Structural Venomics Reveals Evolution of a Complex Venom by Duplication and Diversification of an Ancient Peptide-Encoding Gene

Total Page:16

File Type:pdf, Size:1020Kb

Structural Venomics Reveals Evolution of a Complex Venom by Duplication and Diversification of an Ancient Peptide-Encoding Gene Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene Sandy S. Pinedaa,b,1,2,3,4, Yanni K.-Y. China,c,1, Eivind A. B. Undheimc,d,e, Sebastian Senffa, Mehdi Moblic, Claire Daulyf, Pierre Escoubasg, Graham M. Nicholsonh, Quentin Kaasa, Shaodong Guoa, Volker Herziga,5, John S. Mattickb,6, and Glenn F. Kinga,2 aInstitute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; bGarvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; cCentre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia; dCentre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway; eCentre for Ecological & Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway; fThermo Fisher Scientific, 91941 Courtaboeuf Cedex, France; gUniversity of Nice Sophia Antipolis, 06000 Nice, France; and hSchool of Life Sciences, University of Technology Sydney, Broadway, NSW 2007, Australia Edited by Adriaan Bax, National Institutes of Health, Bethesda, MD, and approved March 18, 2020 (received for review August 21, 2019) Spiders are one of the most successful venomous animals, with N-terminal strand is sometimes present (12). The cystine knot more than 48,000 described species. Most spider venoms are comprises a “ring” formed by two disulfide bonds and the in- dominated by cysteine-rich peptides with a diverse range of phar- tervening sections of the peptide backbone, with a third disulfide macological activities. Some spider venoms contain thousands of piercing the ring to create a pseudoknot (11). This knot provides unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to Significance demonstrate that the lethal Australian funnel-web spider pro- duces 33 superfamilies of venom peptides and proteins. Twenty- The venom of the Australian funnel-web spider is one of the six of the 33 superfamilies are disulfide-rich peptides, and we show most complex chemical arsenals in the natural world, com- BIOCHEMISTRY that 15 of these are knottins that contribute >90% of the venom prising thousands of peptide toxins. These toxins have a di- proteome. NMR analyses revealed that most of these disulfide-rich verse range of pharmacological activities and vary in size from peptides are structurally related and range in complexity from sim- short (3 to 4 kDa) to long (8 to 9 kDa). It is unclear how spiders ple to highly elaborated knottin domains, as well as double-knot evolved such complex venoms and whether there is an evolu- toxins, that likely evolved from a single ancestral toxin gene. tionary relationship between short and long toxins. Here, we introduce a “structural venomics” approach to show that the spider venom | venom evolution | structural venomics | transcriptomics | venom of Australian funnel-web spiders evolved primarily by proteomics duplication and elaboration of a single ancestral knottin gene; short toxins are simple knottins whereas most long toxins are piders evolved from an arachnid ancestor in the Late Or- either highly elaborated single-domain knottins or double-knot Sdovician around 450 million years ago (1), and they have toxins created by intragene duplications. since become one of the most successful animal lineages on the planet, with >100,000 extant species (2). A key contributor to Author contributions: S.S.P., E.A.B.U., J.S.M., and G.F.K. designed research; S.S.P., Y.K.-Y.C., E.A.B.U., S.S., M.M., C.D., P.E., G.M.N., Q.K., S.G., and V.H. performed research; their evolutionary success is the use of venom to capture prey S.S.P., Y.K.-Y.C., E.A.B.U., S.S., M.M., C.D., P.E., G.M.N., Q.K., S.G., V.H., and G.F.K. analyzed and defend against predators. The constant selection pressure on data; and S.S.P., Y.K.