Management Cybernetics 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Social System of Systems Intelligence – a Study Based on Search Engine Method
In Essays on Systems Intelligence, eds. Raimo P. Hämäläinen and Esa Saarinen: pp. 119-133 Espoo: Aalto University, School of Science and Technology, Systems Analysis Laboratory Chapter 5 The Social System of Systems Intelligence – A Study Based on Search Engine Method Kalevi Kilkki This essay offers an preliminary study on systems intelligence as a social system based on four cornerstones: writings using the terminology of systems intelligence, search engines, models to describe the behavior of social phenomena, and a theory of social systems. As a result we provide an illustration of systems intelligence field as a network of key persons. The main conclusion is that the most promising area for systems intelligence as social system is to systematically apply positive psychology to develop organizational management and to solve our everyday problems. Introduction The social system of systems intelligence is an ambitious topic, particularly for a person without any formal studies in sociology. Moreover, systems intelligence is a novel area of science and, hence, the development of its social structures is in early phase. It is even possible to argue that there is not yet any social system of systems intelligence. The approach of this study is based on four cornerstones: first, the literature that has used concept of systems intelligence, second, search engines, third, models to describe the behavior of social phenomena, and forth, a theory of social systems. As a result we may be able to say something novel about the development of systems intelligence as a social system. As to the social systems this essay relies on the grand theory developed by Niklas Luhmann (Luhmann 1995). -
Print Prt489138397779225351.Tif (16 Pages)
U.S. Department ofHo1Deland.se¢urUy U.S. Citizenship and Immigration Services Administrative Appeals Office (AAO) 20 Massachusetts Ave., N.W., MS 2090 Washington, DC 20529-2090 (b)(6) U.S. Citizenship and Immigration Services DATE : APR 1 7 2015 OFFICE: CALIFORNIA SERVICE CENTER FILE: INR E: Petitioner: Benef icia ry: PETITION: Petition for a Nonim migrant Worker Pursuant to Section 101(a)(15)(H)(i)(b) of the Immigration and Nationality Act, 8 U.S.C. § 1101(a)(15)(H)(i)(b) ON BEHALF OF PETITIONER : INSTRUCTIONS: Enclosed please find the decision of the Administrative Appeals Office (AAO) in y our case. This is a n on-pre cedent decision. The AAO does not announce new constructions of law nor establish agency policy through non-precedent decisions. I f you believe the AAO incorrectly applied current law or policy to your case or if you seek to present new facts for consideration, you may file a motion to reconsider or a motion to reopen, respectively. Any motion must be filed on a Notice of Appeal or Motion (Form I-290B) within 33 days of the date of this decision. Please review the Form I-290B instructions at http://www.uscis.gov/forms for the latest information on fee, filing location, and other requirements. See also 8 C.F.R. § 103.5. Do not file a motion directly with the AAO. Ron Rose rg Chief, Administrative Appeals Office www.uscis.gov (b)(6) NON-PRECEDENTDECISION Page2 DISCUSSION: The service center director (hereinafter "director") denied the nonimmigrant visa petition, and the matter is now before the Administrative Appeals Office on appeal. -
Guide to the Systems Engineering Body of Knowledge (Sebok) Version 1.3
Guide to the Systems Engineering Body of Knowledge (SEBoK) version 1.3 Released May 30, 2014 Part 2: Systems Please note that this is a PDF extraction of the content from www.sebokwiki.org Copyright and Licensing A compilation copyright to the SEBoK is held by The Trustees of the Stevens Institute of Technology ©2014 (“Stevens”) and copyright to most of the content within the SEBoK is also held by Stevens. Prominently noted throughout the SEBoK are other items of content for which the copyright is held by a third party. These items consist mainly of tables and figures. In each case of third party content, such content is used by Stevens with permission and its use by third parties is limited. Stevens is publishing those portions of the SEBoK to which it holds copyright under a Creative Commons Attribution-NonCommercial ShareAlike 3.0 Unported License. See http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US for details about what this license allows. This license does not permit use of third party material but gives rights to the systems engineering community to freely use the remainder of the SEBoK within the terms of the license. Stevens is publishing the SEBoK as a compilation including the third party material under the terms of a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0). See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details about what this license allows. This license will permit very limited noncommercial use of the third party content included within the SEBoK and only as part of the SEBoK compilation. -
