Capture of CO2 105 3

Total Page:16

File Type:pdf, Size:1020Kb

Capture of CO2 105 3 Chapter 3: Capture of CO2 105 3 Capture of CO2 Coordinating Lead Authors Kelly (Kailai) Thambimuthu (Australia and Canada), Mohammad Soltanieh (Iran), Juan Carlos Abanades (Spain) Lead Authors Rodney Allam (United Kingdom), Olav Bolland (Norway), John Davison (United Kingdom), Paul Feron (The Netherlands), Fred Goede (South Africa), Alyce Herrera (Philippines), Masaki Iijima (Japan), Daniël Jansen (The Netherlands), Iosif Leites (Russian Federation), Philippe Mathieu (Belgium), Edward Rubin (United States), Dale Simbeck (United States), Krzysztof Warmuzinski (Poland), Michael Wilkinson (United Kingdom), Robert Williams (United States) Contributing Authors Manfred Jaschik (Poland), Anders Lyngfelt (Sweden), Roland Span (Germany), Marek Tanczyk (Poland) Review Editors Ziad Abu-Ghararah (Saudi Arabia), Tatsuaki Yashima (Japan) 106 IPCC Special Report on Carbon dioxide Capture and Storage Contents EXECUTIVE SUMMARY 107 3.6 Environmental, monitoring, risk and legal aspects of capture systems 141 3.1 Introduction 108 3.6.1 Emissions and resource use impacts of CO2 capture 3.1.1 The basis for CO2 capture 108 systems 141 3.1.2 CO2 capture systems 108 3.6.2 Issues related to the classification of carbon 3.1.3 Types of CO2 capture technologies 109 dioxide as a product 145 3.1.4 Application of CO2 capture 110 3.6.3 Health and safety risks associated with carbon dioxide processing 145 3.2 Industrial process capture systems 111 3.6.4 Plant design principles and guidelines used by 3.2.1 Introduction 111 governments, industries and financiers 145 3.2.2 Natural gas sweetening 111 3.6.5 Commissioning, good practice during operations 3.2.3 Steel production 112 and sound management of chemicals 146 3.2.4 Cement production 113 3.6.6 Site closure and remediation 146 3.2.5 Ammonia production 113 3.2.6 Status and outlook 113 3.7 Cost of CO2 capture 146 3.7.1 Factors affecting CO2 capture cost 146 3.3 Post-combustion capture systems 113 3.7.2 Measures of CO2 capture cost 147 3.3.1 Introduction 113 3.7.3 The context for current cost estimates 149 3.3.2 Existing technologies 114 3.7.4 Overview of technologies and systems evaluated 150 3.3.3 Emerging technologies 118 3.7.5 Post-combustion CO2 capture cost for electric 3.3.4 Status and outlook 121 power plants (current technology) 150 3.7.6 Pre-combustion CO2 capture cost for electric 3.4 Oxy-fuel combustion capture systems 122 power plants (current technology) 155 3.4.1 Introduction 122 3.7.7 CO2 capture cost for hydrogen production and 3.4.2 Oxy-fuel indirect heating - steam cycle 122 multi-product plants (current technology) 158 3.4.3 Oxy-fuel direct heating - gas turbine cycle 125 3.7.8 Capture costs for other industrial processes 3.4.4 Oxy-fuel direct heating - steam turbine cycle 126 (current technology) 161 3.4.5 Techniques and improvements in oxygen 3.7.9 Outlook for future CO2 capture costs 163 production 127 3.7.10 CO2 capture costs for electric power plants 3.4.6 Chemical looping combustion 129 (advanced technology) 163 3.4.7 Status and outlook 130 3.7.11 CO2 capture costs for hydrogen production and multi-product plants (advanced technology) 166 3.5 Pre-combustion capture systems 130 3.7.12 CO2 capture costs for other industrial processes 3.5.1 Introduction 130 (advanced technology) 168 3.5.2 Existing technologies 130 3.7.13 Summary of CO2 capture cost estimates 168 3.5.3 Emerging technologies 136 3.5.4 Enabling technologies 138 3.8 Gaps in knowledge 170 3.5.5 Status and outlook 140 References 171 Chapter 3: Capture of CO2 107 EXECUTIVE SUMMARY combined cycle (IGCC) plant using bituminous coal. Overall the COE for fossil fuel plants with capture, ranges from 43-86 -1 The purpose of CO2 capture is to produce a concentrated stream US$ MWh , with the cost per tonne of CO2 ranging from 11- that can be readily transported to a CO2 storage site. CO2 capture 57 US$/tCO2 captured or 13-74 US$/tCO2 avoided (depending and storage is most applicable to large, centralized sources on plant type, size, fuel type and a host of other factors). These like power plants and large industries. Capture technologies costs include CO2 compression but not additional transport also open the way for large-scale production of low-carbon or and storage costs. NGCC systems typically have a lower COE carbon-free electricity and fuels for transportation, as well as than new PC and IGCC plants (with or without capture) for for small-scale or distributed applications. The energy required gas prices below about 4 US$ GJ-1. Most studies indicate that to operate CO2 capture systems reduces the overall efficiency of IGCC plants are slightly more costly without capture and power generation or other processes, leading to increased fuel slightly less costly with capture than similarly sized PC plants, requirements, solid