-Y.C., E.A.B.U., and G.F.K. wrote the paper. venoms over hundreds of millions of years has enabled them to Competing interest statement: C.D. is affiliated with Thermo Fisher Scientific. evolve into complex mixtures of bioactive compounds with a This article is a PNAS Direct Submission. diverse range of pharmacological activities. Published under the PNAS license. Spider venoms are a heterogeneous mixture of salts, low Data deposition: Atomic coordinates for protein structures determined in this study were molecular weight organic compounds (<1 kDa), linear and deposited in the Protein Data Bank under accession codes 2N6N, 2N6R, 6BA3, and 2N8K disulfide-rich peptides (DRPs) (typically, 3 to 9 kDa with three while corresponding NMR chemical shifts were deposited in BioMagResBank under to six disulfide bonds), and proteins (10 to 120 kDa) (3–5). accessions BMRB25774, BMRB25778, BMRB25853,andBMRB30352. Metadata and annotated nucleotide sequences were deposited in the European Nucleotide Archive However, peptides are the major components of most spider under project accessions PRJEB6062 (ERA298588)andPRJEB35693. Mass spectrometry venoms, with some containing >1,000 peptides (6). The majority data has been deposited to ProteomeXchange Consortium via the PRIDE partner of these peptides are “short” DRPs (2.5 to 5 kDa), but there is repository with the dataset identifier PXD016886. also a significant proportion of “long” DRPs (6.5 to 8.5 kDa) (5). 1S.S.P. and Y.K.-Y.C. contributed equally to the work. As the primary function of spider venom is to rapidly immobilize 2To whom correspondence may be addressed. Email: [email protected] or glenn. prey, it is perhaps not surprising that most spider-venom DRPs [email protected]. that have been functionally characterized target neuronal ion 3Present address: Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, channels and receptors (5, 7). Australia. 4 ’ Although spider-venom DRPs have been shown to adopt a Present address: St Vincent s Clinical School, University of New South Wales, Sydney, NSW 2010, Australia. variety of three-dimensional (3D) structures, including the 5 β Present address: School of Science & Engineering, University of the Sunshine Coast, Sippy Kunitz (8), prokineticin/colipase (9), disulfide-directed -hairpin Downs, QLD 4556, Australia. (DDH) (10), and inhibitor cystine knot (ICK) fold (11), the 6Present address: School of Biotechnology & Biomolecular Sciences, University of New majority of spider-venom DRP structures solved to date conform South Wales, Sydney, NSW 2010, Australia. to the ICK motif. The ICK motif is defined as an antiparallel This article contains supporting information online at https://www.pnas.org/lookup/suppl/ β-sheet stabilized by a cystine knot (11). In spider toxins, the doi:10.1073/pnas.1914536117/-/DCSupplemental. β-sheet typically comprises only two β-strands although a third www.pnas.org/cgi/doi/10.1073/pnas.1914536117 PNAS Latest Articles | 1of10 Downloaded by guest on September 28, 2021 ICK peptides (also known as knottins) (13) with exceptional The distribution of peptide masses in H. infensa venom is bi- resistance to chemicals, heat, and proteases (14, 15), which has modal. Most peptides fall in the mass range 2.5 to 5.5 kDa, but made them of interest as drug and insecticide leads (5, 14, 16). there is a significant cohort of larger peptides with mass 6.5 to Some spider toxins show minor (17) or more significant (18) 8.5 kDa (Fig. 1 C and D). This bimodal distribution matches that elaborations of the basic ICK fold involving an additional sta- previously described for venom from related funnel-web spiders bilizing disulfide bond. More recently, “double-knot” spider (6, 25), various tarantulas (26), and the spitting spider Scytodes toxins have been reported in which two structurally