Structural Venomics Reveals Evolution of a Complex Venom by Duplication and Diversification of an Ancient Peptide-Encoding Gene
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ANA CAROLINA MARTINS WILLE.Pdf
UNIVERSIDADE FEDERAL DO PARANÁ ANA CAROLINA MARTINS WILLE AVALIAÇÃO DA ATIVIDADE DE FOSFOLIPASE-D RECOMBINANTE DO VENENO DA ARANHA MARROM (Loxosceles intermedia) SOBRE A PROLIFERAÇÃO, INFLUXO DE CÁLCIO E METABOLISMO DE FOSFOLIPÍDIOS EM CÉLULAS TUMORAIS. CURITIBA 2014 i Wille, Ana Carolina Martins Avaliação da atividade de fosfolipase-D recombinante do veneno da aranha marrom (Loxosceles intermedia) sobre a proliferação, influxo de cálcio e metabolismo de fosfolipídios em células tumorais Curitiba, 2014. 217p. Tese (Doutorado) – Universidade Federal do Paraná – UFPR 1.veneno de aranha marrom. 2. fosfolipase-D. 3.proliferação celular. 4.metabolismo de lipídios. 5.influxo de cálcio. ANA CAROLINA MARTINS WILLE AVALIAÇÃO DA ATIVIDADE DE FOSFOLIPASE-D RECOMBINANTE DO VENENO DA ARANHA MARROM (Loxosceles intermedia) SOBRE A PROLIFERAÇÃO, INFLUXO DE CÁLCIO E METABOLISMO DE FOSFOLIPÍDIOS EM CÉLULAS TUMORAIS. Tese apresentada como requisito à obtenção do grau de Doutor em Biologia Celular e Molecular, Curso de Pós- Graduação em Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná. Orientador(a): Dra. Andrea Senff Ribeiro Co-orientador: Dr. Silvio Sanches Veiga CURITIBA 2014 ii O desenvolvimento deste trabalho foi possível devido ao apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Araucária e SETI-PR. iii Dedico este trabalho àquela que antes da sua existência foi o grande sonho que motivou minha vida. Sonho que foi a base para que eu escolhesse uma profissão e um trabalho. À você, minha amada filha GIOVANNA, hoje minha realidade, dedico todo meu trabalho. iv Dedico também este trabalho ao meu amado marido, amigo, professor e co- orientador Dr. -
Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris Iracundus
biomedicines Article Hexapod Assassins’ Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus Nicolai Rügen 1, Timothy P. Jenkins 2, Natalie Wielsch 3, Heiko Vogel 4 , Benjamin-Florian Hempel 5,6 , Roderich D. Süssmuth 5 , Stuart Ainsworth 7, Alejandro Cabezas-Cruz 8 , Andreas Vilcinskas 1,9,10 and Miray Tonk 9,10,* 1 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; [email protected] (N.R.); [email protected] (A.V.) 2 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; [email protected] 3 Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany; [email protected] 4 Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; [email protected] 5 Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; [email protected] (B.-F.H.); [email protected] (R.D.S.) 6 BIH Center for Regenerative Therapies BCRT, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany 7 Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; [email protected] 8 Citation: Rügen, N.; Jenkins, T.P.; UMR BIPAR, Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Wielsch, N.; Vogel, H.; Hempel, B.-F.; F-94700 Maisons-Alfort, France; [email protected] 9 Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, Süssmuth, R.D.; Ainsworth, S.; 35392 Giessen, Germany Cabezas-Cruz, A.; Vilcinskas, A.; 10 LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, Tonk, M. -
Diversification of a Single Ancestral Gene Into a Successful Toxin Superfamily in Highly Venomous Australian Funnel-Web Spiders
Pineda et al. BMC Genomics 2014, 15:177 http://www.biomedcentral.com/1471-2164/15/177 RESEARCH ARTICLE Open Access Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders Sandy S Pineda1†, Brianna L Sollod2,7†, David Wilson1,3,8†, Aaron Darling1,9, Kartik Sunagar4,5, Eivind A B Undheim1,6, Laurence Kely6, Agostinho Antunes4,5, Bryan G Fry1,6* and Glenn F King1* Abstract Background: Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. Results: Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. Conclusions: Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. -
