Correlates of Active Body Temperatures and Microhabitat Occupation in Nine Species of Central Australian Agamid Lizards

Total Page:16

File Type:pdf, Size:1020Kb

Correlates of Active Body Temperatures and Microhabitat Occupation in Nine Species of Central Australian Agamid Lizards Austral Ecology (2001) 26, 660–669 Correlates of active body temperatures and microhabitat occupation in nine species of central Australian agamid lizards JANE MELVILLE* AND JAMES A. SCHULTE II Department of Biology, Washington University, Campus Box 1137, St Louis, Missouri 63130, USA (Email: [email protected]) Abstract Body temperatures of active lizards and their correspondence with microhabitat occupation were studied for nine species of agamid lizards in the central Australian arid zone. Thermoregulatory behaviour was also documented using several measures, such as the use of shade and perch height. The effects of thermal environ- ment on lizard habitat occupation were hypothesized to be significant, because desert regions experience daily and seasonal extremes of temperature that are well in excess of a lizard’s preferred temperature range. All species, except Ctenophorus isolepis and Diporiphora winneckei, were found to have body temperatures that corresponded closely to ground and surface temperatures. Thermoregulatory behaviour was also found to be important through- out a lizard’s daily activity; all study species, other than Ctenophorus isolepis, were found to increase their perch height in the middle of the day. Ctenophorus isolepis was shown to be a strictly terrestrial species that uses the shade of spinifex in its thermoregulatory behaviour. Species exhibited a non-random selection of microhabitats and a preference for a particular set of thermal and structural factors. In this study, it was shown that structural factors were particularly important in microhabitat occupation. Thermal factors accounted for a smaller proportion of variance in microhabitat occupation, but still played a considerable role in the microhabitat use in central Australian agamids. Key words: activity patterns, Agamidae, arid-zone lizards, ecology, microhabitat occupation, thermoregulatory behaviour. INTRODUCTION lizards are constrained to occupy specific thermal microclimates when they are active: to feed, defend Lizard ecologists have placed much importance on the territories, acquire mates and avoid predators. These study of microhabitat occupation, usually by investi- constraints are especially important for desert lizards gating resource partitioning and interspecific compe- that occupy an environment of extreme temperatures, tition (Toft 1985). Despite the importance of so that failure to select an appropriate thermal micro- temperature in lizard ecology, comparatively few climate for even a few minutes can result in danger- studies have considered the influence of thermoregu- ously high body temperatures or even death. lation on habitat use in desert regions (Huey & Pianka Consequently, the availability of thermally appropri- 1977; Avery 1978; Adolph 1990). Physiological and ate microhabitats is potentially a major limiting factor biochemical processes are strongly influenced by body affecting lizards in desert regions. Thermal constraints temperature (Huey et al. 1991). Reproduction, rates of vary in time and space because the physical environ- growth, feeding and mobility are whole-body functions ment is temporally and spatially variable with respect dramatically affected by temperature (Huey 1982). to a variety of factors, such as the thermal inertia of Consequently, temperature is the most important substrates, air temperature and vegetation structure physical factor in the ecology of lizards (Heatwole (Hertz et al. 1993). These climatic factors interact with 1976) and a large proportion of a lizard’s day is spent the surface heat transfer properties of a lizard to pro- responding to the thermal environment. duce a distribution of available temperatures in time In desert regions, with daily and seasonal extremes and space within which a lizard can survive (Stevenson of weather, thermal biology may restrict the use of 1985). Thus, a lizard will occupy a restricted range of microhabitats by lizards. Thermal microhabitat con- microhabitats within its overall habitat. straints arise because the body temperature of an There have been very few detailed studies examin- ectotherm is a complex function of its biophysical ing the habitat occupation of agamid lizards, especially environment (Gates 1980). Thus, thermoregulating those in desert regions and our study provides a quantification of structural and thermal microhabitat *Corresponding author. occupation in a number of these species. Agamids Accepted for publication May 2001. occupy a wide variety of habitats in Australia, such as BODY TEMPERATURE AND ECOLOGY OF DESERT LIZARDS 661 tropical rainforests (Hypsilurus boydii), cool temperate Field work woodlands (Tympanocryptis diemensis), stony deserts (Tympanocryptis lineata), desert dunes (Ctenophorus Structural and thermal microhabitat characteristics isolepis) and dry salt lakes (Ctenophorus