Are Millipedes a Pest in Low-Input Crop Production in North-Eastern Uganda? Farmers’ Perception and Experimentation

Total Page:16

File Type:pdf, Size:1020Kb

Are Millipedes a Pest in Low-Input Crop Production in North-Eastern Uganda? Farmers’ Perception and Experimentation Are millipedes a pest in low-input crop production in north-eastern Uganda? Farmers’ perception and experimentation Promotor: Prof. dr. ir. P.C. Struik Hoogleraar in de Gewasfysiologie Promotiecommissie: Prof. dr. K.E. Giller (Wageningen Universiteit) Prof. dr. P. Richards (Wageningen Universiteit) Prof. dr. ir. A. van Huis (Wageningen Universiteit) Prof. dr. ir. O. van Kooten (Wageningen Universiteit) Dit onderzoek is uitgevoerd binnen de C.T. de Wit onderzoekschool: Production Ecology and Resource Conservation. Are millipedes a pest in low-input crop production in north-eastern Uganda? Farmers’ perception and experimentation Ernst Ebregt Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. M.J. Kropff, in het openbaar te verdedigen op dinsdag 16 oktober 2007 des morgens te 11 uur in de Aula Ernst Ebregt (2007) Are millipedes a pest in low-input crop production in north-eastern Uganda? Farmers’ perception and experimentation. Ebregt, E. –[S.l.:s.n.]. Ill. PhD thesis Wageningen University. – With ref. – With summaries in English and Dutch. ISBN: 978-90-8504-733-9 Aan mijn vader Abstract Ebregt, E., 2007. Are millipedes a pest in low-input crop production in north-eastern Uganda? Farmers’ perception and experimentation. PhD thesis, Wageningen University, The Netherlands. With summaries in English and Dutch, 168 pp. Between 2000 and 2003, various studies were conducted to assess the impact of millipedes as pests in the production of sweet potato and other major crops in north-eastern Uganda. The overall objective of the research was to generate basic knowledge about pest status, biology, ecology, and behaviour of millipedes. A strategy was recommended for integrated production and pest management in sweet potato and other major crops, serving the needs of resource- poor farmers in low-input agricultural systems in north-eastern Uganda and eastern Africa. These studies included: (i) Field survey on farmers’ knowledge on sweet potato production and perception of millipede infestation; (ii) Field assessment of pests in sweet potato and other major crops conducted in the planting seasons of 2000 – 2002; (iii) Feeding activity of the East African millipede Omopyge sudanica Kraus, based on no-choice laboratory experiments, and (iv) Comparison of the indigenous cultural practices of piecemeal harvesting and storage roots ‘in-ground on plants’ with one-time harvesting after crop senescence in trials conducted in the planting seasons of 2002 – 2003. There was inadequate information about millipedes in general and possible control strategies in East Africa. Therefore a literature study was also done to gain more knowledge about this animal. From the 148 sweet potato (Ipomoea batatas (L.) Lam.) growers interviewed information was generated on sweet potato production and its constraints. Farmers considered sweet potato weevils (Cylas spp.) the most important pests, followed by rats (Spalax spp.) and millipedes. The impact of millipedes was also serious in other major food and cash crops, such as cassava (Manihot esculenta Crantz), groundnut (Arachis hypogaea L.) and maize (Zea mays L.). Separation of plots over time and space is often not practised. Millipede incidences depended on the frequency of millipede hosts in the crop rotation. Groundnut planted after sweet potato showed high levels of millipede attack. Millipede incidence was often associated with the incidence of sweet potato weevils. Measures to control sweet potato pests, like sanitation, were hardly implemented. Chemical insecticides were not used at all. Field experiments showed that millipedes of the species O. sudanica caused damage on planting material of sweet potato and on germinating and podding groundnut early in the first rainy season (March/April). Damage in maize occurred in both rainy seasons. Storage roots of sweet potato were hardly affected by millipedes when harvested 5 months after planting. However, when storage roots were stored ‘in-ground on plants’ during the prolonged dry season sweet potato weevils facilitated millipede damage. No-choice feeding activity laboratory experiments showed that O. sudanica efficiently utilized the grain crop diets groundnut and maize for its growth. The species also consumed storage roots of sweet potato. The research revealed how difficult it is to obtain reliable, quantitative data on the feeding habits of millipedes. Piecemeal harvesting used to be done up to final harvest. It is revealed that this practice was only useful during a limited period of time. When piecemeal harvesting continued up to 5 months or more, it could coincide with the onset of the dry season, i.e. when sweet potato weevils invade the above-ground sweet potato plant