Australian Funnel-Web Spiders Evolved Human-Lethal Δ-Hexatoxins for Defense Against Vertebrate Predators
Australian funnel-web spiders evolved human-lethal δ-hexatoxins for defense against vertebrate predators Volker Herziga,b,1,2, Kartik Sunagarc,1, David T. R. Wilsond,1, Sandy S. Pinedaa,e,1, Mathilde R. Israela, Sebastien Dutertref, Brianna Sollod McFarlandg, Eivind A. B. Undheima,h,i, Wayne C. Hodgsonj, Paul F. Alewooda, Richard J. Lewisa, Frank Bosmansk, Irina Vettera,l, Glenn F. Kinga,2, and Bryan G. Frym,2 aInstitute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; bGeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia; cEvolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India; dCentre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; eBrain and Mind Centre, University of Sydney, Camperdown, NSW 2052, Australia; fInstitut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, 34095 Montpellier Cedex 5, France; gSollod Scientific Analysis, Timnath, CO 80547; hCentre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia; iCentre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway; jMonash Venom Group, Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; kBasic and Applied Medical Sciences Department, Faculty of Medicine, Ghent University, 9000 Ghent, Belgium; lSchool -
Antivenoms for the Treatment of Spider Envenomation
† Antivenoms for the Treatment of Spider Envenomation Graham M. Nicholson1,* and Andis Graudins1,2 1Neurotoxin Research Group, Department of Heath Sciences, University of Technology, Sydney, New South Wales, Australia 2Departments of Emergency Medicine and Clinical Toxicology, Westmead Hospital, Westmead, New South Wales, Australia *Correspondence: Graham M. Nicholson, Ph.D., Director, Neurotoxin Research Group, Department of Heath Sciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia; Fax: 61-2-9514-2228; E-mail: Graham. [email protected]. † This review is dedicated to the memory of Dr. Struan Sutherland who’s pioneering work on the development of a funnel-web spider antivenom and pressure immobilisation first aid technique for the treatment of funnel-web spider and Australian snake bites will remain a long standing and life-saving legacy for the Australian community. ABSTRACT There are several groups of medically important araneomorph and mygalomorph spiders responsible for serious systemic envenomation. These include spiders from the genus Latrodectus (family Theridiidae), Phoneutria (family Ctenidae) and the subfamily Atracinae (genera Atrax and Hadronyche). The venom of these spiders contains potent neurotoxins that cause excessive neurotransmitter release via vesicle exocytosis or modulation of voltage-gated sodium channels. In addition, spiders of the genus Loxosceles (family Loxoscelidae) are responsible for significant local reactions resulting in necrotic cutaneous lesions. This results from sphingomyelinase D activity and possibly other compounds. A number of antivenoms are currently available to treat envenomation resulting from the bite of these spiders. Particularly efficacious antivenoms are available for Latrodectus and Atrax/Hadronyche species, with extensive cross-reactivity within each genera. -
Phoneutria Nigriventer Spider Toxin Pntx2-1 (Δ-Ctenitoxin-Pn1a) Is a Modulator of Sodium Channel Gating
toxins Article Phoneutria nigriventer Spider Toxin PnTx2-1 (δ-Ctenitoxin-Pn1a) Is a Modulator of Sodium Channel Gating Steve Peigneur 1,2,*,† ID , Ana Luiza B. Paiva 3,†, Marta N. Cordeiro 3,Márcia H. Borges 3, Marcelo R. V. Diniz 3, Maria Elena de Lima 2,4 and Jan Tytgat 1,* 1 Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium 2 Laboratório de Venenos e Toxinas Animais, Dept de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; [email protected] 3 Departamento de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Minas Gerais, Belo Horizonte 30510-010, Brazil; [email protected] (A.L.B.P.); [email protected] (M.N.C.); [email protected] (M.H.B.); [email protected] (M.R.V.D.) 