maculosus). were recorded at four field sites (Fig. 1). Field sites were However, they reach their highest diversity in the semi- chosen to provide a wide range of habitat types, includ- arid and arid regions of Australia. The alpha diversity ing flat spinifex desert (sites 2, 3 and 4), sand ridges of lizards in arid Australia is high relative to deserts on (sites 3 and 4), rocky spinifex desert (site 1), desert other continents (Pianka 1986). This has been ranges (sites 1 and 3), gibber plains (site 4), acacia attributed to the diversity of microhabitats and the woodlands (sites 1, 2, 3 and 4) and riverine eucalypts diversity of food resources (Pianka 1986), which (sites 1, 2 and 3). The data were recorded by driving vary dramatically with habitat type (Morton & James or walking throughout each field site from approxi- 1988). For this reason, and the fact that temperature mately 07.00 until 19.00 hours. This method ensured plays an important role in desert environments, we coverage of the entire range of structural and thermal tested the hypothesis that active body temperature is microhabitats available. This was done over a 6-week correlated with microhabitat occupation in nine species period from October to December 1999, with approxi- of desert agamids. We examined this by recording mately 10 days spent at each location. Data were only active field body temperatures and quantifying the collected on sunny, warm days when lizards could be thermal and structural microhabitat occupation of fully active. the study species. Active lizards were caught with the use of a noose or by hand. Body temperature was recorded by using a METHODS Study species Agamids are diurnal heliotherms that are primarily sit-and-wait predators (Huey & Pianka 1981). They comprise approximately 20% of the lizard fauna in desert regions of Australia (Pianka 1986). We studied nine agamid species at four sites in central Australia (Fig. 1). Eleven agamid species were caught in the present study but the only species included in the analy- sis were those for which we caught greater than 15 indi- viduals. The two species not included were Ctenophorus clayi (one individual was caught at field site 3) and Pogona mitchelli (two individuals were caught at field Fig. 1. Map of the four field sites. All field work was con- site 1). The nine agamid species included in the pre- ducted in National Parks or on leasehold land. Field site 1 sent study are made up of five genera: Ctenophorus, included Larapinta and Namatjira Drives, West MacDonnell Diporiphora, Lophognathus, Pogona and Tympanocryptis. Ranges National Park and Finke Gorge National Park; field site 2 included the Old South Road, Roe Creek and Stuart All species, except C. pictus, were caught at more that Highway (north of Alice Springs); field site 3 included one field site (Table 1). The Tympanocryptis lineata Watarrka National Park; field site 4 included the four-wheel- caught in the present study all belonged to the sub- drive track between Mount Dare Station and Andado species centralis. Station. Ta bl e 1 . Presence of agamid species at each field site and general description of habitats in which the species occurs Species Field site no. Habitat category General habitat description Ctenophorus caudicinctus 1, 3 Saxicolous Desert ranges; rocky outcrops Ctenophorus isolepis 2, 4 Ground-dwelling Sandy spinifex desert Ctenophorus nuchalis 1, 2, 3, 4 Ground-dwelling All open habitats with non-rocky substrate Ctenophorus pictus 4 Ground-dwelling Sandy substrates with open shrub cover Diporiphora winneckei 3, 4 Semi-arboreal Sandy spinifex desert Lophognathus gilberti 1, 2 Semi-arboreal Mulga woodlands Lophognathus longirostris 1, 2, 3 Semi-arboreal Mulga and riverine woodlands Pogona vitticeps 1, 2, 4 Semi-arboreal Open habitats with heterogeneous vegetation Tympanocryptis lineata 1, 4 Saxicolous Rocky spinifex desert 662 J. MELVILLE AND J. A. SCHULTE II thermistor and lizards were sexed before being released. number of components that describes the underlying Ten structural and three thermal characteristics of the dimensions in the data. The principal components were microhabitat for each lizard caught were recorded. The extracted from a correlation matrix of the raw data. The structural variables were: 1, visual estimate of percent number of principal components (henceforth PCs) canopy cover in a 3-m2 radius surrounding lizard; 2, utilized in the analysis was determined by using the visual estimate of percentage shrub cover in a 3-m2 scree test of eigenvalues plotted against factors, maxi- radius surrounding lizard; 3, visual estimate of percen- mizing the adequacy of extraction. Principal compon- tage ground and grass cover in
Recommended publications
  • Agamid Lizards of the Genera Caimanops, Physignathus and Diporiphora in Western Australia and Northern Territory
