THE THECAMOEBIAN BIBLIOGRAPHY 2Nd Edition

Total Page:16

File Type:pdf, Size:1020Kb

THE THECAMOEBIAN BIBLIOGRAPHY 2Nd Edition Palaeontologia Electronica http://palaeo-electronica.org Preamble to the 2nd Edition. Since the publication of the first edition we have collected about 1,000 new titles which are inserted in the second edition. All the remarks and caveats in the Introduction are valid for both editions. The first edition of this document was published in 1999. THE THECAMOEBIAN BIBLIOGRAPHY 2nd Edition F.S. Medioli, L. Bonnet, David B. Scott, and Barbara Elizabeth Medioli ABSTRACT The literature on thecamoebians can be rather confusing, partly because it has been published in many different languages, but mainly because these Rhizopoda have been the subject of study for a wide array of researchers with very different inter- ests. Not only has this resulted in fragmentation of the literature due to research results being published in journals specializing in different fields, but inevitably has also resulted in development of a chaotic terminology and nomenclature. For example there is even confusion as to what to call the group, as terms such as "rhizopods," "testate amoebae," and "arcellaceans" have all been used by various authors as synonyms of "Thecamoebians." Even more confusing is the nomenclature of the described the- camoebian species. Lack of access to the literature and limited interchange between the various research groups has generated many synonyms. Although only a first step this fairly complete bibliography on thecamoebians has been compiled to assist researchers become more aware of the available literature. F.S. Medioli, David B. Scott. Dalhousie University, Department of Earth Sciences, Halifax, Nova Scotia, B3H 3J5, Canada. [email protected]. [email protected]. L. Bonnet. Professor Emeritus, Faculty of Sciences, University Paul-Sabatier (Toulouse) France. [email protected]. Barbara Elizabeth Medioli. Terrain Sciences Division / Division de la Science des Terrains, Geological Survey of Canada / Commission Géologique du Canada, Natural Resources Canada / Ressources naturelles Canada, Government of Canada / Gouvernement du Canada, 601 Booth Street / 601 rue Booth, Ottawa, Ontario K1A 0E8 / Ottawa (Ontario) K1A 0E8. [email protected]. Keywords: arcellaceans, bibliography, rhizopods, testate amoebae, thecamoebians Copyright: Paleontological Society, September 2003 Submission: 21 October 2002, Acceptance: 18 September 2003 Medioli, F.S., Bonnet, L., Scott, David B., and Medioli, Barbara Elizabeth. 2003. The Thecamoebian Bibliography, 2nd edition. Palaeontologia Electronica 6(5): 107, 2.1MB; http://palaeo-electronica.org/paleo/2003_1/biblio/issue1_03.htm MEDIOLI, BONNET, SCOTT AND MEDIOLI: THE THECAMOEBIAN BIBLIOGRAPHY INTRODUCTION During the course of many years of research on thecamoebians we have built a substantial collection of reprints and photocopies of recent and old articles. As a result we have indirectly accumulated a large num- ber of references (well over 3000) which we report in this bibliography. We hope that this information will be a useful reference for researchers interested in working with fossil and sub-fossil thecamoebians. The World Wide Web is a perfect vehicle to dis- seminate this type of information. The literature on thecamoebians can be rather confusing, partly because it is in many different lan- guages but mainly because it is pub- lished in journals specialized in different fields. Inevitably, this has resulted in a somewhat chaotic termi- nology and nomenclature, so that terms such as "rhizopods," "testate amoebae," and "arcellaceans" have been used by various authors as syn- onyms of "Thecamoebians" (e.g., Figure 1 and Figure 2). The term "Arcellacea," often used as a syn- onym of Thecamoebians, is just a Superfamily of the Order Arcellinida, while "Thecamoebians" (Loeblich and Tappan, 1964) is an informal name, indicative of a polyphyletic [i.e., coming from different Classes] "group" of convenience, including part of the class Rhizopodea, Sub- class Lobosia, Orders Arcellinida, as well as part of the Class Reticularea, Subclass Filosia, Order Gromida Figure 1. Modified from Cash, J., and Hopkinson, J. 1909. The British [and probably part of the Suborder freshwater Rhizopoda and Heliozoa: v. II: Rhizopoda, Part II: Ray Soci- Allogromiina]. Even more confusing ety (London) publication no 89, pp. i-xviii, 1-166. is the nomenclature of the thecamoe- bian species. Lack of access to the literature and poor communication between the complete the abbreviations used by some journals various authors, as well as an almost endemic ten- that might have been easily understandable locally dency to over-split, have generated an almost but are rather obscure internationally. We list unbelievable clutter of synonyms. We feel that the them, however, because