Funnel Web Spiders Atrax Robustus

Total Page:16

File Type:pdf, Size:1020Kb

Funnel Web Spiders Atrax Robustus Husbandry Guidelines for FUNNEL WEB SPIDERS WITH PARTICULAR REFERENCE TO THE SYDNEY FUNNEL WEB Atrax robustus (Arachnida : Hexathelidae) Compiler: Vanessa Battishill Date of Preparation: Western Sydney Institute of TAFE, Richmond Course Name and Number: Certificate 3 in Captive Animals. RUV30204 Lecturer: Graeme Phipps, Jackie Salkeld, Brad Walker, DISCLAIMER These husbandry guidelines were produced by the compiler/author at TAFE NSW – Western Sydney Institute, Richmond College, N.S.W. Australia as part assessment for completion of Certificate III in Captive Animals, Course number 1068, RUV30204. Since the husbandry guidelines are the result of student project work, care should be taken in the interpretation of information therein, - in effect, all care taken but no responsibility is assumed for any loss or damage that may result from the use of these guidelines. It is offered to the ASZK Husbandry Manuals Register for the benefit of animal welfare and care. Husbandry guidelines are utility documents and are ‘works in progress’, so enhancements to these guidelines are invited. 2 OCCUPATIONAL HEALTH AND SAFETY RISKS Risk category: HIGH RISK = DANGEROUS The Sydney Funnel Web spider Atrax robustus is considered to be one of the most venomous spiders in the world! Although no one has died from the bite of The Northern Tree Funnel Web Hadronyche formidabilis, they are still highly venomous and the venom is considered to be closely as lethal as The Sydney Funnel Web. (FORD, N. [email protected], 30 April 2009). There is much debate as to which spider is the most venomous spider in the world and the debate includes Atrax robustus and The Brazilian Wondering Spider Phoneutria nigriventer. Funnel-Web spiders have fangs that deliver powerful venom. The venom contains a powerful combination of neurotoxins including atraxotoxin. Atraxotoxin is one of the most dangerous toxins in the animal kingdom. Venom is delivered from two (approximately) 5mm long venom glands through 4mm long ducts to the base of the 2 downward pointing fangs, approximately 6mm long in Atrax robustus males. A bite from these spiders will cause serious illness and can even lead to death. Immediate symptoms include: puncture marks from the fangs, local pain and numbness at the bite area. The pain and numbness usually occur within 10 minutes of being bitten. Other symptoms that follow vary with each occasion but can include: Twitching of the facial muscles and tongue, numbness in the mouth, nausea followed by vomiting, stomach pain, cramps, perspiration, swelling, excessive saliva, frothing at the mouth and breathing difficulties. In cases where the victim has not received the antivenom sometime after the bite, the victim can become delirious, their eyes will not respond to light and twitching can affect the whole body. (Simon-Brunet 1994) The venom enters the nervous system and acts quickly and in most cases, the venom of males is more toxic than females. This is the case for Sydney Funnel Web spiders Atrax robustus. To minimise chances of being bitten, firstly, be extremely alert and focused when dealing with these spiders. Move carefully but confidently at all times and use tweezers to handle and/or maneuver spider. If bitten, seek immediate medical attention by calling emergency services. Do not panic and keep as still as possible. Do not try to get the venom out of the bitten area in any way as doing so can hasten the venom into the bloodstream. (Simon-Brunet 1994) Contain spider if possible by placing a jar or other container over spider so spider can be taken to the hospital, positively identified and correct antivenin can be given. 3 Apply a crepe bandage to the bitten limb (start from the bitten area then work your way down to the toes or fingers then up as far as possible to the upper thigh/groin area or armpit), with the same amount of pressure and support as for a sprained limb and then use a splint to restrict the movement of the limb. By doing this, it can aid the body to naturally breakdown the venom. This bandaging approach is only to be used in the case of a funnel web spider bite. (Simon-Brunet 1994) (Sydney Funnel-Web spider in strike position with fangs clearly visible http://en.wikipedia.org ). 4 TABLE OF CONTENTS 1. INTRODUCTION............................................................................................................................... 8 1.1 ASMP CATEGORY ....................................................................................................................... 9 1.2 IUCN CATEGORY – SEE ALSO 2.3 ................................................................................................ 9 1.3 EA CATEGORY ............................................................................................................................. 