wastes and environmental impacts relative but the differences in cost for plants with CO2 capture can vary to the same type of base plant without capture. However, as with coal type and other local factors. The lowest CO2 capture more efficient plants with capture become available and replace costs (averaging about 12 US$/t CO2 captured or 15 US$/tCO2 many of the older less efficient plants now in service, the avoided) were found for industrial processes such as hydrogen net impacts will be compatible with clean air emission goals production plants that produce concentrated CO2 streams as part for fossil fuel use. Minimization of energy requirements for of the current production process; such industrial processes may capture, together with improvements in the efficiency of energy represent some of the earliest opportunities for CO2 Capture conversion processes will continue to be high priorities for and Storage (CCS). In all cases, CO2 capture costs are highly future technology development in order to minimize overall dependent upon technical, economic and financial factors environmental impacts and cost. related to the design and operation of the production process At present, CO2 is routinely separated at some large or power system of interest, as well as the design and operation industrial plants such as natural gas processing and ammonia of the CO2 capture technology employed. Thus, comparisons production facilities, although these plants remove CO2 to of alternative technologies, or the use of CCS cost estimates, meet process demands and not for storage. CO2 capture also require a specific context to be meaningful. has been applied to several small power plants. However, New or improved methods of CO2 capture, combined with there have been no applications at large-scale power plants of advanced power systems and industrial process designs, can several hundred megawatts, the major source of current and significantly reduce CO2 capture costs and associated energy projected CO2 emissions. There are three main approaches to requirements. While there is considerable uncertainty about the CO2 capture, for industrial and power plant applications. Post- magnitude and timing of future cost reductions, this assessment combustion systems separate CO2 from the flue gases produced suggests that improvements to commercial technologies can by combustion of a primary fuel (coal, natural gas, oil or reduce CO2 capture costs by at least 20-30% over approximately biomass) in air. Oxy-fuel combustion uses oxygen instead of the next decade, while new technologies under development air for combustion, producing a flue gas that is mainly H2O and promise more substantial cost reductions. Realization of future CO2 and which is readily captured. This is an option still under cost reductions, however, will require deployment and adoption development. Pre-combustion systems process the primary fuel of commercial technologies in the marketplace as well as in a reactor to produce separate streams of CO2 for storage and sustained R&D. H2 which is used as a fuel. Other industrial processes, including processes for the production of low-carbon or carbon-free fuels, employ one or more of these same basic capture methods. The monitoring, risk and legal aspects associated with CO2 capture systems appear to present no new challenges, as they are all elements of long-standing health, safety and environmental control practice in industry. For all of the aforementioned applications, we reviewed recent studies of the performance and cost of commercial or near-commercial technologies, as well as that of newer CO2 capture concepts that are the subject of intense R&D efforts worldwide. For power plants, current commercial CO2 capture -1 systems can reduce CO2 emissions by 80-90% kWh (85- 95% capture efficiency). Across all plant types the cost of electricity production (COE) increases by 12-36 US$ MWh-1 (US$ 0.012-0.036 kWh-1) over a similar type of plant without capture, corresponding to a 40-85% increase for a supercritical pulverized coal (PC) plant, 35-70% for a natural gas combined cycle (NGCC) plant and 20-55% for an integrated gasification 108 IPCC Special Report on Carbon dioxide Capture and Storage Figure 3.1 CO2 capture systems (adapted from BP). 3.1 Introduction only with application of existing technology for CO2 capture, but describes many new processes under development which 3.1.1 The basis for CO2 capture may result in lower CO2 capture costs in future. The main application of CO2 capture is likely to be at large 3.1.2 CO2 capture systems point sources: fossil fuel power plants, fuel processing plants and other industrial plants, particularly for the manufacture of There are four basic systems for capturing CO2 from use of iron, steel, cement and bulk chemicals, as discussed in Chapter fossil fuels and/or biomass: 2.