independent thoracica (27), and it is also reflected in the mass profile generated ICK domains are joined by a short linker (19, 20). for all spider toxins reported to date (5). As reported previously Like other folds with stabilizing disulfide bridges, knottins for Australian funnel-web spiders (6, 25), the 3D venom landscape display a remarkable diversity of biological functions, including (Fig. 1F) revealed no correlation between peptide mass and modulation of many different types of ligand- and voltage-gated peptide hydrophobicity, as judged by reversed-phase (RP) high- ion channels (5). Despite strong conservation of the knottin pressure liquid chromatography (HPLC) retention time. scaffold across a taxonomically diverse range of spiders, several factors have hampered analysis of their evolutionary history (21). Transcriptomics Uncovers the Biochemical Diversity of H. infensa First, it is not until recently that a large number of knottin pre- Venom. Consistent with MS analysis of secreted venom, se- cursor sequences have become available from venom-gland quencing of a venom-gland transcriptome from H. infensa transcriptomes. Second, the disulfide framework in small DRPs revealed a biochemically diverse venom, with at least 33 toxin generally constrains the peptide fold to such an extent that most superfamilies (Fig. 2). In light of their likely toxic function, each noncysteine residues can be mutated without damaging the pep- superfamily of toxins was named, as suggested previously (28), tide’s structural integrity, a luxury not afforded to most globular after gods/deities of death, destruction, or the underworld. proteins (21). Thus, evolution of DRPs is typically characterized Expressed sequence tags were sequenced using the 454 platform by the accumulation of many mutations, leaving very few con- and assembled using MIRA v3.2 (29). This produced a total of served residues available for deep evolutionary analyses (21). 26,980 contigs and 7,194 singlets, with an average contig length Third, very few structures have been solved for DRPs larger than 5 of 496 base pairs (bp) (maximum length 3,159 bp, N50 674 bp).
Recommended publications
  • ANA CAROLINA MARTINS WILLE.Pdf
    UNIVERSIDADE FEDERAL DO PARANÁ ANA CAROLINA MARTINS WILLE AVALIAÇÃO DA ATIVIDADE DE FOSFOLIPASE-D RECOMBINANTE DO VENENO DA ARANHA MARROM (Loxosceles intermedia) SOBRE A PROLIFERAÇÃO, INFLUXO DE CÁLCIO E METABOLISMO DE FOSFOLIPÍDIOS EM CÉLULAS TUMORAIS. CURITIBA 2014 i Wille, Ana Carolina Martins Avaliação da atividade de fosfolipase-D recombinante do veneno da aranha marrom (Loxosceles intermedia) sobre a proliferação, influxo de cálcio e metabolismo de fosfolipídios em células tumorais Curitiba, 2014. 217p. Tese (Doutorado) – Universidade Federal do Paraná – UFPR 1.veneno de aranha marrom. 2. fosfolipase-D. 3.proliferação celular. 4.metabolismo de lipídios. 5.influxo de cálcio. ANA CAROLINA MARTINS WILLE AVALIAÇÃO DA ATIVIDADE DE FOSFOLIPASE-D RECOMBINANTE DO VENENO DA ARANHA MARROM (Loxosceles intermedia) SOBRE A PROLIFERAÇÃO, INFLUXO DE CÁLCIO E METABOLISMO DE FOSFOLIPÍDIOS EM CÉLULAS TUMORAIS. Tese apresentada como requisito à obtenção do grau de Doutor em Biologia Celular e Molecular, Curso de Pós- Graduação em Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná. Orientador(a): Dra. Andrea Senff Ribeiro Co-orientador: Dr. Silvio Sanches Veiga CURITIBA 2014 ii O desenvolvimento deste trabalho foi possível devido ao apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Araucária e SETI-PR. iii Dedico este trabalho àquela que antes da sua existência foi o grande sonho que motivou minha vida. Sonho que foi a base para que eu escolhesse uma profissão e um trabalho. À você, minha amada filha GIOVANNA, hoje minha realidade, dedico todo meu trabalho. iv Dedico também este trabalho ao meu amado marido, amigo, professor e co- orientador Dr.