9 1.4 NZ AND PNG CATEGORIES AND LEGISLATION ...........................................................................10 1.5 WILD POPULATION MANAGEMENT .............................................................................................10 1.6 SPECIES CO-ORDINATOR .............................................................................................................10 1.7 STUDBOOK HOLDER ....................................................................................................................10 2 TAXONOMY .....................................................................................................................................11 2.1 NOMENCLATURE .........................................................................................................................11 2.2 SUBSPECIES .................................................................................................................................11 2.3 RECENT SYNONYMS ....................................................................................................................11 2.4 OTHER COMMON NAMES ............................................................................................................12 3 NATURAL HISTORY ......................................................................................................................12 3.1 MEASUREMENTS .........................................................................................................................13 3.1.1 Mass And Basic Body Measurements ....................................................................................13 3.1.2 Sexual Dimorphism ................................................................................................................13 3.1.3 Distinguishing Features.........................................................................................................13 3.2 DISTRIBUTION AND HABITAT ......................................................................................................15 3.3 CONSERVATION STATUS .............................................................................................................16 3.4 LONGEVITY .................................................................................................................................17 3.4.1 In the Wild .............................................................................................................................17 3.4.2 In Captivity ............................................................................................................................17 3.5 TECHNIQUES USED TO DETERMINE AGE IN ADULTS ...................................................................17 4 HOUSING REQUIREMENTS .........................................................................................................18 4.1 EXHIBIT/ENCLOSURE DESIGN (FOR BOTH LARVAL AND ADULT STAGES) .....................................18 4.2 HOLDING AREA/ OFF EXHIBIT DESIGN (FOR BOTH LARVAL AND ADULT STAGES) .......................18 4.3 SPATIAL REQUIREMENTS ............................................................................................................20 4.4 POSITION OF ENCLOSURES ..........................................................................................................20 4.5 WEATHER (AND OTHER) PROTECTION .........................................................................................21 4.6 TEMPERATURE AND MICROCLIMATE REQUIREMENTS .................................................................21 4.7 SUBSTRATE .................................................................................................................................21 4.8 NESTBOXES AND/OR BEDDING MATERIAL ..................................................................................21 4.9 ENCLOSURE FURNISHINGS ..........................................................................................................22 5 GENERAL HUSBANDRY................................................................................................................22 5.1 HYGIENE AND CLEANING ............................................................................................................22 5.2 RECORD KEEPING .......................................................................................................................23 5.3 METHODS OF IDENTIFICATION ....................................................................................................23 5.4 ROUTINE DATA COLLECTION ......................................................................................................23 6 FEEDING REQUIREMENTS ..........................................................................................................24
Recommended publications
  • By Phoneutria Nigriventer (Aranae: Ctenidae) in Atlantic Forest, South-East of Brazil
    Herpetology Notes, volume 10: 369-371 (2017) (published online on 03 July 2017) Predation on Physalaemus olfersii (Anura: Leptodactylidae) by Phoneutria nigriventer (Aranae: Ctenidae) in Atlantic Forest, South-east of Brazil Mariana Pedrozo1,*, Lucas de Souza Almeida2, Matheus de Toledo Moroti3 and Diego José Santana3 Anurans are essential in trophic chains (Duellman and mm of snout-vent length in males and 22.4–41.1 mm Trueb, 1994), and are preyed upon many vertebrates and in females (Cassini et al. 2010), and is distributed in invertebrates (Toledo et al., 2007). Usually, predation the Atlantic Rain Forest domain and its influence areas, on anurans by invertebrates occurs mostly during from the municipality of Santa Teresa, state of Espírito larval and adult stages, but they also attack on anuran Santo, southern region of the states of Minas Gerais and spawns (Downie et al., 1995; Santos, 2009). Among São Paulo (Cassini et al. 2010). Ctenid spiders of the the invertebrates that may feed on anurans, there are genus Phoneutria have already been reported as anuran records of beetles, waterbugs, ants, spiders and crabs predators (Rego et al., 2005, Santana et al., 2009, Caldart (Duellman and Trueb, 1994; Toledo et al., 2005; Caldart et al., 2011, Pacheco et al., 2016), and are nocturnal with et al., 2011). Predation events, involving anurans and wandering habits, which actively seek their prey (Lucas, invertebrates, may be trivial in nature, however these 1988). According to Brazil et al. (2009), Phoneutria records are dependent of fortuitous observations nigriventer (Keyserling, 1891) has a wide distribution, (Pombal Jr, 2007; Santana et al., 2009).