Recommended publications
  • Update on Lignite Firing
    Update on lignite firing Qian Zhu CCC/201 ISBN 978-92-9029-521-1 June 2012 copyright © IEA Clean Coal Centre Abstract Low rank coals have gained increasing importance in recent years and the long-term future of coal -derived energy supplies will have to include the greater use of low rank coal. However, the relatively low economic value due to the high moisture content and low calorific value, and other undesirable properties of lignite coals limited their use mainly to power generation at, or, close to, the mining site. Another important issue regarding the use of lignite is its environmental impact. A range of advanced combustion technologies has been developed to improve the efficiency of lignite-fired power generation. With modern technologies it is now possible to produce electricity economically from lignite while addressing environmental concerns. This report reviews the advanced technologies used in modern lignite-fired power plants with a focus on pulverised lignite combustion technologies. CFBC combustion processes are also reviewed in brief and they are compared with pulverised lignite combustion technologies. Acronyms and abbreviations CFB circulating fluidised bed CFBC circulating fluidised bed combustion CFD computational fluid dynamics CV calorific value EHE external heat exchanger GRE Great River Energy GWe gigawatts electric kJ/kg kilojoules per kilogram kWh kilowatts hour Gt billion tonnes FBC fluidised bed combustion FBHE fluidised bed heat exchanger FEGT furnace exit gas temperature FGD flue gas desulphurisation GJ
    [Show full text]
  • 'Retrofitting CCS to Coal: Enhancing Australia's Energy
    RETROFITTING CCS TO COAL: ENHANCING AUSTRALIA’S ENERGY SECURITY RETROFITTING CCS TO COAL: ENHANCING AUSTRALIA’S ENERGY SECURITY any representation about the content and suitability Disclaimer of this information for any particular purpose. The document is not intended to comprise advice, and is This report was completed on 2 March 2017 and provided “as is” without express or implied therefore the Report does not take into account warranty. Readers should form their own conclusion events or circumstances arising after that time. The as to its applicability and suitability. The authors Report’s authors take no responsibility to update the reserve the right to alter or amend this document Report. without prior notice. The Report’s modelling considers only a single set of Authors: Geoff Bongers, Gamma Energy Technology input assumptions which should not be considered Stephanie Byrom, Gamma Energy Technology entirely exhaustive. Modelling inherently requires Tania Constable, CO2CRC Limited assumptions about future behaviours and market interactions, which may result in forecasts that deviate from actual events. There will usually be About CO2CRC Limited: differences between estimated and actual results, CO2CRC Limited is Australia’s leading CCS research because events and circumstances frequently do not organisation, having invested $100m in CCS research occur as expected, and those differences may be over the past decade. CO2CRC is the first organisation material. The authors of the Report take no in Australia to have demonstrated CCS end-to-end, responsibility for the modelling presented to be and has successfully stored more than 80,000 tonnes considered as a definitive account. of CO2 at its renowned Otway Research Facility in The authors of the Report highlight that the Report, Victoria.