4 Programa de Pós-graduação em Ciências da Saúde, Biomedicina e Medicina, Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Grupo Santa Casa de Belo Horizonte, Minas Gerais, Belo Horizonte 31270-901, Brazil * Correspondence: [email protected] or [email protected] (S.P.); [email protected] (J.T.); Tel.: +321-632-3404 (J.T.) † These two authors contribute equally to this work. Received: 26 July 2018; Accepted: 16 August 2018; Published: 21 August 2018 Abstract: Spider venoms are complex mixtures of biologically active components with potentially interesting applications for drug discovery or for agricultural purposes. The spider Phoneutria nigriventer is responsible for a number of envenomations with sometimes severe clinical manifestations in humans. -
Engineering Insect-Resistant Plants by Transgenic Expression of an Insecticidal Spider-Venom Peptide
Engineering Insect-Resistant Plants by Transgenic Expression of an Insecticidal Spider-Venom Peptide Md. Shohidul Alam Master of Science in Agricultural Chemistry A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 Institute for Molecular Bioscience Abstract The insecticidal spider-venom peptide ω-hexatoxin-Hv1a (Hv1a) from the Australian Blue Mountains funnel-web spider Hadronyche versuta is one of the most potent insect-specific neurotoxins isolated to date. Hv1a blocks voltage-gated calcium channels in the insect central nervous system, a mechanism quite distinct from existing chemical insecticides. It induces a slow-onset paralysis that precedes death in a taxonomically wide range of insects. Hv1a's broad spectrum of target insects, novel mode of action, and absence of toxicity to vertebrates makes the Hv1a gene an attractive tool for generating insect- resistant transgenic crops. The oral activity of Hv1a can be enhanced by coupling it to the plant lectin Galanthus nivalis agglutinin (GNA) or with the minor capsid protein of pea enation mosaic virus (CP). Recombinant fusions of Hv1a with GNA were produced using the Pichia pastoris expression system to study the intrinsic insecticidal activity of Hv1a-GNA and GNA-Hv1a fusion proteins. By using injection bioassays with houseflies, we found that the intrinsic insecticidal activity of Hv1a was maintained when it was fused to GNA. Moreover, feeding bioassays with diamondback moth larvae revealed that fusion of Hv1a to GNA, in either orientation, enhances its oral insecticidal activity. In order to generate transgenic plants expressing Hv1a alone or fused to GNA or CP, transformation vectors were constructed by ligating synthesised genes in the pAOV binary vector with the constitutive Cauliflower Mosaic Virus 35S promoter (35S) or the phloem tissue-specific Arabidopsis thaliana SUCROSE TRANSPORTER 2 (SUC2) promoter. -
1 Collateral Death—Australian Funnel-Web Spiders Evolved Human
1 Collateral death—Australian funnel-web spiders evolved human-lethal 2 δ-hexatoxins for defense against vertebrate predators 3 4 Volker Herzig1,2*@, Kartik Sunagar3*, David T.R. Wilson4*, Sandy S. Pineda1,5*, Mathilde R. 5 Israel1, Sebastien Dutertre6, Brianna Sollod McFarland7, Eivind A.B. Undheim1,8,9, Wayne C. 6 Hodgson10, Paul F. Alewood1, Richard J. Lewis1, Frank Bosmans11, Irina Vetter1,12, Glenn F. 7 King1@, Bryan G. Fry13@ 8 9 1. Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia 10 2. School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia 11 3. Evolutionary VenoMics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 12 560012. India 13 4. Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, JaMes Cook 14 University, SMithfield, QLD 4878; Australia 15 5. Brain and Mind Centre, University of Sydney, CaMperdown, NSW 2052, Australia 16 6. Institut des BioMolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène 17 Bataillon, 34095 Montpellier Cedex 5, France 18 7. Sollod Scientific Analysis, Ft. Collins, CO, USA 19 8. Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia 20 9. Centre for Ecology and Evolutionary Synthesis, DepartMent of Biosciences, University of Oslo, 0316 21 Oslo, Norway 22 10. Monash Venom Group, Department of Pharmacology, Monash University, Building 13E, Clayton 23 CaMpus, Clayton, VIC 3800, Australia 24 11. Basic and Applied Medical Sciences DepartMent, Faculty of Medicine, Ghent University, 9000 Ghent, 25 BelgiuM 26 12. School of PharMacy, The University of Queensland, Woolloongabba QLD 4102, Australia 27 13. -