they still represent a clue availability of a fairly complete bibliography, acces- and are thus potentially useful. We hope that by sible to all researchers, will help mitigate some of listing even the incomplete entries here for univer- these problems. sal view on the WWW we will finally complete them In forming this bibliography we tried to be as all, with the help of the users of this bibliography. In informative as possible. Some of the entries are some cases we had a shortage of dependable incomplete and we were never able to find the information. The organization of many old journals, actual article. In other cases we were unable to for example, can be very confusing. For example, many learned societies published the transcripts of 2 MEDIOLI, BONNET, SCOTT AND MEDIOLI: THE THECAMOEBIAN BIBLIOGRAPHY oral presentation under two dates: the date of presentation and the date of publication of the journal. In addition, some authors were in the habit of presenting the same paper at meetings of different societies. It was sometimes frus- trating for us to find, often after lengthy searches, that we had simply obtained a second copy of the same paper. To avoid similar struggles for users of this bibliog- raphy, we indicate when we know this is the case. For some recent references, particularly European ones printed in local journals, we often had pre-prints with pagination dif- ferent from the final one or no pagination at all; we could not do much about these. We apologize for the relatively few tentative or vague references, and for the abundant mistakes that we proba- bly inherited from other authors' bibliographies. We feel they are better leads than no reference at all. Whenever we were aware of problems, however, we made it clear by inserting the symbol (??). In a few cases, particularly amongst the very old references, our entries are "derived" from other authors' bibliographies, and we have not seen the original published papers. Knowing that some earlier authors were at times somewhat inaccurate in their bibliographies, we do not rule out the possibility that some of our entries may lead nowhere. We definitely know that some of Figure 2. Modified from Cash, J., and Hopkinson, J. 1909. The British these authors did occasionally ref- freshwater Rhizopoda and Heliozoa: v. II: Rhizopoda, Part II: Ray Society erence non-existent papers (London) publication no 89, pp. i-xviii, 1-166. (whether the references were sim- ply wrong or whether they were quoting by memory articles that were never written, someone with access to the journal will let us we do not know). know. For a very few other references we were not Since we intend to keep working at improving certain whether the cited paper actually dealt with this bibliography, we would appreciate receiving thecamoebians. Although the title and the general corrections and clarifications and, if at all possible, production of the authors suggest that the paper reprints and/or photocopies of recent and old arti- should be included here, without actually seeing cles. Errors or omissions can be brought to our the article we could not verify it. In such cases, we attention at the email addresses listed in the have supplied the reference anyway, in hopes that Abstract. 3 MEDIOLI, BONNET, SCOTT AND MEDIOLI: THE THECAMOEBIAN BIBLIOGRAPHY ABD-AWE Abdul, K.S., and Younis, W.R. 1984. Difflugia species Anderson, O.R. 1996. The from the sediments of the Mesopotamian region, physiological ecology of southern Iraq: Journal of the Geological Society of planktonic sarcodines with Iraq, 16-17: 98-102. applications to paleoecology: Abraham, A., Biczok, F., Horvath, A., and Megyeri, J. patterns in space and time: 1956. Hydrobiologische und faunistische studien im Journal of Eukaryotic südwestlichen Teil des Bukk-Gebirges: Acta Microbiology, 4: 261-274. Biologica, 2: 137-154. André, E. 1898. Note sur les Abraham, A., Biczok, F., and Megyeri, J. 1957. Rhizopodes testacés du bassin de la Plessur: Hydrobiologische Untersuchungen, am Ostlichen Jahrebericht der naturische Gesellschaft Teile des Bükkgebirges: Acta Universitatis Graubünden, Neue Folge, 41: 57-59. Szediensis, 3: ?? Archer, W. 1866. Remarks on Freshwater Rhizopoda: Abraham, A., Biczok, F., and Megyeri, J. 1959. Quarterly Journal of Microscopical Science, new Vergleichende faunistische Untersuchungen in den series, 6: 190-191. klein Wässern des Bükkgebirges: Acta Biologica, Archer, W. 1866a. "No title". (Remarks on freshwater new series, 201-214. Rhizopoda): Quarterly Journal of Microscopical Aescht, E. 1994. Effects of organically enriched Science, new series, 6: 185-188. magnesite fertilizers on the testate amebas of a Archer, W. 1866. "No title". (Remarks on freshwater spruce forest: European Journal of Soil Biology, 30: Rhizopoda): Quarterly Journal of
Recommended publications