parts. When the population of weevils is too high piecemeal harvesting can no longer be used as a control measure. From the results in this thesis some important issues have arisen which can be implemented in a pest control programme of the sweet potato crop. The research activities presented in this thesis have led to recommendations for improving integrated sweet potato production and pest management aimed at the needs of the resource-poor farmers in low-input agricultural systems of East Africa. Keywords: Crop rotation, farmers’ knowledge of millipedes, host crops, integrated crop production and pest management, Ipomoea batatas, millipedes, no-choice feeding activity of millipedes, Omopyge sudanica, piecemeal harvesting, sweet potato, sweet potato weevils. Preface The research described in this thesis was carried out in north-eastern Uganda between 2000 and 2003. Without the support of the farmers, the research assistants in the field, and staff of the Arapai Agricultural College, it would not have been possible having conducted this work. A great many people, in Uganda and elsewhere, encouraged me to fulfil my endeavours. It is impossible to thank them all, but I would like to thank those who played a key role. Without Dr. Benson Odongo from the Namulonge Agricultural and Animal Research Institute (NAARI) I would probably never had the chance to begin this undertaking. He guided me in setting up the research proposal and he was the person who discussed with me the experiments to be conducted and their loopholes. Thanks for all the hospitality I received from you and your wife during my stays at your residence. Above all, I am deeply in debt with Prof. Paul C. Struik of the Crop and Weed Ecology Group, who supported, encouraged and supervised me from the very beginning. The door of your office was always open, encouraging me to enter without anxiety. You always took your time. After leaving your office I always had the exited feeling to be able to continue in my efforts to get the articles ready to be published. Your swiftness in going through drafts, even during your journeys to a far away destination, often surprised me, but is so much appreciated. I was very lucky having you as my supervisor. Dr. David Rees, the project coordinator of the Department of International Development (DFID), is thanked for financing a part of the interviews and for supporting and guiding part of the work. The support and help of Dr. C.A.W. Jeekel are never forgotten. He identified some millipede species, which affected the sweet potato, groundnut and maize. I enjoyed the ‘lectures’ and he triggered my interest to have a closer look at the anatomy of the millipede. He explained the complexity of distinguishing female from male millipedes, the tiny differences between species and the difficulty of identifying the larvae. The gained knowledge was very useful to give body to my articles and made it possible to pass it on to some of my research assistants, who never attended school. Dr. Jeekel also taught me a few important home truths. I got the message. I am grateful for that. I would like to thank Ms Gon van Laar for editing the thesis, the layout and putting the chapters in the same format. I realize you were very busy with your own work, but still you were prepared to help me, as desperate I was in the final stadium of this thesis. Your work is highly appreciated. Please, continue to assist other students, as you play a crucial, and above all, an emotional role in the final steps of many years plodding and ‘sweet and tears’. Personally, I felt an enormous release when you said: “That ‘s it. Ready”. I am so grateful to you! I would also like to thank my colleagues at Arapai Agricultural College. In the first place all my gratefulness goes to Aisu Jonathan Oumo. He was my main assistant and friend during the work. Especially for being my guide during the so many trips to the farmers and the translation work in the field. I also like to thank Francis Onyilo for assisting me during the interviews with farmers in Lira District. Despite the hardships, we had a wonderful time out there and I learned a lot about the Teso and the Lango. Dr. Morris Oĉweda is acknowledged for reviewing earlier versions of a number of scripts and being the ‘logistic officer’ for organizing the college truck. I also like to thank Morris for the friendship, which even continues to last, in spite of the great distance between us. And from here, I like to tell you, that this friendship is very special for my family. One day we will meet again. I also like to thank Mr. M.M. Okiror, Mrs. Christine Okello, Mr. John Ochana, Mr. Aedeke and Mr. Odiman. Special thanks go to Mr. Ocam Sylvester, who managed the weather station at Arapai and in collecting rainfall data. I cannot forget our old friend David Okulimo. Early in the morning you were already in the field and you were the first who made note of some funny ‘worms’ eating your sweet potato vines in the vine nursery.