    [Show full text]
  • Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris Iracundus
    biomedicines Article Hexapod Assassins’ Potion: Venom Composition and Bioactivity from the Eurasian Assassin Bug Rhynocoris iracundus Nicolai Rügen 1, Timothy P. Jenkins 2, Natalie Wielsch 3, Heiko Vogel 4 , Benjamin-Florian Hempel 5,6 , Roderich D. Süssmuth 5 , Stuart Ainsworth 7, Alejandro Cabezas-Cruz 8 , Andreas Vilcinskas 1,9,10 and Miray Tonk 9,10,* 1 Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany; [email protected] (N.R.); [email protected] (A.V.) 2 Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; [email protected] 3 Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745 Jena, Germany; [email protected] 4 Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany; [email protected] 5 Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany; [email protected] (B.-F.H.); [email protected] (R.D.S.) 6 BIH Center for Regenerative Therapies BCRT, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany 7 Centre for Snakebite Research and Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; [email protected] 8 Citation: Rügen, N.; Jenkins, T.P.; UMR BIPAR, Laboratoire de Santé Animale, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Wielsch, N.; Vogel, H.; Hempel, B.-F.; F-94700 Maisons-Alfort, France; [email protected] 9 Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, Süssmuth, R.D.; Ainsworth, S.; 35392 Giessen, Germany Cabezas-Cruz, A.; Vilcinskas, A.; 10 LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, Tonk, M.
    [Show full text]
  • Diversification of a Single Ancestral Gene Into a Successful Toxin Superfamily in Highly Venomous Australian Funnel-Web Spiders
    Pineda et al. BMC Genomics 2014, 15:177 http://www.biomedcentral.com/1471-2164/15/177 RESEARCH ARTICLE Open Access Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders Sandy S Pineda1†, Brianna L Sollod2,7†, David Wilson1,3,8†, Aaron Darling1,9, Kartik Sunagar4,5, Eivind A B Undheim1,6, Laurence Kely6, Agostinho Antunes4,5, Bryan G Fry1,6* and Glenn F King1* Abstract Background: Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. Results: Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. Conclusions: Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators.
    [Show full text]
  • Australian Funnel-Web Spiders Evolved Human-Lethal Δ-Hexatoxins for Defense Against Vertebrate Predators
    Australian funnel-web spiders evolved human-lethal δ-hexatoxins for defense against vertebrate predators Volker Herziga,b,1,2, Kartik Sunagarc,1, David T. R. Wilsond,1, Sandy S. Pinedaa,e,1, Mathilde R. Israela, Sebastien Dutertref, Brianna Sollod McFarlandg, Eivind A. B. Undheima,h,i, Wayne C. Hodgsonj, Paul F. Alewooda, Richard J. Lewisa, Frank Bosmansk, Irina Vettera,l, Glenn F. Kinga,2, and Bryan G. Frym,2 aInstitute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia; bGeneCology Research Centre, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia; cEvolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India; dCentre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; eBrain and Mind Centre, University of Sydney, Camperdown, NSW 2052, Australia; fInstitut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, 34095 Montpellier Cedex 5, France; gSollod Scientific Analysis, Timnath, CO 80547; hCentre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia; iCentre for Ecology and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0316 Oslo, Norway; jMonash Venom Group, Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia; kBasic and Applied Medical Sciences Department, Faculty of Medicine, Ghent University, 9000 Ghent, Belgium; lSchool
    [Show full text]
  • Antivenoms for the Treatment of Spider Envenomation
    † Antivenoms for the Treatment of Spider Envenomation Graham M. Nicholson1,* and Andis Graudins1,2 1Neurotoxin Research Group, Department of Heath Sciences, University of Technology, Sydney, New South Wales, Australia 2Departments of Emergency Medicine and Clinical Toxicology, Westmead Hospital, Westmead, New South Wales, Australia *Correspondence: Graham M. Nicholson, Ph.D., Director, Neurotoxin Research Group, Department of Heath Sciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW, 2007, Australia; Fax: 61-2-9514-2228; E-mail: Graham. [email protected]. † This review is dedicated to the memory of Dr. Struan Sutherland who’s pioneering work on the development of a funnel-web spider antivenom and pressure immobilisation first aid technique for the treatment of funnel-web spider and Australian snake bites will remain a long standing and life-saving legacy for the Australian community. ABSTRACT There are several groups of medically important araneomorph and mygalomorph spiders responsible for serious systemic envenomation. These include spiders from the genus Latrodectus (family Theridiidae), Phoneutria (family Ctenidae) and the subfamily Atracinae (genera Atrax and Hadronyche). The venom of these spiders contains potent neurotoxins that cause excessive neurotransmitter release via vesicle exocytosis or modulation of voltage-gated sodium channels. In addition, spiders of the genus Loxosceles (family Loxoscelidae) are responsible for significant local reactions resulting in necrotic cutaneous lesions. This results from sphingomyelinase D activity and possibly other compounds. A number of antivenoms are currently available to treat envenomation resulting from the bite of these spiders. Particularly efficacious antivenoms are available for Latrodectus and Atrax/Hadronyche species, with extensive cross-reactivity within each genera.