    Rec. West. Aust. Mus., 1974, 3 (2) AGAMID LIZARDS OF THE GENERA CAIMANOPS, PHYSIGNATHUS AND DIPORIPHORA IN WESTERN AUSTRALIA AND NORTHERN TERRITORY G.M. STORR [Received 11 February 1974. Accepted 15 February 1974] ABSTRACT Caimanopsgen. novo is proposed for Diporiphora amphiboluroides Lucas & Frost. The following species and subspecies ofPhysignathus and Diporiphora are studied: P. longirostris (Boulenger), P. temporalis (Giinther), P. g. gilberti (Gray), P. g. centralis Loveridge, D. convergens nov., D. a. albilabris nov., D. a. sobria nov., D. b. bennettii (GraY), D. b. arnhemica nov., D. magna nov., D. lalliae nov., D. reginae Glauert, D. winneckei Lucas & Frost, D. b. bilineata Gray, D. b. margaretae nov., and D. superba novo INTRODUCTION Recent collections have made it increasingly clear that there are many more species of Diporiphora in the far north of Western Australia than previously believed. The main purpose of this paper is to define these additional species of Diporiphora. Because juvenile Physignathus have often been mistaken for Diporiphora, that genus has been included in this study, and so too has Caimanops gen. nov., whose single species was long placed in Diporiphora. Generally Western Australian species of reptiles seldom extend further east than about longitude 140o E. Brief study of Queensland material showed that Diporiphora and Physignathus were not exceptional in this respect and that most, if not all, specimens belonged to different species or subspecies. It therefore seemed unnecessary to include the Eastern States species in this account of the Western species. The three species of Physignathus and single species of Caimanops are strongly characterized, and their identification should present students with no problems.
    [Show full text]
  • Nomenclature of Vertebrate Fauna
    Nomenclature of Vertebrate Fauna Rebecca D. Bray Department of Terrestrial Zoology, WA Museum What is the WA Museum? How to keep updated on species names? Good Identification Collaboration between Industry and the WAM Public enquiries WAM field trips Industry & Government Nomenclature WAM Collections WAM databases Outreach Research Displays Surveys Talks/lectures Media interviews Atlas of Living Australia Taxonomy Training GBIF NatureMap Species discovery Publications Advice to government & industry Public enquiries WAM field trips Industry & Government Nomenclature WAM Collections WAM databases Outreach Research Displays Surveys Talks/lectures Media interviews Atlas of Living Australia Taxonomy Training GBIF NatureMap Species discovery Publications Advice to government & industry WA Museum Collections • Entire WAM collections: 4.5 million objects • AZ + TZ = $91 million • AZ + TZ holotypes = $11 million • Continual improvement and enhancement • Field trips, public submissions, industry • Many databased, but many are not…. – Location, coordinates – Date – Collectors name – Habitat – Identification Systematics The branch of biology which deals with classification and nomenclature. “WHAT IS IT”? Systematics “The classification of living organisms into hierarchical series of groups emphasizing their phylogenetic relationships” Lincoln, R.J., Boxshall, G.A. and Clark, P. F. 1982. A dictionary of ecology, evolution and systematics. Cambridge University Press Taxonomy “The theory and practice of describing, naming and classifying organisms”
    [Show full text]
  • Gliding Dragons and Flying Squirrels: Diversifying Versus Stabilizing Selection on Morphology Following the Evolution of an Innovation
    vol. 195, no. 2 the american naturalist february 2020 E-Article Gliding Dragons and Flying Squirrels: Diversifying versus Stabilizing Selection on Morphology following the Evolution of an Innovation Terry J. Ord,1,* Joan Garcia-Porta,1,† Marina Querejeta,2,‡ and David C. Collar3 1. Evolution and Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales 2052, Australia; 2. Institute of Evolutionary Biology (CSIC–Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, Barcelona 08003, Spain; 3. Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606 Submitted August 1, 2018; Accepted July 16, 2019; Electronically published December 17, 2019 Online enhancements: supplemental material. Dryad data: https://doi.org/10.5061/dryad.t7g227h. fi abstract: Evolutionary innovations and ecological competition are eral de nitions of what represents an innovation have been factors often cited as drivers of adaptive diversification. Yet many offered (reviewed by Rabosky 2017), this classical descrip- innovations result in stabilizing rather than diversifying selection on tion arguably remains the most useful (Galis 2001; Stroud morphology, and morphological disparity among coexisting species and Losos 2016; Rabosky 2017). Hypothesized innovations can reflect competitive exclusion (species sorting) rather than sympat- have drawn considerable attention among ecologists and ric adaptive divergence (character displacement). We studied the in- evolutionary biologists because they can expand the range novation of gliding in dragons (Agamidae) and squirrels (Sciuridae) of ecological niches occupied within communities. In do- and its effect on subsequent body size diversification. We found that gliding either had no impact (squirrels) or resulted in strong stabilizing ing so, innovations are thought to be important engines of selection on body size (dragons).