Recommended publications
  • 1 It's All Geek to Me: Translating Names Of
    IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning.
    [Show full text]
  • Supra-Familial Taxon Names of the Diplopoda Table 4A
    Milli-PEET, Taxonomy Table 4 Page - 1 - Table 4: Supra-familial taxon names of the Diplopoda Table 4a: List of current supra-familial taxon names in alphabetical order, with their old invalid counterpart and included orders. [Brackets] indicate that the taxon group circumscribed by the old taxon group name is not recognized in Shelley's 2003 classification. Current Name Old Taxon Name Order Brannerioidea in part Trachyzona Verhoeff, 1913 Chordeumatida Callipodida Lysiopetalida Chamberlin, 1943 Callipodida [Cambaloidea+Spirobolida+ Chorizognatha Verhoeff, 1910 Cambaloidea+Spirobolida+ Spirostreptida] Spirostreptida Chelodesmidea Leptodesmidi Brölemann, 1916 Polydesmida Chelodesmidea Sphaeriodesmidea Jeekel, 1971 Polydesmida Chordeumatida Ascospermophora Verhoeff, 1900 Chordeumatida Chordeumatida Craspedosomatida Jeekel, 1971 Chordeumatida Chordeumatidea Craspedsomatoidea Cook, 1895 Chordeumatida Chordeumatoidea Megasacophora Verhoeff, 1929 Chordeumatida Craspedosomatoidea Cheiritophora Verhoeff, 1929 Chordeumatida Diplomaragnoidea Ancestreumatoidea Golovatch, 1977 Chordeumatida Glomerida Plesiocerata Verhoeff, 1910 Glomerida Hasseoidea Orobainosomidi Brolemann, 1935 Chordeumatida Hasseoidea Protopoda Verhoeff, 1929 Chordeumatida Helminthomorpha Proterandria Verhoeff, 1894 all helminthomorph orders Heterochordeumatoidea Oedomopoda Verhoeff, 1929 Chordeumatida Julida Symphyognatha Verhoeff, 1910 Julida Julida Zygocheta Cook, 1895 Julida [Julida+Spirostreptida] Diplocheta Cook, 1895 Julida+Spirostreptida [Julida in part[ Arthrophora Verhoeff,
    [Show full text]
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Diversity of Millipedes Along the Northern Western Ghats
    Journal of Entomology and Zoology Studies 2014; 2 (4): 254-257 ISSN 2320-7078 Diversity of millipedes along the Northern JEZS 2014; 2 (4): 254-257 © 2014 JEZS Western Ghats, Rajgurunagar (MS), India Received: 14-07-2014 Accepted: 28-07-2014 (Arthropod: Diplopod) C. R. Choudhari C. R. Choudhari, Y.K. Dumbare and S.V. Theurkar Department of Zoology, Hutatma Rajguru Mahavidyalaya, ABSTRACT Rajgurunagar, University of Pune, The different vegetation type was used to identify the oligarchy among millipede species and establish India P.O. Box 410505 that millipedes in different vegetation types are dominated by limited set of species. In the present Y.K. Dumbare research elucidates the diversity of millipede rich in part of Northern Western Ghats of Rajgurunagar Department of Zoology, Hutatma (MS), India. A total four millipedes, Harpaphe haydeniana, Narceus americanus, Oxidus gracilis, Rajguru Mahavidyalaya, Trigoniulus corallines taxa belonging to order Polydesmida and Spirobolida; 4 families belongs to Rajgurunagar, University of Pune, Xystodesmidae, Spirobolidae, Paradoxosomatidae and Trigoniulidae and also of 4 genera were India P.O. Box 410505 recorded from the tropical or agricultural landscape of Northern Western Ghats. There was Harpaphe haydeniana correlated to the each species of millipede which were found in Northern Western Ghats S.V. Theurkar region of Rajgurunagar. At the time of diversity study, Trigoniulus corallines were observed more than Senior Research Fellowship, other millipede species, which supports the environmental determinism condition. Narceus americanus Department of Zoology, Hutatma was single time occurred in the agricultural vegetation landscape due to the geographical location and Rajguru Mahavidyalaya, habitat differences. Rajgurunagar, University of Pune, India Keywords: Diplopod, Northern Western Ghats, millipede diversity, Narceus americanus, Trigoniulus corallines 1.