    [Show full text]
  • Introduction to Arthropod Groups What Is Entomology?
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders,
    [Show full text]
  • ANA CAROLINA MARTINS WILLE.Pdf
    UNIVERSIDADE FEDERAL DO PARANÁ ANA CAROLINA MARTINS WILLE AVALIAÇÃO DA ATIVIDADE DE FOSFOLIPASE-D RECOMBINANTE DO VENENO DA ARANHA MARROM (Loxosceles intermedia) SOBRE A PROLIFERAÇÃO, INFLUXO DE CÁLCIO E METABOLISMO DE FOSFOLIPÍDIOS EM CÉLULAS TUMORAIS. CURITIBA 2014 i Wille, Ana Carolina Martins Avaliação da atividade de fosfolipase-D recombinante do veneno da aranha marrom (Loxosceles intermedia) sobre a proliferação, influxo de cálcio e metabolismo de fosfolipídios em células tumorais Curitiba, 2014. 217p. Tese (Doutorado) – Universidade Federal do Paraná – UFPR 1.veneno de aranha marrom. 2. fosfolipase-D. 3.proliferação celular. 4.metabolismo de lipídios. 5.influxo de cálcio. ANA CAROLINA MARTINS WILLE AVALIAÇÃO DA ATIVIDADE DE FOSFOLIPASE-D RECOMBINANTE DO VENENO DA ARANHA MARROM (Loxosceles intermedia) SOBRE A PROLIFERAÇÃO, INFLUXO DE CÁLCIO E METABOLISMO DE FOSFOLIPÍDIOS EM CÉLULAS TUMORAIS. Tese apresentada como requisito à obtenção do grau de Doutor em Biologia Celular e Molecular, Curso de Pós- Graduação em Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná. Orientador(a): Dra. Andrea Senff Ribeiro Co-orientador: Dr. Silvio Sanches Veiga CURITIBA 2014 ii O desenvolvimento deste trabalho foi possível devido ao apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Araucária e SETI-PR. iii Dedico este trabalho àquela que antes da sua existência foi o grande sonho que motivou minha vida. Sonho que foi a base para que eu escolhesse uma profissão e um trabalho. À você, minha amada filha GIOVANNA, hoje minha realidade, dedico todo meu trabalho. iv Dedico também este trabalho ao meu amado marido, amigo, professor e co- orientador Dr.