    [Show full text]
  • Tapa Multe 11
    ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus, considerado en los cladogramas Conolophus, puede llevar a propuestos por Estes et al. (1988). postular pretéritos acontecimientos Aparte del significado biológico paleogeográficos. También amerita general de estos hallazgos, incluso énfasis la llamativa separación, para discutidas orientaciones según este criterio morfológico, en- taxonómicas, la lepidosis tre Iguania y Scleroglossa, la supraocular llega a refrendar una uniforme lepidosis de centenares de decisión sistemática con su Gekkota, o la excepcional fisonomía evidencia. Así, en Iguania, la familia de Autarchoglossa, en sus ramas tan Leiosauridae, propuesta por Frost individualizadas de Scincomorpha et al. (2001), aparece sostenida (Lacertoidea; Teiioidea; hasta en
    [Show full text]
  • Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects
    Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Prepared for Australian Premium Iron Management Pty Ltd FINAL REPORT 26 July 2010 Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Australian Premium Iron Management Pty Ltd Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Final Report Prepared for Australian Premium Iron Management Pty Ltd by Phoenix Environmental Sciences Pty Ltd Authors: Greg Harewood, Karen Crews Reviewer: Melanie White, Stewart Ford Date: 26 July 2010 Submitted to: Michelle Carey © Phoenix Environmental Sciences Pty Ltd 2010. The use of this report is solely for the Client for the purpose in which it was prepared. Phoenix Environmental Sciences accepts no responsibility for use beyond this purpose. All rights are reserved and no part of this publication may be reproduced or copied in any form without the written permission of Phoenix Environmental Sciences or Australian Premium Iron Management. Phoenix Environmental Sciences Pty Ltd 1/511 Wanneroo Road BALCATTA WA 6914 P: 08 9345 1608 F: 08 6313 0680 E: [email protected] Project code: 925-AP-API-FAU Phoenix Environmental Sciences Pty Ltd ii Terrestrial Vertebrate Fauna Survey for Anketell Point Rail Alignment and Port Projects Australian Premium Iron Management Pty Ltd TABLE OF CONTENTS EXECUTIVE SUMMARY ..........................................................................................................................v 1.0 INTRODUCTION .........................................................................................................................