    [Show full text]
  • Phoneutria Nigriventer Spider Toxin Pntx2-1 (Δ-Ctenitoxin-Pn1a) Is a Modulator of Sodium Channel Gating
    toxins Article Phoneutria nigriventer Spider Toxin PnTx2-1 (δ-Ctenitoxin-Pn1a) Is a Modulator of Sodium Channel Gating Steve Peigneur 1,2,*,† ID , Ana Luiza B. Paiva 3,†, Marta N. Cordeiro 3,Márcia H. Borges 3, Marcelo R. V. Diniz 3, Maria Elena de Lima 2,4 and Jan Tytgat 1,* 1 Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, P.O. Box 922, Herestraat 49, 3000 Leuven, Belgium 2 Laboratório de Venenos e Toxinas Animais, Dept de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; [email protected] 3 Departamento de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Minas Gerais, Belo Horizonte 30510-010, Brazil; [email protected] (A.L.B.P.); [email protected] (M.N.C.); [email protected] (M.H.B.); [email protected] (M.R.V.D.) 4 Programa de Pós-graduação em Ciências da Saúde, Biomedicina e Medicina, Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, Grupo Santa Casa de Belo Horizonte, Minas Gerais, Belo Horizonte 31270-901, Brazil * Correspondence: [email protected] or [email protected] (S.P.); [email protected] (J.T.); Tel.: +321-632-3404 (J.T.) † These two authors contribute equally to this work. Received: 26 July 2018; Accepted: 16 August 2018; Published: 21 August 2018 Abstract: Spider venoms are complex mixtures of biologically active components with potentially interesting applications for drug discovery or for agricultural purposes. The spider Phoneutria nigriventer is responsible for a number of envenomations with sometimes severe clinical manifestations in humans.
    [Show full text]
  • Engineering Insect-Resistant Plants by Transgenic Expression of an Insecticidal Spider-Venom Peptide
    Engineering Insect-Resistant Plants by Transgenic Expression of an Insecticidal Spider-Venom Peptide Md. Shohidul Alam Master of Science in Agricultural Chemistry A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 Institute for Molecular Bioscience Abstract The insecticidal spider-venom peptide ω-hexatoxin-Hv1a (Hv1a) from the Australian Blue Mountains funnel-web spider Hadronyche versuta is one of the most potent insect-specific neurotoxins isolated to date. Hv1a blocks voltage-gated calcium channels in the insect central nervous system, a mechanism quite distinct from existing chemical insecticides. It induces a slow-onset paralysis that precedes death in a taxonomically wide range of insects. Hv1a's broad spectrum of target insects, novel mode of action, and absence of toxicity to vertebrates makes the Hv1a gene an attractive tool for generating insect- resistant transgenic crops. The oral activity of Hv1a can be enhanced by coupling it to the plant lectin Galanthus nivalis agglutinin (GNA) or with the minor capsid protein of pea enation mosaic virus (CP). Recombinant fusions of Hv1a with GNA were produced using the Pichia pastoris expression system to study the intrinsic insecticidal activity of Hv1a-GNA and GNA-Hv1a fusion proteins. By using injection bioassays with houseflies, we found that the intrinsic insecticidal activity of Hv1a was maintained when it was fused to GNA. Moreover, feeding bioassays with diamondback moth larvae revealed that fusion of Hv1a to GNA, in either orientation, enhances its oral insecticidal activity. In order to generate transgenic plants expressing Hv1a alone or fused to GNA or CP, transformation vectors were constructed by ligating synthesised genes in the pAOV binary vector with the constitutive Cauliflower Mosaic Virus 35S promoter (35S) or the phloem tissue-specific Arabidopsis thaliana SUCROSE TRANSPORTER 2 (SUC2) promoter.