    [Show full text]
  • Structural Venomics Reveals Evolution of a Complex Venom by Duplication and Diversification of an Ancient Peptide-Encoding Gene
    Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene Sandy S. Pinedaa,b,1,2,3,4, Yanni K.-Y. China,c,1, Eivind A. B. Undheimc,d,e, Sebastian Senffa, Mehdi Moblic, Claire Daulyf, Pierre Escoubasg, Graham M. Nicholsonh, Quentin Kaasa, Shaodong Guoa, Volker Herziga,5, John S. Mattickb,6, and Glenn F. Kinga,2 aInstitute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; bGarvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; cCentre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia; dCentre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway; eCentre for Ecological & Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway; fThermo Fisher Scientific, 91941 Courtaboeuf Cedex, France; gUniversity of Nice Sophia Antipolis, 06000 Nice, France; and hSchool of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia Edited by Adriaan Bax, National Institutes of Health, Bethesda, MD, and approved March 18, 2020 (received for review August 21, 2019) Spiders are one of the most successful venomous animals, with N-terminal strand is sometimes present (12). The cystine knot more than 48,000 described species. Most spider venoms are comprises a “ring” formed by two disulfide bonds and the in- dominated by cysteine-rich peptides with a diverse range of phar- tervening sections of the peptide backbone, with a third disulfide macological activities. Some spider venoms contain thousands of piercing the ring to create a pseudoknot (11).
    [Show full text]
  • Accidents Caused by Spider Bites
    Open Journal of Animal Sciences, 2014, 4, 113-117 Published Online June 2014 in SciRes. http://www.scirp.org/journal/ojas http://dx.doi.org/10.4236/ojas.2014.43015 Accidents Caused by Spider Bites Annelise Carla Camplesi1*, Sthefani Soares Albernaz1, Karina Paes Burger1, Carla Fredrichsen Moya-Araujo2 1School of Agriculture and Veterinary Science, Sao Paulo State University—UNESP, Jaboticabal, Brazil 2School of Veterinary Medicine—FIO, Ourinhos, Brazil Email: *[email protected] Received 9 April 2014; revised 15 May 2014; accepted 22 May 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Accidents caused by spider bites occur in many countries and represent a public health problem due to their high severity and occurrence of fatal accidents. In Veterinary Medicine, the incidence of arachnidism is considered nonexistent in large animals, as their thick skin cannot be pierced, rare in cats and common in dogs, particularly due to their exploratory and curious habit, and the habitats of venomous animals, such as the arachnids, located close to urban areas. The aim of this review is to describe the characteristics and distribution of spiders, the mechanism of action of the venom, clinical signs, diagnosis and treatment of accidents caused by arachnids of genera Loxos- celes sp., Phoneutria sp., Latrodectus sp., and suborder Mygalomorphae. Keywords Arachnids, Clinical Signs, Diagnosis, Treatment 1. Introduction Spiders are the second largest order of arachnids, with more than 41,000 species described. Practically all of them are venomous, but only some of them have potential significance to human medicine and veterinary medi- cine, due to their venom toxicity, habitat of species, among other factors [1].
    [Show full text]
  • Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris Iracundus
    biomedicines Article Hexapod Assassins’ Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus Nicolai Rügen 1, Timothy P. Jenkins 2, Natalie Wielsch 3, Heiko Vogel 4 , Benjamin-Florian Hempel 5,6 , Roderich D. Süssmuth 5 , Stuart Ainsworth 7, Alejandro Cabezas-Cruz 8 , Andreas Vilcinskas 1,9,10 and Miray Tonk 9,10,* 1 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; [email protected] (N.R.); [email protected] (A.V.) 2 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; [email protected] 3 Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany; [email protected] 4 Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; [email protected] 5 Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; [email protected] (B.-F.H.); [email protected] (R.D.S.) 6 BIH Center for Regenerative Therapies BCRT, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany 7 Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; [email protected] 8 Citation: Rügen, N.; Jenkins, T.P.; UMR BIPAR, Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Wielsch, N.; Vogel, H.; Hempel, B.-F.; F-94700 Maisons-Alfort, France; [email protected] 9 Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, Süssmuth, R.D.; Ainsworth, S.; 35392 Giessen, Germany Cabezas-Cruz, A.; Vilcinskas, A.; 10 LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, Tonk, M.