    [Show full text]
  • Wild About Learning
    WILD ABOUT LEARNING An Interdisciplinary Unit Fostering Discovery Learning Written on a 4th grade reading level, Wild Discoveries: Wacky New Animals, is perfect for every kid who loves wacky animals! With engaging full-color photos throughout, the book draws readers right into the animal action! Wild Discoveries features newly discovered species from around the world--such as the Shocking Pink Dragon and the Green Bomber. These wacky species are organized by region with fun facts about each one's amazing abilities and traits. The book concludes with a special section featuring new species discovered by kids! Heather L. Montgomery writes about science and nature for kids. Her subject matter ranges from snake tongues to snail poop. Heather is an award-winning teacher who uses yuck appeal to engage young minds. During a typical school visit, petrified parts and tree guts inspire reluctant writers and encourage scientific thinking. Heather has a B.S. in Biology and a M.S. in Environmental Education. When she is not writing, you can find her painting her face with mud at the McDowell Environmental Center where she is the Education Coordinator. Heather resides on the Tennessee/Alabama border. Learn more about her ten books at www.HeatherLMontgomery.com. Dear Teachers, Photo by Sonya Sones As I wrote Wild Discoveries: Wacky New Animals, I was astounded by how much I learned. As expected, I learned amazing facts about animals and the process of scientifically describing new species, but my knowledge also grew in subjects such as geography, math and language arts. I have developed this unit to share that learning growth with children.
    [Show full text]
  • Biochemical Divergence Between Cavernicolous and Marine
    The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology GONZALO GIRIBET', STEFAN RICHTER2, GREGORY D. EDGECOMBE3 & WARD C. WHEELER4 Department of Organismic and Evolutionary- Biology, Museum of Comparative Zoology; Harvard University, Cambridge, Massachusetts, U.S.A. ' Friedrich-Schiller-UniversitdtJena, Instituifiir Spezielte Zoologie und Evolutionsbiologie, Jena, Germany 3Australian Museum, Sydney, NSW, Australia Division of Invertebrate Zoology, American Museum of Natural History, New York, U.S.A. ABSTRACT The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence frame­ work. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphol­ ogy, internal anatomy, development, and mitochondrial gene order. Subjecting the com­ bined data set to 20 different parameter sets for variable gap and transversion costs, crusta­ ceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crusta­ cean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata).