    [Show full text]
  • Exco55 P1 a Global Operational Status of Co-Firing Biomass And
    Global operational status on cofiring biomass and waste with coal Experience with different cofiring concepts and fuels Jaap Koppejan1, Larry Baxter2, 1 Project manager Bioenergy systems, TNO-MEP, PO Box 342, 7300 AH Apeldoorn, Netherlands, phone +31 55 5493167, fax +31 55 5493287, email [email protected] 2 Professor Chemical Engineering, Brigham Young University, Provo, UT 84601, USA, phone: +1 (801) 422-8616, fax: +1 (801) 422-0151, email [email protected] 1. Primary motivations for biomass-coal cofiring One means of reducing the environmental impacts of fossil fuel combustion is to increase the fraction of renewable and sustainable energy in the national energy supply. Renewable energy technologies have, however, struggled to compete in open electricity supply markets with fossil energy, due to their low efficiencies, high costs, and the high technical and financial risks. The result is that they usually require the introduction of subsidies or other financial instruments to support their implementation. The co-firing of biomass with the coal in traditional coal-fired boilers makes use of the large investment and extensive infrastructure associated with the existing fossil-fuel-based power systems, while requiring only a relatively modest capital investment, typically up to $50-$300 per kW of biomass capacity. [i]. These costs compare very favorably with any other available renewable energy option1. Worldwide, each percent of coal that is substituted with biomass in all coal fired power plants results in a biomass capacity of 8 GWe, and a reduction of approx. 60 Mton of CO2. At a typical cofiring ratio of 5% on energy basis, this would correspond with a global potential of approx.
    [Show full text]
  • Biomass Cofiring in Coal-Fired Boilers
    DOE/EE-0288 Leading by example, saving energy and Biomass Cofiring in Coal-Fired Boilers taxpayer dollars Using this time-tested fuel-switching technique in existing federal boilers in federal facilities helps to reduce operating costs, increase the use of renewable energy, and enhance our energy security Executive Summary To help the nation use more domestic fuels and renewable energy technologies—and increase our energy security—the Federal Energy Management Program (FEMP) in the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, assists government agencies in developing biomass energy projects. As part of that assistance, FEMP has prepared this Federal Technology Alert on biomass cofiring technologies. This publication was prepared to help federal energy and facility managers make informed decisions about using biomass cofiring in existing coal-fired boilers at their facilities. The term “biomass” refers to materials derived from plant matter such as trees, grasses, and agricultural crops. These materials, grown using energy from sunlight, can be renewable energy sources for fueling many of today’s energy needs. The most common types of biomass that are available at potentially attractive prices for energy use at federal facilities are waste wood and wastepaper. The boiler plant at the Department of Energy’s One of the most attractive and easily implemented biomass energy technologies is cofiring Savannah River Site co- fires coal and biomass. with coal in existing coal-fired boilers. In biomass cofiring, biomass can substitute for up to 20% of the coal used in the boiler. The biomass and coal are combusted simultaneously. When it is used as a supplemental fuel in an existing coal boiler, biomass can provide the following benefits: lower fuel costs, avoidance of landfills and their associated costs, and reductions in sulfur oxide, nitrogen oxide, and greenhouse-gas emissions.