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • Funnel Weaver Spiders (Funnel-Web Weavers, Grass Spiders)
    Colorado Arachnids of Interest Funnel Weaver Spiders (Funnel-web weavers, Grass spiders) Class: Arachnida (Arachnids) Order: Araneae (Spiders) Family: Agelenidae (Funnel weaver Figure 1. Female grass spider on sheet web. spiders) Identification and Descriptive Features: Funnel weaver spiders are generally brownish or grayish spiders with a body typically ranging from1/3 to 2/3-inch when full grown. They have four pairs of eyes that are roughly the same size. The legs and body are hairy and legs usually have some dark banding. They are often mistaken for wolf spiders (Lycosidae family) but the size and pattern of eyes can most easily distinguish them. Like wolf spiders, the funnel weavers are very fast runners. Among the three most common genera (Agelenopsis, Hololena, Tegenaria) found in homes and around yards, Agelenopsis (Figures 1, 2 and 3) is perhaps most easily distinguished as it has long tail-like structures extending from the rear end of the body. These structures are the spider’s spinnerets, from which the silk emerges. Males of this genus have a unique and peculiarly coiled structure (embolus) on their pedipalps (Figure 3), the appendages next to the mouthparts. Hololena species often have similar appearance but lack the elongated spinnerets and male pedipalps have a normal clubbed appearance. Spiders within both genera Figure 2. Adult female of a grass spider, usually have dark longitudinal bands that run along the Agelenopsis sp. back of the cephalothorax and an elongated abdomen. Tegenaria species tend to have blunter abdomens marked with gray or black patches. Dark bands may also run along the cephalothorax, which is reddish brown with yellowish hairs in the species Tegenaria domestica (Figure 4).
    [Show full text]
  • Australasian Arachnology 76 Features a Comprehensive Update on the Taxonomy Change of Address and Systematics of Jumping Spiders of Australia by Marek Zabka
    AAususttrraalaassiianan AArracachhnnoollogyogy Price$3 Number7376 ISSN0811-3696 January200607 Newsletterof NewsletteroftheAustralasianArachnologicalSociety Australasian Arachnology No. 76 Page 2 THE AUSTRALASIAN ARTICLES ARACHNOLOGICAL The newsletter depends on your SOCIETY contributions! We encourage articles on a We aim to promote interest in the range of topics including current research ecology, behaviour and taxonomy of activities, student projects, upcoming arachnids of the Australasian region. events or behavioural observations. MEMBERSHIP Please send articles to the editor: Membership is open to amateurs, Volker Framenau students and professionals and is managed Department of Terrestrial Invertebrates by our administrator: Western Australian Museum Locked Bag 49 Richard J. Faulder Welshpool, W.A. 6986, Australia. Agricultural Institute [email protected] Yanco, New South Wales 2703. Australia Format: i) typed or legibly printed on A4 [email protected] paper or ii) as text or MS Word file on CD, Membership fees in Australian dollars 3½ floppy disk, or via email. (per 4 issues): LIBRARY *discount personal institutional Australia $8 $10 $12 The AAS has a large number of NZ / Asia $10 $12 $14 reference books, scientific journals and elsewhere $12 $14 $16 papers available for loan or as photocopies, for those members who do There is no agency discount. not have access to a scientific library. All postage is by airmail. Professional members are encouraged to *Discount rates apply to unemployed, pensioners and students (please provide proof of status). send in their arachnological reprints. Cheques are payable in Australian Contact our librarian: dollars to “Australasian Arachnological Society”. Any number of issues can be paid Jean-Claude Herremans PO Box 291 for in advance.