    [Show full text]
  • 1 Collateral Death—Australian Funnel-Web Spiders Evolved Human
    1 Collateral death—Australian funnel-web spiders evolved human-lethal 2 δ-hexatoxins for defense against vertebrate predators 3 4 Volker Herzig1,2*@, Kartik Sunagar3*, David T.R. Wilson4*, Sandy S. Pineda1,5*, Mathilde R. 5 Israel1, Sebastien Dutertre6, Brianna Sollod McFarland7, Eivind A.B. Undheim1,8,9, Wayne C. 6 Hodgson10, Paul F. Alewood1, Richard J. Lewis1, Frank Bosmans11, Irina Vetter1,12, Glenn F. 7 King1@, Bryan G. Fry13@ 8 9 1. Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia 10 2. School of Science & Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia 11 3. Evolutionary VenoMics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 12 560012. India 13 4. Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, JaMes Cook 14 University, SMithfield, QLD 4878; Australia 15 5. Brain and Mind Centre, University of Sydney, CaMperdown, NSW 2052, Australia 16 6. Institut des BioMolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène 17 Bataillon, 34095 Montpellier Cedex 5, France 18 7. Sollod Scientific Analysis, Ft. Collins, CO, USA 19 8. Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD 4072, Australia 20 9. Centre for Ecology and Evolutionary Synthesis, DepartMent of Biosciences, University of Oslo, 0316 21 Oslo, Norway 22 10. Monash Venom Group, Department of Pharmacology, Monash University, Building 13E, Clayton 23 CaMpus, Clayton, VIC 3800, Australia 24 11. Basic and Applied Medical Sciences DepartMent, Faculty of Medicine, Ghent University, 9000 Ghent, 25 BelgiuM 26 12. School of PharMacy, The University of Queensland, Woolloongabba QLD 4102, Australia 27 13.