  • Protozoan Fauna of Freshwater Habitats in South Dum Dum Municipality, North 24 Parganas, West Bengal
    Journal of Academia and Industrial Research (JAIR) Volume 3, Issue 3 August 2014 139 ISSN: 2278-5213 RESEARCH ARTICLE Protozoan Fauna of Freshwater Habitats in South Dum Dum Municipality, North 24 Parganas, West Bengal J. Chitra Protozoology Section, Lower Invertebrate Division, M Block, New Alipore, Kolkata-700053, India [email protected]; +91 98315 47265 ______________________________________________________________________________________________ Abstract Wetlands of South Dum Dum Municipality were focused to reveal the status of the planktonic protozoan fauna in detail. A total of 37 different sites were selected and plankton samples from these sites were collected. About 16 sp. of protozoa were identified from few localities from the present investigation. Eight species of rhizopoda belonged to 4 genera, 4 family (Pelomyxidae, Arcellidae, Centropyxidae and Difflugiidae) and 2 order (Pelobintida and Arcellinida), Four species of flagellate belongs to 2 genera, 1 family (Euglinidae) and 1 order (Euglenida), 4 species of ciliate belongs to 4 genera, 4 family (Colepidae, Vorticellidae, Euplotidae and Paramaeciidae), 2 order (Prorodontida and Peritrichida) and 2 suborder (Sporadotrichinia and Peniculina). Among 37 localities, protozoans were observed only in L2, L3, L8, L9, L12, L13, L15, L17, L18, L19, L21, L24, L26, L32, L33, L34 and L36 localities. Protozoan diversity and their abundance were noticed higher in L12, L18, L21, L26, L33 and L34 localities. Euglena viridis, E. acus, E. oxyuris and Phacus acumininata, Pelomyxa palustris, Vorticella companula were found to be higher in abundance and distribution. Keywords: South Dum Dum municipality, planktonic protozoan, Euglena viridis, abundance, distribution. Introduction Dumdum Park, Amarpalli, Telipukur, Nager Bazar, Protozoa are highly abundant in all aquatic habitats and Patipukur and Dum Dum were selected and the plankton greatly involved in food chain (Finlay, 1997).
    [Show full text]
  • Novaya Zemlya Archipelago (Russian Arctic)
    This is a repository copy of First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127196/ Version: Accepted Version Article: Mazei, Yuri, Tsyganov, Andrey N, Chernyshov, Viktor et al. (2 more authors) (2018) First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic). Polar Biology. ISSN 0722-4060 https://doi.org/10.1007/s00300-018-2273-x Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic) 2 Yuri A. Mazei1,2, Andrey N. Tsyganov1, Viktor A. Chernyshov1, Alexander A. Ivanovsky2, Richard J. 3 Payne1,3* 4 1. Penza State University, Krasnaya str., 40, Penza 440026, Russia. 5 2. Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russia. 6 3. University of York, Heslington, York YO10 5DD, United Kingdom.
    [Show full text]
  • The Centropyxis Aerophila Complex (Protozoa: Testacea)
    NENCKI INSTITUTE OF EXPERIMENTAL BIOLOGY VOLUME 39 NUMBER ^ WARSAWhttp://rcin.org.pl, POLAND 2000 ISSN 0065-1583 Polish Academy of Sciences Nencki Institute of Experimental Biology and Polish Society of Cell Biology ACTA PROTOZOOLOGICA International Journal on Protistology Editor in Chief Jerzy SIKORA Editors Hanna FABCZAK and Anna WASIK Managing Editor Małgorzata WORONOWICZ-RYMASZEWSKA Editorial Board Andre ADOUTTE. Paris J. I. Ronny LARSSON, Lund Christian F. BARDELE, Tübingen John J. LEE, New York Magdolna Cs. BERECZKY, Göd Jiri LOM, Ceske Budejovice Jean COHEN, Gif-Sur-Yvette Pierangelo LUPORINI, Camerino John O. CORLISS, Albuquerque Hans MACHEMER, Bochum Gyorgy CSABA, Budapest Jean-Pierre MIGNOT, Aubiere Isabelle DESPORTES-LIVAGE, Paris Yutaka NAITOH, Tsukuba Tom FENCHEL, Helsing0r Jytte R. NILSSON, Copenhagen Wilhelm FOISSNER, Salsburg Eduardo ORIAS, Santa Barbara Vassil GOLEMANSKY, Sofia Dimitrii V. OSSIPOV, St. Petersburg Andrzej GRĘBECKI, Warszawa, Vice-Chairman Leif RASMUSSEN, Odense Lucyna GRĘBECKA, Warszawa Sergei O. SKARLATO, St. Petersburg Donat-Peter HÄDER, Erlangen Michael SLEIGH, Southampton Janina KACZANOWSKA, Warszawa JifiVÄVRA, Praha Stanisław L. KAZUBSKI, Warszawa Patricia L. WALNE, Knoxville Leszek KUZNICKI, Warszawa, Chairman ACTA PROTOZOOLOGICA appears quarterly. The price (including Air Mail postage) of subscription to ACTA PROTOZOOLOGICA at 2001 is: US $ 200,- by institutions and US $ 120,- by individual subscribers. Limited numbers of back volumes at reduced rate are available. TERMS OF PAYMENT: check, money oder or payment to be made to the Nencki Institute of Experimental Biology account: 111-01053-401050001074 at Państwowy Bank Kredytowy XIII Oddz. Warszawa, Poland. For matters regarding ACTA PROTOZOOLOGICA, contact Editor, Nencki Institute of Experimental Biology, ul. Pasteura 3, 02-093 Warszawa, Poland; Fax: (4822) 822 53 42; E-mail: [email protected] For more information see Web page http://www.nencki.gov.pl/ap.htm).