    [Show full text]
  • Salt and Water Balance in the Spider, Porrhothele Antipodiana (Mygalomorpha: Dipluridae): Effects of Feeding Upon Hydrated Animals
    J. exp. Biol. 125, 85-106 (1986) 85 Printed in Great Britain © The Company of Biologists Limited 1986 SALT AND WATER BALANCE IN THE SPIDER, PORRHOTHELE ANTIPODIANA (MYGALOMORPHA: DIPLURIDAE): EFFECTS OF FEEDING UPON HYDRATED ANIMALS BY A. G. BUTT* AND H. H. TAYLORf Department of Zoology, University of Canterbury, Private Bag, Christchurch, New Zealand Accepted 15 May 1986 SUMMARY The spider, Porrhothele antipodiana, starved and provided with water, produced urine via the anal excretory system (Malpighian tubules, midgut diverticula and stercoral pocket) at a mean rate of about 2-5-5//I g"1 day"1 and with a mean Na+/K+ ratio of about 1-0. Salts ingested from the prey were eliminated by two mechanisms. A K+-rich (Na+/K+ about 0-2) anal diuresis lasted about 3 days following a single meal and was maintained at more than SO^lg^'day"1 during feeding ad libitum. The second mechanism, interpreted as coxal secretion, func- tioned only during feeding itself and delivered Na+ into the prey at a constant rate of about 3 %h~' of total body Na+. This progressively raised the Na+/K+ ratio of the prey debris from 0-47 to 0-96 and, because of re-ingestion, recycled more Na+ than was originally present in the prey. Feeding was associated with large net increases in dry weight and ions, particularly K+, which were mainly stored in the diverticular tissue (midgut diverticula and Malpighian tubules embedded in adipose tissue). The stercoral fluid (final urine) was slightly hyposmotic to the haemolymph in starved and fed spiders. Only about half of its osmolarity was accounted for by Na+, K+ and Cl~.
    [Show full text]
  • Tarantula Free Download
    TARANTULA FREE DOWNLOAD Bob Dylan | 144 pages | 10 Jun 2011 | HarperCollins Publishers | 9780007215041 | English | London, United Kingdom Tarantulas They love warmer climates and that is why Tarantula are also in Mexico and portions of the United States. Entomology Expert. The name "tarantula" is also incorrectly applied to other large-bodied spiders, including Tarantula purseweb spiders or atypical tarantulasthe funnel-webs Dipluridae and Hexathelidaeand the " Tarantula tarantulas ". Tarantula big, beefy spiders strike fear in the hearts of arachnophobes everywhere, but in fact, tarantulas are some of the least Tarantula and Tarantula spiders around. Even though the Tarantula is usually a timid Spider, they have been known to show signs of aggression. Tarantula Deemer, who bluntly refuses permission. Also on the end of each leg, surrounding the claws, is a group of bristles, called the scopula, Tarantula help the tarantula to grip better when climbing surfaces such as glass. They weigh from 1 to 3 ounces Joe Burch Edwin Rand Hastings finds a Tarantula involving picked-clean cattle carcasses and large pools of a thick, white liquid. Last updated: February 24, Tarantula Director Jack Arnold used matte effects once again two years later to show miniaturization, rather than gigantism, in The Incredible Shrinking Manwhich also featured an encounter with a spider. Leonard Maltin's Classic Movie Guide. The Life of the Spider. The tarantula pursues them down the highway toward the town. Tarantula Eurypelma literally means 'wide footsole'; however, arachnologists have conventionally taken pelma in such names to refer to the scopula, so producing the meaning 'with a wide scopula'. These fine bristles are barbed Tarantula serve to irritate.
    [Show full text]
  • Diversification of a Single Ancestral Gene Into a Successful Toxin Superfamily in Highly Venomous Australian Funnel-Web Spiders
    Pineda et al. BMC Genomics 2014, 15:177 http://www.biomedcentral.com/1471-2164/15/177 RESEARCH ARTICLE Open Access Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders Sandy S Pineda1†, Brianna L Sollod2,7†, David Wilson1,3,8†, Aaron Darling1,9, Kartik Sunagar4,5, Eivind A B Undheim1,6, Laurence Kely6, Agostinho Antunes4,5, Bryan G Fry1,6* and Glenn F King1* Abstract Background: Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. Results: Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. Conclusions: Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators.
    [Show full text]