyses presented in chapters 1 through 4, this chapter includes an updated production outlook for 2016 focused on wheat (section 5.1), as well as sections on recent disaster events (section 5.2), a focus on agriculture in the East and Southeast Asia (5.3) and an update on El Niño (5.4). 5.1 CropWatch production outlook The production outlook for the current bulletin includes only the major producers in the southern hemisphere, as assessments for the northern hemisphere would be too hypothetical at this early stage in the season. For Argentina, CropWatch puts its winter wheat production of 2016 at 11.245 million tons, an increase of 5.0% over the previous year resulting from increases in the major production area. This year, however, provinces that generally contribute relatively little to the global output outperformed the traditional “big” wheat producers from Córdoba to Buenos Aires. The same occurred in Australia where the wheat production increased more in minor producing areas (+45.1% over last year) than nationwide (+24.3%). The total output in Australia exceeds that of Argentina by a factor 3 and reaches 32.066 million tons. Finally, at 7.747 million tons, the output of Brazil stays behind that of its southern neighbor, increasing however 10.0% over the previous season. Contrary to the situation in Australia and Argentina, minor wheat producing areas in Brazil did poorly (-29%). Wheat production results for Argentina, Australia and Brazil are listed in Annex B. 5.2 Disaster events Introduction According to a recent World Bank study (Hallegatte et al, 2017), economic losses from natural disasters totaled US$92 billion in 2015, mostly in the building, infrastructure and agricultural production sectors. -
TUESDAY 16* Philippines 3,479* 1,167*
TUESDAY TYPHOON KALMAEGI 19 NOV 2019 PHILIPPINES 1230 HRS (UTC +7) FLASH UPDATE #2 Population Exposed (Estimated exposure by the PDC) Map source: Philippines Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) Initial Effects* *Estimations are based on data reported/confirmed by National Disaster 3,479* 1,167* 15* 16* Management Organisations of each AFFECTED DISPLACED FLOODED DAMAGED respective ASEAN Member State PERSONS PERSONS BARANGAYS HOUSES and other verified sources Philippines • Tropical Storm KALMAEGI (locally named RAMON in the Philippines), which strengthened into a Severe Tropical Storm on 18 November 2019, has now further developed into a Typhoon and currently moving slowly west-northwest towards Babuyan Islands, north of Luzon, Philippines as of 10:00 (UTC+7). • According to forecast by the Joint Typhoon Warning Center (JTWC), Typhoon KALMAEGI is moving at about 4 kph, and is expected to weaken over the next 24 hours. Based on the current forecast (the storm's center and path), the Typhoon is within 112 km from northern seaboard of the Philippines, and the center is expected to make landfall in the afternoon or evening today, 19 November 2019, with sustained winds of about 148 kph. • The Philippines Atmospheric, Geophysical and Astronomical Services Administration (PAGASA) stated that moderate with frequent heavy rains will prevail over Batanes, northern portion of Cagayan (including the Babuyan Islands), Apayao and the northern portion of Ilocos Norte provinces. • The Philippines’ National Disaster Risk Reduction Management Council (NDRRMC) reported flood incidents, ranging from 0.5m to 1m of flood water, in 15 barangays/villages in Camarines Sur and Romblon provinces due to persistent heavy rains associated with the typhoon. -
NASA Sees Typhoon Sarika Approaching Second Landfall 18 October 2016
NASA sees Typhoon Sarika approaching second landfall 18 October 2016 On Oct. 17 at 2:10 (06:10 UTC) NASA-NOAA's Suomi NPP satellite passed over Sarika and provided a visible-light image of the storm. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard NASA-NOAA's Suomi NPP satellite showed the cloud-filled center of circulation in the central northern South China Sea, southwest of Hainan Island, China. At 5 a.m. EDT (0900 UTC) Sarika had maximum sustained winds near 92 mph (80 knots/148 kph). It was centered near 18.0 degrees north latitude and 112.4 degrees east longitude, about 409 nautical miles east-southeast of Hanoi, Vietnam. It was moving to the west at 10 mph (8 knots/16 kph). The Joint Typhoon Warning Center forecasts Sarika to move toward Hainan Island, China where it is expected to make landfall. Sarika is later forecast to continue west and make a third landfall in northern Vietnam. Provided by NASA's Goddard Space Flight Center On Oct. 17 at 2:10 (06:10 UTC) NASA-NOAA's Suomi NPP satellite captured a visible image of Typhoon Sarika approaching China. Credit: NOAA/NASA's Rapid Response Team NASA-NOAA's Suomi NPP satellite provided a visible look at Typhoon Sarika as it was poised for its second of three expected landfalls. When the satellite passed over Sarika it was in the South China Sea. Strong wind signal #3 is in force at Hong Kong, China, according to the Central Weather Bureau. Sarika, formerly known as Tropical Depression 24W fills up the northern half of the South China Sea on satellite imagery. -