    [Show full text]
  • Mating Behaviour and Mate Choice Experiments in Some Tropical Millipedes (Diplopoda: Spirostreptidae)
    S. AIi!'.P. 'Z001. '1993, 28(3) 155 .Mating behaviour and mate choice experiments in some tropical millipedes (Diplopoda: Spirostreptidae) S.R. Telford * Zoology Department, University of Pretoria, Pretoria, 0002 Republic of South Africa J.M. Dangerfield Department of Biology, University of Botswana, Private Bag 0022, Gaborone, Botswana Received 12 October 1992; accepted 25 March 1993 Single and multiple choice mating experiments were conducted using individuals of six species of spirostreptid millipede collected from five separate localities in Zimbabwe. Mating behaviour and copulation duration were recorded. In three of the species between-population comparisons were made. The most common copulatory behaviour was highly physical with the male coiled tightly around the female. In one species (Ca/ostreptus sp.) the sexes copulated in parallel with no overt physical manoeuvring by the male. This species also had the shortest copulation duration. In single choice experiments random mating was assumed when mating frequency was independent of male body mass. This occurred in both populations of Calostreptus sp., Spinotarsus sp. 1 and one of the populations of A/Ioporus uncinatus. In four cases there was a significant positive relationship between mating frequency and body mass. Only three populations mated randomly in the multiple choice experiments. In two populations mating was random in single choice and non-random in multiple choice experiments and the reverse occurred in one population of OdontopYfJ8 sp. 3. The implications of these results are discussed in relation to processes of male-male competition and female choice. Enkelvoudige en meervoudige voorkeurparing-eksperimente is uitgevoer deur die gebruik van individue van ses spesies van spirostreptide millipede wat uit vyf verskillende streke in Zimbabwe versamel is.
    [Show full text]
  • Draft Craigie Bushland Management Plan
    APPENDIX 5 ATTACHMENT 1 City of Joondalup Draft Craigie Bushland Management Plan 1 Contents Acknowledgements ........................................................................................................... 3 Acronyms .......................................................................................................................... 4 Executive Summary ........................................................................................................... 6 1.0 Introduction .................................................................................................................. 8 1.1 Background .............................................................................................................. 8 1.2 Natural Area Management Plans ............................................................................. 8 1.3 Study Area ............................................................................................................... 8 1.4 Aim and Objectives ................................................................................................ 13 1.5 Purpose ................................................................................................................. 13 1.6 Strategic Context ................................................................................................... 13 1.7 Stakeholder Consultation ....................................................................................... 14 2.0 Description of the Physical Environment ...................................................................
    [Show full text]
  • A New Species of the Genus Carlogonus (Spirostreptida: Harpagophoridae) from West Bengal, India
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.25.441382; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A new species of the genus Carlogonus (Spirostreptida: Harpagophoridae) from West Bengal, India. Somnath Bhakat Department of Zoology, Rampurhat College, Rampurhat-731224, Dist. Birbhum, W. B., India Email: [email protected] ORCID: 0000-0002-4926-2496 Abstract A new species of Carlogonus, Carlogonus bengalensis is described from West Bengal, India. The adult is blackish brown in colour with a yellowish curved tail, round body with 60 segments, 55 mm in length, 5th segment of male bears a hump, telopodite of the gonopod long, flat and band like with a single curved antetorsal process, mesal process with a red spine, proplical lobe with a curved orange spine, inner surface of metaplical fold with sigilla, palette spatula like and a few blepharochatae at the apical margin. Male bears white pad on femur and tibia. Comparison was made with the “exaratus group” of the genus Carlogonus. Keywords: Hump, red spine, sigilla, Suri, whitish pad, yellow tail Introduction A few reports mostly on different aspects of millipedes (except taxonomy) especially on Polydesmid millipedes are available from West Bengal (India). Except the study of Bhakat (2014), there is no report on any aspect of Spirostreptid millipede from this region. Of the Spirostreptid millipede, genus Carlogonus Demange, 1961 includes three Harpagophorid millipede species described in the Southeast Asian genus Thyropygus Pocock, 1894 and the South Asian genus Harpurostreptus Attems, 1936.