    [Show full text]
  • Level 1 Fauna Survey of the Gruyere Gold Project Borefields (Harewood 2016)
    GOLD ROAD RESOURCES LIMITED GRUYERE PROJECT EPA REFERRAL SUPPORTING DOCUMENT APPENDIX 5: LEVEL 1 FAUNA SURVEY OF THE GRUYERE GOLD PROJECT BOREFIELDS (HAREWOOD 2016) Gruyere EPA Ref Support Doc Final Rev 1.docx Fauna Assessment (Level 1) Gruyere Borefield Project Gold Road Resources Limited January 2016 Version 3 On behalf of: Gold Road Resources Limited C/- Botanica Consulting PO Box 2027 BOULDER WA 6432 T: 08 9093 0024 F: 08 9093 1381 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 T/F: (08) 9725 0982 E: [email protected] GRUYERE BOREFIELD PROJECT –– GOLD ROAD RESOURCES LTD – FAUNA ASSESSMENT (L1) – JAN 2016 – V3 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION .....................................................................................................1 2. SCOPE OF WORKS ...............................................................................................1 3. RELEVANT LEGISTALATION ................................................................................2 4. METHODS...............................................................................................................3 4.1 POTENTIAL VETEBRATE FAUNA INVENTORY - DESKTOP SURVEY ............. 3 4.1.1 Database Searches.......................................................................................3 4.1.2 Previous Fauna Surveys in the Area ............................................................3 4.1.3 Existing Publications .....................................................................................5 4.1.4 Fauna
    [Show full text]
  • Western Australian Naturalist 30
    NOTES ON THE ECOLOGY AND NATURAL HISTORY OF CTENOPHORUS CAUDICINCTUS (AGAMIDAE) IN WESTERN AUSTRALIA By ERIC R. PIANKA Integrative Biology University of Texas at Austin Austin, Texas 78712 USA Email: [email protected] ABSTRACT Ecological data on the saxicolous agamid Ctenophorus caudicinctus are presented. These lizards never stray far from rocks. They forage on the ground but retreat to rock crevices when threatened. Most were above ground (mean = 83 cm, N = 41). Active early and late in the day during summer, they thermoregulate actively with an average body temperature of 37.2°C. They are dietary specialists eating mostly termites and ants, but also some vegetation. Clutch size varies from 3 to 7, averaging 5.36. Males are slightly larger than females. INTRODUCTION Strophurus wellingtonae, Rhynchoedura ornata and Varanus Ctenophorus caudicinctus is giganteus. These data were widespread in northern Western augmented with Ctenophorus Australia, the Northern Territory caudicinctus from a few other and eastern Queensland (Cogger localities. 2000, Storr 1967). During 1966– 1968, we sampled a population of these agamids on rock outcrops METHODS at a granitic tor area 71 km South of Wiluna on the west side of the We recorded air and body road to Sandstone (Lat. 27° 05' x temperatures, activity time, Long. 119° 37'). Ctenophorus microhabitat, fresh snout-vent caudicinctus was far and away the length (SVL), tail length, and most abundant species. Other weight for as many lizards as lizard species found at this site possible. Stomach contents were included Ctenophorus nuchalis, identified and prey volumes Ctenotus leonhardii, Ctenotus estimated for all lizards collected.
    [Show full text]
  • Management of the Terrestrial Small Mammal and Lizard Communities in the Dune System Of
    Management of the terrestrial small mammal and lizard communities in the dune system of Sturt National Park, Australia: Historic and contemporary effects of pastoralism and fox predation Ulrike Sabine Klöcker (Dipl. – Biol., Rheinische Friedrich-Wilhelms Universität Bonn, Germany) Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological, Earth and Environmental Sciences The University of New South Wales, Sydney, Australia 2009 Abstract This thesis addressed three issues related to the management and conservation of small terrestrial vertebrates in the arid zone. The study site was an amalgamation of pastoral properties forming the now protected area of Sturt National Park in far-western New South Wales, Australia. Thus firstly, it assessed recovery from disturbance accrued through more than a century of Sheep grazing. Vegetation parameters, Fox, Cat and Rabbit abundance, and the small vertebrate communities were compared, with distance to watering points used as a surrogate for grazing intensity. Secondly, the impacts of small-scale but intensive combined Fox and Rabbit control on small vertebrates were investigated. Thirdly, the ecology of the rare Dusky Hopping Mouse (Notomys fuscus) was used as an exemplar to illustrate and discuss some of the complexities related to the conservation of small terrestrial vertebrates, with a particular focus on desert rodents. Thirty-five years after the removal of livestock and the closure of watering points, areas that were historically heavily disturbed are now nearly indistinguishable from nearby relatively undisturbed areas, despite uncontrolled native herbivore (kangaroo) abundance. Rainfall patterns, rather than grazing history, were responsible for the observed variation between individual sites and may overlay potential residual grazing effects.