Gunning Et Al Febslett
For submission to FEBS Letters Isolation of δ-missulenatoxin-Mb1a, the major vertebrate-active spider δ-toxin from the venom of Missulena bradleyi (Actinopodidae)1 Simon J. Gunninga, Youmie Chonga, Ali A. Khalifea, Peter G. Hainsb, Kevin W. Broadyc, Graham M. Nicholsona, * Departments of aHealth Sciences and cCell & Molecular Biology, University of Technology, Sydney, NSW 2007, Australia bDepartment of Chemistry, University of Wollongong, NSW 2522, Australia Key words: Spider; Peptide; δ-Missulenatoxin; Sodium channel; Scorpion toxin; δ-Atracotoxin 1 The protein sequence of δ-missulenatoxin-Mb1a reported in this paper has been submitted to the Swiss Protein database under the SwissProt accession code P83608. * Corresponding author. Associate Professor Graham M. Nicholson, PhD Leader, Neurotoxin Research Group Department of Health Sciences University of Technology, Sydney P.O. Box 123 Broadway NSW 2007 Australia Tel: (61) (2) 9514 2230, Fax: (61) (2) 9514 2228. E-mail: [email protected] S.J. Gunning et al./FEBS Letters 2 Abstract The present study describes the isolation and pharmacological characterisation of the neurotoxin δ-missulenatoxin-Mb1a (δ-MSTX-Mb1a) from the venom of the male Australian eastern mouse spider, Missulena bradleyi. This toxin was isolated using reverse-phase HPLC and was subsequently shown to cause an increase in resting tension, muscle fasciculation and a decrease in indirect twitch tension in a chick biventer cervicis nerve-muscle bioassay. Interestingly, these effects were neutralised by antivenom raised against the venom of the Sydney funnel-web spider Atrax robustus. Subsequent whole-cell patch-clamp electrophysiology on rat dorsal root ganglion neurons revealed that δ-MSTX-Mb1a caused a reduction in peak tetrodotoxin (TTX)-sensitive sodium current, a slowing of sodium current inactivation and a hyperpolarizing shift in the voltage at half-maximal activation. -
Spider Neurotoxin (Delta)-ACTX-Hv1a Modulates Insect Na+ Channels
The Journal of Experimental Biology 204, 711–721 (2001) 711 Printed in Great Britain © The Company of Biologists Limited 2001 JEB2944 ELECTROPHYSIOLOGICAL ANALYSIS OF THE NEUROTOXIC ACTION OF A FUNNEL-WEB SPIDER TOXIN, δ-ATRACOTOXIN-HV1a, ON INSECT VOLTAGE- GATED Na+ CHANNELS FRANÇOISE GROLLEAU1,*, MARIA STANKIEWICZ2, LIESL BIRINYI-STRACHAN3, XIU-HONG WANG4, GRAHAM M. NICHOLSON2, MARCEL PELHATE1 AND BRUNO LAPIED1 1Laboratoire de Neurophysiologie UPRES EA 2647 (RCIM), Université d’Angers, UFR Sciences, 2 Boulevard Lavoisier, F-49045 Angers Cedex, France, 2Institute of Biology, Laboratory of Biophysics, N. Copernicus University, ul. Gagarina 9, 87-100 Torun, Poland, 3Department of Health Sciences, University of Technology, Sydney, City Campus, Broadway, NSW 2007, Australia and 4Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA *e-mail: [email protected] Accepted 22 November 2000; published on WWW 1 February 2001 Summary The effects of δ-ACTX-Hv1a, purified from the venom affected voltage-gated Na+ channels in both axons and of the funnel-web spider Hadronyche versuta, were studied DUM neurones. Both the current/voltage and conductance/ on the isolated giant axon and dorsal unpaired median voltage curves of the δ-ACTX-Hv1a-modified inward (DUM) neurones of the cockroach Periplaneta americana current were shifted 10 mV to the left of control curves. In under current- and voltage-clamp conditions using the the presence of δ-ACTX-Hv1a, steady-state Na+ channel double oil-gap technique for single axons and the patch- inactivation became incomplete, causing the appearance of clamp technique for neurones. In parallel, the effects of the a non-inactivating component at potentials more positive toxin were investigated on the excitability of rat dorsal root than −40 mV. -