An Overview of the Soft Systems Methodology Stuart Burge
System Thinking: Approaches and Methodologies An Overview of the Soft Systems Methodology Stuart Burge The Soft Systems Methodology (SSM) was born out of research conducted at Lancaster University to apply Systems Engineering approaches to solve “management/business problems”. In other words they attempted to apply a Hard Systems approach to fix business problems. What they discovered was the approach often stumbled at the first step of problem definition. This happens quite simply because the different stakeholders have divergent views on what constitutes the system, the purpose of the system and therefore the problem. Two key players in the development of the SSM are Peter Checkland [1999] and Brian Wilson [2001] who through “action research” were able to put together a practical and pragmatic approach to the identification and solution of “soft” ill-defined problems. This methodology was more than just a process; Checkland and Wilson also developed a set of tools to help users carry out the steps. These include: • Rich Picture • Conceptual Model • CATWOE • Formal Systems Model More on these later because, at this point, I would like to focus on the approach. Figure 1 presents a view of the SSM. Since its origin back in 1970’s and 80’s it has changed as various workers have added their bit. Figure 1 shows a 7-step process approach to SSM. I have chosen this view, that while it is an early representation, it does allow several key and important aspects of SSM to be made clear. Figure 1: The 7 Step Soft Systems Methodology © Burge Hughes Walsh 2015 page 1 System Thinking: Approaches and Methodologies Before launching into detail about the 7-steps it is worthwhile explaining the overall philosophy behind SSM. -
Warren Mcculloch and the British Cyberneticians
Warren McCulloch and the British cyberneticians Article (Accepted Version) Husbands, Phil and Holland, Owen (2012) Warren McCulloch and the British cyberneticians. Interdisciplinary Science Reviews, 37 (3). pp. 237-253. ISSN 0308-0188 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/43089/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Warren McCulloch and the British Cyberneticians1 Phil Husbands and Owen Holland Dept. Informatics, University of Sussex Abstract Warren McCulloch was a significant influence on a number of British cyberneticians, as some British pioneers in this area were on him. -
I690/H699 Cybernetics and Revolution: International Histories of Science, Technology, and Political Change
I690/H699 Cybernetics and Revolution: International Histories of Science, Technology, and Political Change Prof. Eden Medina Office: Informatics 305 Email: [email protected] Class Times: W 1:00-3:30 Room: Info 001 Class Description Norbert Wiener used the term cybernetics for studies of communication and control in the animal and the machine. Cybernetics brought together ideas from biology, psychology, math, computation, and engineering and looked for underlying commonalities in areas as diverse as neurology, electronics, and the study of social systems. Historical studies of cybernetics often cite the research activity that took place in the United States during 1940s and 1950s as the peak moment of this interdisciplinary field. However, these ideas also took root in other parts of the world, where they intertwined with other national histories and political ideologies. This class will bring an international perspective to the study of cybernetics. Different geographical, political, and cultural contexts shaped the language, content, and application of cybernetic science outside of the United States. Cybernetics also offered new ways for imagining social and political change. The class will study individuals such as Norbert Wiener, Ross Ashby, Stafford Beer, Humberto Maturana, and Viktor Glushkov, among others. Since most histories of cybernetics are set in the United States and Western Europe, special attention will be given to the evolution and application of cybernetic ideas in Latin America. Required Reading Paul Edwards, The Closed -
A Dictionary of Cybernetics
Annenberg School for Communication Departmental Papers (ASC) University of Pennsylvania Year 1986 A Dictionary of Cybernetics Klaus Krippendorff University of Pennsylvania, kkrippendorff@asc.upenn.edu This paper is posted at ScholarlyCommons. http://repository.upenn.edu/asc papers/224 A DICTIONARY OF CYBERNETICS by Klaus Krippendorff University of Pennsylvania version 2/2/86 A dictionary like the discipline whose terminology it aims to clarify is constantly in flux. It is aided by communal efforts and in turn aids communication within the community of users. Critical comments and suggestions, especially for including new or omitting useless entries, for improving the wording, for references that may need to be added should be directed to: Klaus Krippendorff The Annenberg School of Communications University of Pennsylvania Philadelphia PA 19104 NOTE: This dictionary