    [Show full text]
  • Gunning Et Al Febslett
    For submission to FEBS Letters Isolation of δ-missulenatoxin-Mb1a, the major vertebrate-active spider δ-toxin from the venom of Missulena bradleyi (Actinopodidae)1 Simon J. Gunninga, Youmie Chonga, Ali A. Khalifea, Peter G. Hainsb, Kevin W. Broadyc, Graham M. Nicholsona, * Departments of aHealth Sciences and cCell & Molecular Biology, University of Technology, Sydney, NSW 2007, Australia bDepartment of Chemistry, University of Wollongong, NSW 2522, Australia Key words: Spider; Peptide; δ-Missulenatoxin; Sodium channel; Scorpion toxin; δ-Atracotoxin 1 The protein sequence of δ-missulenatoxin-Mb1a reported in this paper has been submitted to the Swiss Protein database under the SwissProt accession code P83608. * Corresponding author. Associate Professor Graham M. Nicholson, PhD Leader, Neurotoxin Research Group Department of Health Sciences University of Technology, Sydney P.O. Box 123 Broadway NSW 2007 Australia Tel: (61) (2) 9514 2230, Fax: (61) (2) 9514 2228. E-mail: [email protected] S.J. Gunning et al./FEBS Letters 2 Abstract The present study describes the isolation and pharmacological characterisation of the neurotoxin δ-missulenatoxin-Mb1a (δ-MSTX-Mb1a) from the venom of the male Australian eastern mouse spider, Missulena bradleyi. This toxin was isolated using reverse-phase HPLC and was subsequently shown to cause an increase in resting tension, muscle fasciculation and a decrease in indirect twitch tension in a chick biventer cervicis nerve-muscle bioassay. Interestingly, these effects were neutralised by antivenom raised against the venom of the Sydney funnel-web spider Atrax robustus. Subsequent whole-cell patch-clamp electrophysiology on rat dorsal root ganglion neurons revealed that δ-MSTX-Mb1a caused a reduction in peak tetrodotoxin (TTX)-sensitive sodium current, a slowing of sodium current inactivation and a hyperpolarizing shift in the voltage at half-maximal activation.
    [Show full text]
  • Spider Neurotoxin (Delta)-ACTX-Hv1a Modulates Insect Na+ Channels
    The Journal of Experimental Biology 204, 711–721 (2001) 711 Printed in Great Britain © The Company of Biologists Limited 2001 JEB2944 ELECTROPHYSIOLOGICAL ANALYSIS OF THE NEUROTOXIC ACTION OF A FUNNEL-WEB SPIDER TOXIN, δ-ATRACOTOXIN-HV1a, ON INSECT VOLTAGE- GATED Na+ CHANNELS FRANÇOISE GROLLEAU1,*, MARIA STANKIEWICZ2, LIESL BIRINYI-STRACHAN3, XIU-HONG WANG4, GRAHAM M. NICHOLSON2, MARCEL PELHATE1 AND BRUNO LAPIED1 1Laboratoire de Neurophysiologie UPRES EA 2647 (RCIM), Université d’Angers, UFR Sciences, 2 Boulevard Lavoisier, F-49045 Angers Cedex, France, 2Institute of Biology, Laboratory of Biophysics, N. Copernicus University, ul. Gagarina 9, 87-100 Torun, Poland, 3Department of Health Sciences, University of Technology, Sydney, City Campus, Broadway, NSW 2007, Australia and 4Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA *e-mail: [email protected] Accepted 22 November 2000; published on WWW 1 February 2001 Summary The effects of δ-ACTX-Hv1a, purified from the venom affected voltage-gated Na+ channels in both axons and of the funnel-web spider Hadronyche versuta, were studied DUM neurones. Both the current/voltage and conductance/ on the isolated giant axon and dorsal unpaired median voltage curves of the δ-ACTX-Hv1a-modified inward (DUM) neurones of the cockroach Periplaneta americana current were shifted 10 mV to the left of control curves. In under current- and voltage-clamp conditions using the the presence of δ-ACTX-Hv1a, steady-state Na+ channel double oil-gap technique for single axons and the patch- inactivation became incomplete, causing the appearance of clamp technique for neurones. In parallel, the effects of the a non-inactivating component at potentials more positive toxin were investigated on the excitability of rat dorsal root than −40 mV.