A Check-List and Zoogeographic Analysis of the Spider Fauna (Arachnida: Aranei) of Novosibirsk Area (West Siberia, Russia)
Arthropoda Selecta 27(1): 73–93 © ARTHROPODA SELECTA, 2018 A check-list and zoogeographic analysis of the spider fauna (Arachnida: Aranei) of Novosibirsk Area (West Siberia, Russia) Ñïèñîê è çîîãåîãðàôè÷åñêèé àíàëèç ôàóíû ïàóêîâ (Arachnida: Aranei) Íîâîñèáèðñêîé îáëàñòè (Çàïàäíàÿ Ñèáèðü, Ðîññèÿ) G.N. Azarkina1, I.I. Lyubechanskii1, L.A. Trilikauskas1, R.Yu. Dudko1, A.N. Bespalov2, V.G. Mordkovich1 Ã.Í. Àçàðêèíà1, È.È. Ëþáå÷àíñêèé1, Ë.À. Òðèëèêàóñêàñ1, Ð.Þ. Äóäêî1, À.Í. Áåñïàëîâ2, Â.Ã. Ìîðäêîâè÷1 1 Institute of Systematics and Ecology of Animals SB RAS (ISEA), Frunze str. 11, Novosibirsk 630091, Russia. E-mail: [email protected] Институт систематики и экологии животных СО РАН, ул. Фрунзе, 11, Новосибирск 630091, Россия. 2 Institute of Soil Science and Agrochemistry SB RAS, Lavrentiev Avenue 8/2, Novosibirsk 630090, Russia. Институт почвоведения и агрохимии СО РАН, проспект Лаврентьева 8/2, Новосибирск, 630090, Россия. KEY WORDS: Araneae, diversity, natural complexes, ranges, spiders, Carabidae. КЛЮЧЕВЫЕ СЛОВА: Araneae, ареалы, пауки, природные комплексы, разнообразие, жужелицы. ABSTRACT. A check-list of the spiders (Arachni- geographic analysis of the spider fauna (Arachnida: da, Aranei) recorded from Novosibirsk Area (364 spe- Aranei) of Novosibirsk Area (West Siberia, Russia) // cies in 157 genera and 26 families) is provided, with Arthropoda Selecta. Vol.27. No.1. P.73–93. doi: the references to exact collection localities, administra- 10.15298/arthsel. 27.1.11 tive units, natual complexes, and latitudinal & longitu- dinal components of their ranges. Of the reported spi- РЕЗЮМЕ. Дан список пауков, зарегистрирован- ders, 164 species, 53 genera and three families, includ- ных в Новосибирской области (364 вида из 157 ing two new species that are being currently described, родов и 26 семейств), с указанием локалитетов, have been recorded from the Area for the first time. -
Araneae.It: the Online Catalog of Italian Spiders, with Addenda on Other Arachnid Orders Occurring in Italy
Fragmenta entomologica, 51 (2): 127–152 (2019) eISSN: 2284-4880 (online version) pISSN: 0429-288X (print version) Research article Submitted: May 20th, 2019 - Accepted: September 8th, 2019 - Published: November 15th, 2019 Araneae.it: the online Catalog of Italian spiders, with addenda on other Arachnid Orders occurring in Italy (Arachnida: Araneae, Opiliones, Palpigradi, Pseudoscorpionida, Scorpiones, Solifugae) Paolo PANTINI 1, Marco ISAIA 2,* 1 Museo Civico di Scienze Naturali “E. Caffi” - Piazza Cittadella 10, I-24129 Bergamo, Italy - [email protected] 2 Laboratorio di Ecologia, Ecosistemi terrestri, Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino Via Accademia Albertina 13, I-10123 Torino, Italy - [email protected] * Corresponding author Abstract In this contribution we present the Catalog of Italian spiders, produced on the base of the available scientific information regarding spi- der species distribution in Italy. We analysed an amount of 1124 references, resulting in a list of 1670 species and subspecies, grouped in 434 genera and 53 families. Information on spider biodiversity in Italy has increased rapidly in the last years, going from 404 species at the end of XIX century, to 1400 in the 1990s, to the current 1670. However, the knowledge on the distribution of the Italian species is far from being complete and it seems likely that there are still new species to be found or described. The Italian spider fauna is character- ized by the presence of a relevant number of endemic species (342). Concerning families, Linyphiidae show the highest number of spe- cies (477) and the highest number of endemics (114).