is not intended to represent the American Society for Cybernetics nor the opinions of any of its members: neither does it replace the current Cybernetics Glossary. Klaus Krippendorff has been kind enough to make his work available to ASC members in order to stimulate discussion on the language of cybernetics. as well as on the idea of a dictionary itself. ABSOLUTE DISCRIMINATION: ->LIMIT OF ABSOLUTE DISCRIMINATION ADAPTATION: STABILITY of success in the face of a changing environment. Two kinds of adaptation are distinguished. (a) Darwinian adaptation after Darwin who observed how organisms change their internal STRUCTURE when their environment makes existing forms no longer viable. E.g., Ashby's HOMEOSTAT searches for a new pattern of behavior as soon as disturbances in its surroundings drive or threaten to drive its essential VARIABLEs outside specified limits. -
A Review of Problem Structuring Methods for Consideration in Prognostics and Smart Manufacturing
A Review of Problem Structuring Methods for Consideration in Prognostics and Smart Manufacturing Patrick T. Hester 1, Andrew J. Collins 2, Barry Ezell 2, John Horst 3 1 Department of Engineering Management & Systems Engineering, Old Dominion University, Norfolk, VA 23529 [email protected] 2 Virginia Modeling, Analysis, and Simulation Center, Old Dominion University, Suffolk, VA 23435 3 Engineering Laboratory, National Institute for Standards and Technology (NIST), Gaithersburg, MA 20899 ABSTRACT environments has been exacerbated in recent years. “Modern engineering systems and manufacturing processes Successful use of prognostics involves the prediction of are becoming increasingly complex, and are operating in future system behaviors in an effort to maintain system highly dynamic environments. Thus, sustaining the availability and reduce the cost of maintenance and repairs. reliability of such systems is becoming a more complex and Recent work by the National Institute of Standards and challenging requirement” (Lee, Ghaffari, & Elmeligy, 2011, Technology indicates that the field of prognostics and health p. 111). Prognostics and health management, specifically for management is vital for remaining competitive in today’s smart manufacturing, is a promising area of research as a manufacturing environment. While prognostics-based means for maintaining complex system reliability and for maintenance involves many traditional operations research- helping to make the U.S. succeed globally; however, it has centric challenges for successful deployment such as limited yet to be universally embraced due to a number of factors availability of information and concerns regarding that will be discussed later in this paper. We argue that computational efficiency, the authors argue in this paper that prognostics and health management requires a the field of prognostics and health management, still in its preprocessing step, known as problem structuring, in order embryonic development stage, could benefit greatly from to allow it to reach its full potential. -
On the Evolution of Systems
Evolution Of Systems Michel Lecoq iTER - Belgium tel. : + 32 4 278 1008 fax.: + 32 4 278 1009 [email protected] Introduction This article is an attempt to formalize my thoughts about the evolution of products or of systems in general. It does not contain anything new. To the contrary, it just applies the assumption that "somebody somewhere has solved a problem like mine". Altshuller proposed "trends of evolution" that are presently expanded by many authors in the TRIZ literature. In his book, Darrell Mann (1) has 31 of these trends. They are observations of the evolutions of objects. This part of TRIZ does not satisfy me. It looks more like a collection of examples of the use of some TRIZ principles (e.g. The trend of "space segmentation" or the trend of "object segmentation" show the segmentation principle at different levels in a solid). This article tries to show TRIZ practitioners other attempts to approach the evolution with the hope that somebody will once formulate a coherent theory or at least a coherent guideline. After introducing the general modeling of systems, the article draws from the evolution of living systems to show some conclusions useful for the TRIZ practitioner. The way we look at the evolution of products has also an impact on the way we model the objects and their functions. Therefore, the article ends with some comments about modeling. First part: Modeling the general system System theory is a "theory" that started in the 1920's and was developed mainly from 1950 to 1980. It is a kind of reaction to the Cartesian or scientist thinking of most of the technicians. -
ORMS 1020: Operations Research with GNU Octave