    [Show full text]
  • A Check-List and Zoogeographic Analysis of the Spider Fauna (Arachnida: Aranei) of Novosibirsk Area (West Siberia, Russia)
    Arthropoda Selecta 27(1): 73–93 © ARTHROPODA SELECTA, 2018 A check-list and zoogeographic analysis of the spider fauna (Arachnida: Aranei) of Novosibirsk Area (West Siberia, Russia) Ñïèñîê è çîîãåîãðàôè÷åñêèé àíàëèç ôàóíû ïàóêîâ (Arachnida: Aranei) Íîâîñèáèðñêîé îáëàñòè (Çàïàäíàÿ Ñèáèðü, Ðîññèÿ) G.N. Azarkina1, I.I. Lyubechanskii1, L.A. Trilikauskas1, R.Yu. Dudko1, A.N. Bespalov2, V.G. Mordkovich1 Ã.Í. Àçàðêèíà1, È.È. Ëþáå÷àíñêèé1, Ë.À. Òðèëèêàóñêàñ1, Ð.Þ. Äóäêî1, À.Í. Áåñïàëîâ2, Â.Ã. Ìîðäêîâè÷1 1 Institute of Systematics and Ecology of Animals SB RAS (ISEA), Frunze str. 11, Novosibirsk 630091, Russia. E-mail: [email protected] Институт систематики и экологии животных СО РАН, ул. Фрунзе, 11, Новосибирск 630091, Россия. 2 Institute of Soil Science and Agrochemistry SB RAS, Lavrentiev Avenue 8/2, Novosibirsk 630090, Russia. Институт почвоведения и агрохимии СО РАН, проспект Лаврентьева 8/2, Новосибирск, 630090, Россия. KEY WORDS: Araneae, diversity, natural complexes, ranges, spiders, Carabidae. КЛЮЧЕВЫЕ СЛОВА: Araneae, ареалы, пауки, природные комплексы, разнообразие, жужелицы. ABSTRACT. A check-list of the spiders (Arachni- geographic analysis of the spider fauna (Arachnida: da, Aranei) recorded from Novosibirsk Area (364 spe- Aranei) of Novosibirsk Area (West Siberia, Russia) // cies in 157 genera and 26 families) is provided, with Arthropoda Selecta. Vol.27. No.1. P.73–93. doi: the references to exact collection localities, administra- 10.15298/arthsel. 27.1.11 tive units, natual complexes, and latitudinal & longitu- dinal components of their ranges. Of the reported spi- РЕЗЮМЕ. Дан список пауков, зарегистрирован- ders, 164 species, 53 genera and three families, includ- ных в Новосибирской области (364 вида из 157 ing two new species that are being currently described, родов и 26 семейств), с указанием локалитетов, have been recorded from the Area for the first time.
    [Show full text]
  • Araneae.It: the Online Catalog of Italian Spiders, with Addenda on Other Arachnid Orders Occurring in Italy
    Fragmenta entomologica, 51 (2): 127–152 (2019) eISSN: 2284-4880 (online version) pISSN: 0429-288X (print version) Research article Submitted: May 20th, 2019 - Accepted: September 8th, 2019 - Published: November 15th, 2019 Araneae.it: the online Catalog of Italian spiders, with addenda on other Arachnid Orders occurring in Italy (Arachnida: Araneae, Opiliones, Palpigradi, Pseudoscorpionida, Scorpiones, Solifugae) Paolo PANTINI 1, Marco ISAIA 2,* 1 Museo Civico di Scienze Naturali “E. Caffi” - Piazza Cittadella 10, I-24129 Bergamo, Italy - [email protected] 2 Laboratorio di Ecologia, Ecosistemi terrestri, Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino Via Accademia Albertina 13, I-10123 Torino, Italy - [email protected] * Corresponding author Abstract In this contribution we present the Catalog of Italian spiders, produced on the base of the available scientific information regarding spi- der species distribution in Italy. We analysed an amount of 1124 references, resulting in a list of 1670 species and subspecies, grouped in 434 genera and 53 families. Information on spider biodiversity in Italy has increased rapidly in the last years, going from 404 species at the end of XIX century, to 1400 in the 1990s, to the current 1670. However, the knowledge on the distribution of the Italian species is far from being complete and it seems likely that there are still new species to be found or described. The Italian spider fauna is character- ized by the presence of a relevant number of endemic species (342). Concerning families, Linyphiidae show the highest number of spe- cies (477) and the highest number of endemics (114).
    [Show full text]