    [Show full text]
  • Solutions for Energy Crisis in Pakistan I
    Solutions for Energy Crisis in Pakistan i ii Solutions for Energy Crisis in Pakistan Solutions for Energy Crisis in Pakistan iii ACKNOWLEDGEMENTS This volume is based on papers presented at the two-day national conference on the topical and vital theme of Solutions for Energy Crisis in Pakistan held on May 15-16, 2013 at Islamabad Hotel, Islamabad. The Conference was jointly organised by the Islamabad Policy Research Institute (IPRI) and the Hanns Seidel Foundation, (HSF) Islamabad. The organisers of the Conference are especially thankful to Mr. Kristof W. Duwaerts, Country Representative, HSF, Islamabad, for his co-operation and sharing the financial expense of the Conference. For the papers presented in this volume, we are grateful to all participants, as well as the chairpersons of the different sessions, who took time out from their busy schedules to preside over the proceedings. We are also thankful to the scholars, students and professionals who accepted our invitation to participate in the Conference. All members of IPRI staff — Amjad Saleem, Shazad Ahmad, Noreen Hameed, Shazia Khurshid, and Muhammad Iqbal — worked as a team to make this Conference a success. Saira Rehman, Assistant Editor, IPRI did well as stage secretary. All efforts were made to make the Conference as productive and result oriented as possible. However, if there were areas left wanting in some respect the Conference management owns responsibility for that. iv Solutions for Energy Crisis in Pakistan ACRONYMS ADB Asian Development Bank Bcf Billion Cubic Feet BCMA
    [Show full text]
  • Experience of Indirect Cofiring of Biomass and Coal
    Experience of indirect cofiring of biomass and coal Rohan Fernando CCC/64 October 2002 Copyright © IEA Clean Coal Centre ISBN 92-9029-370-9 Abstract There has been increasing interest in the use of biomass for power generation in recent years. The principal reason for this is that the use of biomass can significantly reduce net CO2 emissions. Other advantages of utilising biomass are that it diversifies the power plant’s fuel portfolio, it can lead to reductions in SO2 and NOx emissions and that such use can help to dispose of a solid waste. There are some disadvantages of firing biomass which relate to its supply, transportation and composition and these can be reduced if the biomass is cofired with coal. Cofiring can be direct, where the biomass and coal are fired in the same boiler, or indirect, where the combustion or gasification of biomass occurs in a separate unit. This report concentrates on indirect cofiring which is taken to mean technologies in which the ash from the coal and biomass are kept separate. Direct cofiring is relatively straightforward but can lead to several technical concerns. Indirect cofiring incurs greater costs and is particularly suitable for biomass containing troublesome components or when the quality of the ash is of importance. Indirect cofiring is less common than direct cofiring. The report discusses the relative advantages and disadvantages of direct and indirect cofiring. It then describes the following plants which indirectly cofire biomass: Aabenraa in Denmark, Amergas in the Netherlands, Avedøre 2 in Denmark, Kymijärvi in Finland, Zeltweg in Austria and Västerås in Sweden.
    [Show full text]
  • Impact of Rising Natural Gas Prices on U.S. Ammonia Supply
    A Report from the Economic Research Service United States Department www.ers.usda.gov of Agriculture WRS-0702 August 2007 Impact of Rising Natural Gas Prices on U.S. Ammonia Supply Wen-yuan Huang Abstract The volatile and upward trend in U.S. natural gas prices from 2000-06 has led to a 17- percent decline in the Nation’s annual aggregate supply of ammonia. During the period, U.S. ammonia production declined 44 percent, while U.S. ammonia imports increased Contents 115 percent. Also, the share of U.S.-produced ammonia in the U.S. aggregate supply of ammonia dropped from 80 to 55 percent, while the share from imports increased from Introduction ........................1 15 percent to 42 percent. Meanwhile, ammonia prices paid by farmers increased from $227 per ton in 2000 to $521 per ton in 2006, an increase of 130 percent. Natural gas is Background ........................3 the main input used to produce ammonia. Additional increases in U.S. natural gas prices could lead to a further decline in domestic ammonia production and an even greater rise Impact of Natural Gas Prices on Ammonia in ammonia imports. Prices ................................5 Keywords: Natural gas and ammonia prices, ammonia supply, nitrogen fertilizers Effects of Natural Gas Prices on Ammonia Producers .........................6 Acknowledgments Effects of Rising Natural Gas Prices on Farmers .....................10 The author thanks the Fertilizer Institute, the International Center for Soil Fertility and Future Sources of Agricultural Development, and the National Gas Company of Trinidad and Tobago Ammonia Supply in Limited for providing data used in this study. The author also thanks the following indi- the United States ............12 viduals for their helpful suggestions: Stan Daberkow and Greg Pompelli of USDA’s Economic Research Service and James Duffield of USDA’s Office of Energy Policy Summary and Implications ......................15 and New Uses, and Harry Vroomen, the Fertilizer Institute.