ORMS 1020 Operations Research with GNU Octave Tommi Sottinen [email protected] www.uwasa.fi/ tsottine/or_with_octave/ ∼ October 19, 2011 Contents I Introduction and Preliminaries6 1 Selection of Optimization Problems7 1.1 Product Selection Problem.......................7 1.2 Knapsack Problem........................... 10 1.3 Portfolio Selection Problem*...................... 12 1.4 Exercises and Projects......................... 13 2 Short Introduction to Octave 14 2.1 Installing Octave............................ 14 2.2 Octave as Calculator.......................... 15 2.3 Linear Algebra with Octave...................... 18 2.4 Function and Script Files....................... 28 2.5 Octave Programming: glpk Wrapper................. 32 2.6 Exercises and Projects......................... 37 II Linear Programming 39 3 Linear Programs and Their Optima 40 3.1 Form of Linear Program........................ 40 3.2 Location of Linear Programs’ Optima................ 43 3.3 Solution Possibilities of Linear Programs............... 48 3.4 Karush–Kuhn–Tucker Conditions*.................. 53 3.5 Proofs*................................. 54 3.6 Exercises and Projects......................... 56 0.0 CONTENTS 2 4 Simplex Algorithm 58 4.1 Simplex tableaux and General Idea.................. 59 4.2 Top-Level Algorithm.......................... 62 4.3 Initialization Algorithm........................ 66 4.4 Optimality-Checking Algorithm.................... 68 4.5 Tableau Improvement Algorithm................... 71 4.6 Exercises and Projects........................ -
Operations Research for Resource Planning and -Use in Radiotherapy: a Literature Review Bruno Vieira1,2,4*, Erwin W
Vieira et al. BMC Medical Informatics and Decision Making (2016) 16:149 DOI 10.1186/s12911-016-0390-4 RESEARCH ARTICLE Open Access Operations research for resource planning and -use in radiotherapy: a literature review Bruno Vieira1,2,4*, Erwin W. Hans2,3, Corine van Vliet-Vroegindeweij1, Jeroen van de Kamer1 and Wim van Harten1,4,5 Abstract Background: The delivery of radiotherapy (RT) involves the use of rather expensive resources and multi-disciplinary staff. As the number of cancer patients receiving RT increases, timely delivery becomes increasingly difficult due to the complexities related to, among others, variable patient inflow, complex patient routing, and the joint planning of multiple resources. Operations research (OR) methods have been successfully applied to solve many logistics problems through the development of advanced analytical models for improved decision making. This paper presents the state of the art in the application of OR methods for logistics optimization in RT, at various managerial levels. Methods: A literature search was performed in six databases covering several disciplines, from the medical to the technical field. Papers included in the review were published in peer-reviewed journals from 2000 to 2015. Data extraction includes the subject of research, the OR methods used in the study, the extent of implementation according to a six-stage model and the (potential) impact of the results in practice. Results: From the 33 papers included in the review, 18 addressed problems related to patient scheduling (of which 12 focus on scheduling patients on linear accelerators), 8 focus on strategic decision making, 5 on resource capacity planning, and 2 on patient prioritization. -
Management Cybernetics As a Theoretical Basis for Lean Construction Thinking
Steinhaeusser et al. (2014). Management Cybernetics as a Theoretical Basis for Lean Construction Thinking. Lean Construction Journal 2015 pp 01-14 www.leanconstructionjournal.org (submitted 08Aug2014; resubmitted 11Mar2015; accepted 28Mar2015) Management Cybernetics as a Theoretical Basis for Lean Construction Thinking Tobias Steinhaeusser1, Fatos Elezi2, Iris D. Tommelein3, Udo Lindemann4 Abstract Question: Management cybernetics claims that any successful organization responds to its laws. As there are numerous successful enterprises that use lean thinking as a management philosophy, including increasing numbers of construction companies, does this claim hold and if so, do these laws offer the opportunity to sharpen understanding of Lean Construction practices? Purpose: The purpose of this paper is to explore the use of management cybernetics— specifically Stafford Beer’s Viable Systems Model—as a theoretical basis for Lean Construction thinking. Research Method: Review, analyze, and compare literature on management cybernetics and Lean Construction. Develop an example to illustrate such use. Findings: Through a theoretical approach of describing lean thinking rules from the perspective of management cybernetics, we were able to show that following this argumentation, the Lean Construction idea of Built-in Quality (BiQ) fulfills all requirements of a viable system in management cybernetics. Limitations: Only a small selection of rules is analyzed in this paper. Implications: Management cybernetics can help sharpen understanding when implementing lean thinking in an industrial context. It may also help identify new concepts that can be incorporated into lean thinking. Conversely, understanding lean thinking principles from the perspective of management cybernetics may also help to identify problems where the implementation of lean thinking does not live up to the desired results.