    [Show full text]
  • One Year in the Life of Museum Victoria July 04 – June 05
    11:15:01 11:15:11 11:15:16 11:15:18 11:15:20 11:15:22 11:15:40 11:16:11 11:16:41 11:17:16 11:17:22 11:17:23 11:17:25 11:17:27 11:17:30 11:17:42 11:17:48 11:17:52 11:17:56 11:18:10 11:18:16 11:18:18 11:18:20 11:18:22 11:18:24 11:18:28 11:18:30 11:18:32 11:19:04 11:19:36 11:19:38 11:19:40 11:19:42 11:19:44 11:19:47 11:19:49 Museums Board of Victoria Museums Board 14:19:52 14:19:57 14:19:58 14:20:01 14:20:03 14:20:05 14:20:08ONE14:20:09 YEAR14:20:13 IN14:20:15 THE14:20:17 LIFE14:20:19 Annual Report 2004/2005 OF MUSEUM VICTORIA 14:20:21 14:20:22 14:20:25 14:20:28 14:20:30 14:20:32 14:20:34 14:20:36 14:20:38 14:20:39 14:20:42 14:20:44 Museums Board of Victoria JULY 04 – JUNE 05 Annual Report 2004/2005 14:21:03 14:21:05 14:21:07 14:21:09 14:21:10 14:21:12 14:21:13 10:08:14 10:08:15 10:08:17 10:08:19 10:08:22 11:15:01 11:15:11 11:15:16 11:15:18 11:15:20 11:15:22 11:15:40 11:16:11 11:16:41 11:17:16 11:17:22 11:17:23 11:17:25 11:17:27 11:17:30 11:17:42 11:17:48 11:17:52 11:17:56 11:18:10 11:18:16 11:18:18 11:18:20 11:18:22 11:18:24 11:18:28 11:18:30 11:18:32 11:19:04 11:19:36 11:19:38 11:19:40 11:19:42 11:19:44 11:19:47 11:19:49 05:31:01 06:45:12 08:29:21 09:52:55 11:06:11 12:48:47 13:29:44 14:31:25 15:21:01 15:38:13 16:47:43 17:30:16 Museums Board of Victoria CONTENTS Annual Report 2004/2005 2 Introduction 16 Enhance Access, Visibility 26 Create and Deliver Great 44 Develop Partnerships that 56 Develop and Maximise 66 Manage our Resources 80 Financial Statements 98 Additional Information Profile of Museum Victoria and Community Engagement Experiences
    [Show full text]
  • Draft Animal Keepers Species List
    Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290,
    [Show full text]
  • An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)].
    [Show full text]
  • Reproductive Ecology of the Mountain Dragon, Rankin/A (Tympanocryptis) Diemensis (Reptilia: Squamata: Agamidae) in Tasmania
    Papers and Proceedings ofthe Royal Society of Tasmania, Volume 139, 2005 23 REPRODUCTIVE ECOLOGY OF THE MOUNTAIN DRAGON, RANKIN/A (TYMPANOCRYPTIS) DIEMENSIS (REPTILIA: SQUAMATA: AGAMIDAE) IN TASMANIA by Jemina Stuart-Smith, Roy Swain and Andrew Welling (with three tables and two text-figures) Stuart-Smith, J., Swain, R. & Welling, A. 2005 (16:xii): Reproductive ecology of the Mountain Dragon, Rankinia (Tympanocryptis) diemensis (Reptilia: Squamata: Agamidae) in Tasmania. Papers and Proceedings of the Royal Society of Tasmania 139: 23-28. https://doi.org/10.26749/rstpp.139.23 ISSN 0080-4703. School of Zoology, University of Tasmania, Private Bag 5, Tasmania, 7001 Australia.(J.S-S.*, R.S., AW). *Author for correspondence. The mountain dragon, Rankinia (Tympanocryptis) diemensis (Gray, 1841), is the only member of the Agamidae in Tasmania. It occurs in some of the coldest regions occupied by any dragon in Australia, and is found in a variety of habitats ranging from coastal heath to alpine scrub. This paper examines the reproductive ecology of R. diemensis in the most southerly range of its distribution, providing baseline data on timing of reproductive events, reproductive cycles, nesting behaviour and ovipositioning, clutch characteristics and incubation conditions. Winter torpor lasts approximately seven months with males emerging in early September and spermatogenesis occurring from September-November. Females emerge later, with vitcllogenesis occurring from September-December. Gravid females may be found between October and January, but females are non-vitcllogenic from late December until the following season. The firstclutch is typically laid from October-December, with a variable clutch size (2-11 eggs). Females store sperm and a second clutch may be laid fiveweeks after the first.
    [Show full text]