    [Show full text]
  • Mandrillus Leucophaeus Poensis)
    Ecology and Behavior of the Bioko Island Drill (Mandrillus leucophaeus poensis) A Thesis Submitted to the Faculty of Drexel University by Jacob Robert Owens in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2013 i © Copyright 2013 Jacob Robert Owens. All Rights Reserved ii Dedications To my wife, Jen. iii Acknowledgments The research presented herein was made possible by the financial support provided by Primate Conservation Inc., ExxonMobil Foundation, Mobil Equatorial Guinea, Inc., Margo Marsh Biodiversity Fund, and the Los Angeles Zoo. I would also like to express my gratitude to Dr. Teck-Kah Lim and the Drexel University Office of Graduate Studies for the Dissertation Fellowship and the invaluable time it provided me during the writing process. I thank the Government of Equatorial Guinea, the Ministry of Fisheries and the Environment, Ministry of Information, Press, and Radio, and the Ministry of Culture and Tourism for the opportunity to work and live in one of the most beautiful and unique places in the world. I am grateful to the faculty and staff of the National University of Equatorial Guinea who helped me navigate the geographic and bureaucratic landscape of Bioko Island. I would especially like to thank Jose Manuel Esara Echube, Claudio Posa Bohome, Maximilliano Fero Meñe, Eusebio Ondo Nguema, and Mariano Obama Bibang. The journey to my Ph.D. has been considerably more taxing than I expected, and I would not have been able to complete it without the assistance of an expansive list of people. I would like to thank all of you who have helped me through this process, many of whom I lack the space to do so specifically here.
    [Show full text]
  • Annexure I Fauna & Flora Assessment.Pdf
    Fauna and Flora Baseline Study for the De Wittekrans Project Mpumalanga, South Africa Prepared for GCS (Pty) Ltd. By Resource Management Services (REMS) P.O. Box 2228, Highlands North, 2037, South Africa [email protected] www.remans.co.za December 2008 I REMS December 2008 Fauna and Flora Assessment De Wittekrans Executive Summary Mashala Resources (Pty) Ltd is planning to develop a coal mine south of the town of Hendrina in the Mpumalanga province on a series of farms collectively known as the De Wittekrans project. In compliance with current legislation, they have embarked on the process to acquire environmental authorisation from the relevant authorities for their proposed mining activities. GCS (Pty) Ltd. commissioned Resource Management Services (REMS) to conduct a Faunal and Floral Assessment of the area to identify the potential direct and indirect impacts of future mining, to recommend management measures to minimise or prevent these impacts on these ecosystems and to highlight potential areas of conservation importance. This is the wet season survey which was done in the November 2008. The study area is located within the highveld grasslands of the Msukaligwa Local Municipality in the Gert Sibande District Municipality in Mpumalanga Province on the farms Tweefontein 203 IS (RE of Portion 1); De Wittekrans 218 IS (RE of Portion 1 and Portion 2, Portions 7, 11, 10 and 5); Groblershoek 191 IS; Groblershoop 192 IS; and Israel 207 IS. Within this region, precipitation occurs mainly in the summer months of October to March with the peak of the rainy season occurring from November to January.
    [Show full text]
  • Millipedes and Centipedes? Millipedes and Centipedes Are Both Arthropods in the Subphylum Myriapoda Meaning Many Legs
    A Teacher’s Resource Guide to Millipedes & Centipedes Compiled by Eric Gordon What are millipedes and centipedes? Millipedes and centipedes are both arthropods in the subphylum Myriapoda meaning many legs. Although related to insects or “bugs”, they are not actually insects, which generally have six legs. How can you tell the difference between millipedes and centipedes? Millipedes have two legs per body segment and are typically have a body shaped like a cylinder or rod. Centipedes have one leg per body segment and their bodies are often flat. Do millipedes really have a thousand legs? No. Millipedes do not have a thousand legs nor do all centipedes have a hundred legs despite their names. Most millipedes have from 40-400 legs with the maximum number of legs reaching 750. No centipede has exactly 100 legs (50 pairs) since centipedes always have an odd number of pairs of legs. Most centipedes have from 30- 50 legs with one order of centipedes (Geophilomorpha) always having much more legs reaching up to 350 legs. Why do millipedes and centipedes have so many legs? Millipedes and centipedes are metameric animals, meaning that their body is divided into segments most of which are completely identical. Metamerization is an important phenomenon in evolution and even humans have a remnant of former metamerization in the repeating spinal discs of our backbone. Insects are thought to have evolved from metameric animals after specializing body segments for specific functions such as the head for sensation and the thorax for locomotion. Millipedes and centipedes may be evolutionary relatives to the ancestor of insects and crustaceans.
    [Show full text]