    [Show full text]
  • 2020 Stainless Steels in Ammonia Production
    STAINLESS STEELS IN AMMONIA PRODUCTION A DESIGNERS’ HANDBOOK SERIES NO 9013 Produced by Distributed by AMERICAN IRON NICKEL AND STEEL INSTITUTE INSTITUTE STAINLESS STEELS IN AMMONIA PRODUCTION A DESIGNERS’ HANDBOOK SERIES NO 9013 Originally, this handbook was published in 1978 by the Committee of Stainless Steel Producers, American Iron and Steel Institute. The Nickel Institute republished the handbook in 2020. Despite the age of this publication the information herein is considered to be generally valid. Material presented in the handbook has been prepared for the general information of the reader and should not be used or relied on for specific applications without first securing competent advice. The Nickel Institute, the American Iron and Steel Institute, their members, staff and consultants do not represent or warrant its suitability for any general or specific use and assume no liability or responsibility of any kind in connection with the information herein. Nickel Institute [email protected] www.nickelinstitute.org CONTENTS INTRODUCTION ............................ 4 PROCESS DESCRIPTION ............ 5 CORROSIVES IN AMMONIA PROCESSES ............... 5 CONSIDERATIONS FOR SELECTING STAINLESS STEELS .......................................... 6 Desulfurization of Natural Gas ....................... 6 Catalytic Steam Reforming of Natural Gas ....................... 6 Carbon Monoxide Shift .............. 8 Removal of Carbon Dioxide . 10 Methanation ............................. 11 Synthesis of Ammonia ............. 11
    [Show full text]
  • Carbon Footprint for Mercury Capture from Coal-Fired Boiler Flue Gas
    energies Article Carbon Footprint for Mercury Capture from Coal-Fired Boiler Flue Gas Magdalena Gazda-Grzywacz 1,* , Łukasz Winconek 2 and Piotr Burmistrz 1 1 Faculty of Energy & Fuels, AGH University of Science and Technology, Mickiewicz Avenue 30, 30-059 Krakow, Poland; [email protected] 2 Grand Activated Sp. z o.o., Białostocka 1, 17-200 Hajnówka, Poland; [email protected] * Correspondence: [email protected] Abstract: Power production from coal combustion is one of two major anthropogenic sources of mercury emission to the atmosphere. The aim of this study is the analysis of the carbon footprint of mercury removal technologies through sorbents injection related to the removal of 1 kg of mercury from flue gases. Two sorbents, i.e., powdered activated carbon and the coke dust, were analysed. The assessment included both direct and indirect emissions related to various energy and material needs life cycle including coal mining and transport, sorbents production, transport of sorbents to the power plants, and injection into flue gases. The results show that at the average mercury concentration in processed flue gasses accounting to 28.0 µg Hg/Nm3, removal of 1 kg of mercury from flue gases required 14.925 Mg of powdered activated carbon and 33.594 Mg of coke dust, respec- tively. However, the whole life cycle carbon footprint for powdered activated carbon amounted to −1 89.548 Mg CO2-e·kg Hg, whereas for coke dust this value was around three times lower and −1 amounted to 24.452 Mg CO2-e·kg Hg. Considering the relatively low price of coke dust and its lower impact on GHG emissions, it can be found as a promising alternative to commercial powdered Citation: Gazda-Grzywacz, M.; activated carbon.
    [Show full text]
  • Appendix A: Calculation of Flue Gas Composition
    Appendix A: Calculation of Flue Gas Composition Consider 100 kg of biomass (pine wood) with an Ultimate Analysis on a dry ash free basis given in Table A.1. This calculation assumes that all the carbon is burned i.e. there is no carbon in the ash or carbon monoxide formed. If there is the unburned carbon has to be sub- tracted from the value of carbon in the above table. Also that the S, N and Cl are negligible and there is no ingress of N2 in the flue or sampling system. Moisture content given in the Proximate Analysis has to be allowed for in the calculation as well. Assume the combustion reactions are C + O2 = CO2 2H2 + O2 = 2H2O Oxygen required for stoichiometric combustion = 4.33 + 1.6 − 1.3 = 4.63kg-mol Air requirement = [4.63 × 100 × 22.41 ]/[ 21]=494.1 m3 at NTP Composition of the dry flue gas from the stoichiometric combustion of 1 kg of biomass: 3 N2 from theoretical air 4.94 0.79 3.90 m . = × = 3 N2 from biomass 0.001 0.224 0.0002 m . = × = 3 CO2 from biomass 4.33 0.224 0.97 m . Total amount of dry= flue gas× per 1 kg= wood 4.872 m3. = If the concentration in the wet flue gas is required then the water content has to be included in the above calculation. © The Author(s) 2014 105 J.M. Jones et al., Pollutants Generated by the Combustion of Solid Biomass Fuels, SpringerBriefs in Applied Sciences and Technology, DOI 10.1007/978-1-4471-6437-1 106 Appendix A: Calculation of Flue Gas Composition Table A.1 Calculation of Element Molecular weight Mols O2 required flue gas composition C, 52.00 12 4.33 H, 6.20 2 1.6 O, 41.60 32 1.3 − N, 0.2 28 Therefore % CO 0.97/4.872 19.91 assuming stoichiometric combustion (0 % 2 = = O2).