Typhoon Sarika
Emergency Plan of Action (EPoA) Philippines: Typhoon Sarika DREF Operation: MDRPH021 Glide n° TC-2016-000108-PHL Date of issue: 19 October 2016 Date of disaster: 16 October 2016 Operation manager: Point of contact: Patrick Elliott, operations manager Atty. Oscar Palabyab, secretary general IFRC Philippines country office Philippine Red Cross Operation start date: 16 October 2016 Expected timeframe: 3 months (to 31 January 2017) Overall operation budget: CHF 169,011 Number of people affected: 52,270 people (11,926 Number of people to be assisted: 8,000 people families) (1,600 families) Host National Society: Philippine Red Cross (PRC) is the nation’s largest humanitarian organization and works through 100 chapters covering all administrative districts and major cities in the country. It has at least 1,000 staff at national headquarters and chapter levels, and approximately one million volunteers and supporters, of whom some 500,000 are active volunteers. At chapter level, a programme called Red Cross 143, has volunteers in place to enhance the overall capacity of the National Society to prepare for and respond in disaster situations. Red Cross Red Crescent Movement partners actively involved in the operation: PRC is working with the International Federation of Red Cross and Red Crescent Societies (IFRC) in this operation. The National Society also works with the International Committee of the Red Cross (ICRC) as well as American Red Cross, Australian Red Cross, British Red Cross, Canadian Red Cross, Finnish Red Cross, German Red Cross, Japanese Red Cross Society, The Netherlands Red Cross, Norwegian Red Cross, Qatar Red Crescent Society, Spanish Red Cross, and Swiss Red Cross in-country. -
The Effect of Typhoon on POC Flux
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 7, 3521–3550, 2010 Biogeosciences www.biogeosciences-discuss.net/7/3521/2010/ Discussions BGD doi:10.5194/bgd-7-3521-2010 7, 3521–3550, 2010 © Author(s) 2010. CC Attribution 3.0 License. The effect of typhoon This discussion paper is/has been under review for the journal Biogeosciences (BG). on POC flux Please refer to the corresponding final paper in BG if available. C.-C. Hung et al. The effect of typhoon on particulate Title Page Abstract Introduction organic carbon flux in the southern East Conclusions References China Sea Tables Figures C.-C. Hung1, G.-C. Gong1, W.-C. Chou1, C.-C. Chung1,2, M.-A. Lee3, Y. Chang3, J I H.-Y. Chen4, S.-J. Huang4, Y. Yang5, W.-R. Yang5, W.-C. Chung1, S.-L. Li1, and 6 E. Laws J I 1Institute of Marine Environmental Chemistry and Ecology, National Taiwan Ocean University Back Close Keelung, 20224, Taiwan 2Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University Keelung, Full Screen / Esc 20224, Taiwan 3 Department of Environmental Biology and Fisheries Science, National Taiwan Ocean Printer-friendly Version University, 20224, Taiwan 4Department of Marine Environmental Informatics, National Taiwan Ocean University, Interactive Discussion Keelung, 20224, Taiwan 5Taiwan Ocean Research Institute, National Applied Research Laboratories, Taipei, Taiwan 3521 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | BGD 6 Department of Environmental Sciences, School of the Coast and Environment, Louisiana 7, 3521–3550, 2010 State University, Baton Rouge, LA 70803, USA Received: 16 April 2010 – Accepted: 7 May 2010 – Published: 19 May 2010 The effect of typhoon on POC flux Correspondence to: C.-C. -
Strong Enhancement of Chlorophyll a Concentration by a Weak Typhoon
Vol. 404: 39–50, 2010 MARINE ECOLOGY PROGRESS SERIES Published April 8 doi: 10.3354/meps08477 Mar Ecol Prog Ser Strong enhancement of chlorophyll a concentration by a weak typhoon Liang Sun1, 2,*, Yuan-Jian Yang3, Tao Xian1, Zhu-min Lu4, Yun-Fei Fu1 1Laboratory of Atmospheric Observation and Climatological Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China 2LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, PR China 3Anhui Institute of Meteorological Sciences, Hefei 230031, PR China 4Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China ABSTRACT: Recent studies demonstrate that chlorophyll a (chl a) concentrations in ocean surface waters can be significantly enhanced due to typhoons. The present study investigated chl a concen- trations in the middle of the South China Sea (SCS) from 1997 to 2007. Only the Category 1 (minimal) Typhoon Hagibis (2007) had a notable effect on chl a concentrations. Typhoon Hagibis had a strong upwelling potential due to its location near the equator, and the forcing time of the typhoon (>82 h) was much longer than the geostrophic adjustment time (~63 h). The higher upwelling velocity and the longer forcing time increased the depth of the mixed-layer, which consequently induced a strong phytoplankton bloom that accounted for about 30% of the total annual chl a concentration in the middle of the SCS. Induction of significant upper ocean responses can be expected if the forcing time of a typhoon is long enough to establish strong upwelling.