    [Show full text]
  • Wind to Hydrogen to Ammonia Pilot Project
    Renewable Energy Storage and Utilization Using Hydrogen and Anhydrous Ammonia MN House Energy and Climate Committee August 27, 2020 Michael Reese, Director - Renewable Energy Dr. Prodromos Daoutidis, Professor UMN West Central Research and Outreach Center UMN Dept. of Chemical Engineering and Morris, MN Material Science Minneapolis, MN Renewable Ammonia for Energy Storage University of Minnesota is a global research leader in this field. NH3 UMM 1.65 MW 131 kW solar PV Wind Turbine and two 10 kW small wind turbines 1.65 MW Vestas V82 Wind Turbine H2 & NH3 Pilot Plant Existing Wind-to-Ammonia Pilot Plant at the UMN WCROC, Morris, MN G. Soloveichik, US Dept. of Energy, 2016 Slide 2 Benefits for using ammonia as regional-scale energy storage •Provides both distribution and transmission-scale energy storage, •Wide range of fuel uses (ICE genset, turbine, fuel cell, and thermal energy) •Seasonal storage capability, •Grid stabilization, •Readily dispatchable generation capacity (Peak load and peak fertilizer months are complementary. High N fertilizer demand is during utility shoulder seasons.), •Enables utilization of excess generation of wind, solar, and nuclear (low and negatively priced power within the Regional Transmission Organization / Independent System Operator), •Provides emergency backup outside of traditional energy sources •Flexibility between renewable and non-renewable generation (allows choice of carbon intensity of fuel between green and brown ammonia) •Significant levels of ammonia storage already in the Midwest (and usually
    [Show full text]
  • Process Intensification with Integrated Water-Gas-Shift Membrane Reactor Reactor Concept (Left)
    INDUSTRIAL TECHNOLOGIES PROGRAM Process Intensification with Integrated Water-Gas-Shift Membrane Reactor Reactor concept (left). Flow diagram (middle): Hydrogen (H2) permeates the membrane where nitrogen (N2) sweeps the gas to Hydrogen-Selective Membranes for High- produce a high-pressure H2/N2 gas stream. Membrane diagram Pressure Hydrogen Separation (right): The H2-selective membrane allows the continuous removal of the H2 produced in the water-gas-shift (WGS) reaction. This allows for the near-complete conversion of carbon monoxide (CO) This project will develop hydrogen-selective membranes for an innovative water-gas-shift reactor that improves gas separation to carbon dioxide (CO2) and for the separation of H2 from CO2. efficiency, enabling reduced energy use and greenhouse gas Image Courtesy of General Electric Company, Western Research Institute, emissions. and Idaho National Laboratory. Benefits for Our Industry and Our Nation Introduction The development of an integrated WGS-MR for hydrogen The goal of process intensification is to reduce the equipment purification and carbon capture will result in fuel flexibility footprint, energy consumption, and environmental impact of as well as environmental, energy, and economic benefits. manufacturing processes. Commercialization of this technology has the potential to achieve the following: One candidate for process intensification is gasification, a common method by which hydrocarbon feedstocks such as coal, • A reduction in energy use during the separation process by biomass, and organic waste are reacted with a controlled amount replacing a conventional WGS reactor and CO2 removal system of oxygen and steam to produce synthesis gas (syngas), which with a WGS-MR and downsized CO2 removal unit is composed primarily of hydrogen (H2) and carbon monoxide (CO).
    [Show full text]