    [Show full text]
  • IN WATER RESERVOIRS of UKRAINE Fauna and Systematics
    Vestnik zoologii, 50(4): 291–300, 2016 Fauna and Systematics DOI 10.1515/vzoo-2016-0036 UDC 593.121 NEW FINDS OF NAKED AMOEBAE (PROTISTA) IN WATER RESERVOIRS OF UKRAINE M. K. Patsyuk Zhytomyr Ivan Franko State University; Vel. Berdychivska st., 40, Zhytomyr, 10008 Ukraine E-mail: [email protected] New Finds of Naked Amoebae in Water Reservoirs of Ukraine. Patsyuk, M. K. — In the water bodies of Ukraine, 6 new species of naked amoebae were found: Saccamoeba sp., Ripella sp., Vannella lata Page, 1988, Th ecamoeba sp., Acanthamoeba sp., Vahlkampfi a sp. According to the current taxonomy, they belong to 3 classes, 4 orders, 5 families and 6 genera. New localities and original descriptions of the species are presented, along with brief characteristics of the corresponding genera. Th ecamoeba sp. and Acanthamoeba sp. are fi rst reported from the territory of Ukraine. Key words: naked amoebae, water reservoirs, Ukraine. Introduction In our previous surveys, 45 species of naked amoebae were found in water bodies of the Ukrainian Polys- sya; the fi ndings allowed to analyze the specifi cs of the protists’ habitats (Patsyuk, 2010, 2011 a, b, 2012 a, b, 2013 a, b, 2014 a–d, 2015 a, c; Patcyuk, Dovgal, 2012). The species found were assigned to lobose, fi lose and heterolobose amoebae. Previously, we also found 9 naked lobose sea-dwelling species among the amoebae of the Black Sea in Sevastopol vicinities (Patsyuk, 2015 b). Th e list of the protists in the fauna of Ukraine is expanding due to the examination of diff erent types of water reservoirs.
    [Show full text]
  • Testate Amoebae from South Vietnam Waterbodies with the Description of New Species Difflugia Vietnamicasp
    Acta Protozool. (2018) 57: 215–229 www.ejournals.eu/Acta-Protozoologica ACTA doi:10.4467/16890027AP.18.016.10092 PROTOZOOLOGICA LSID urn:lsid:zoobank.org:pub:AEE9D12D-06BD-4539-AD97-87343E7FDBA3 Testate Amoebae from South Vietnam Waterbodies with the Description of New Species Difflugia vietnamicasp. nov. Hoan Q. TRANa, Yuri A. MAZEIb, c a Vietnamese-Russian Tropical Center, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Ha Noi, Vietnam b Department of Hydrobiology, Lomonosov Moscow State University, Moscow, Russia c Department of Zoology and Ecology, Penza State University, Penza, Russia Abstract. Testate amoebae in Vietnam are still poorly investigated. We studied species composition of testate amoebae in 47 waterbodies of South Vietnam provinces including natural lakes, reservoirs, wetlands, rivers, and irrigation channels. A total of 109 species and subspe- cies belonging to 16 genera, 9 families were identified from 191 samples. Thirty-five species and subspecies were observed in Vietnam for the first time. New speciesDifflugia vietnamica sp. nov. is described. The most species-rich genera are Difflugia (46 taxa), Arcella (25) and Centropyxis (14). Centropyxis aculeata was the most common species (observed in 68.1% samples). Centropyxis aerophila sphagniсola, Arcella discoides, Difflugia schurmanni and Lesquereusia modesta were characterised by a frequency of occurrence >20%. Other spe- cies were rarer. The species accumulation curve based on the entire dataset of this work was unsaturated and well fitted by equation S = 19.46N0.33. Species richness per sample in natural lakes and wetlands were significantly higher than that of rivers (p < 0.001). The result of the Spearman rank test shows weak or statistically insignificant relationships between species richness and water temperature, pH, dissolved oxygen, and electrical conductivity.
    [Show full text]
  • Protistology Review of Diversity and Taxonomy of Cercomonads
    Protistology 3 (4), 201217 (2004) Protistology Review of diversity and taxonomy of cercomonads Alexander P. Myl’nikov 1 and Serguei A. Karpov 2 1 Institute for the Biology of Inland Waters, Borok, Yaroslavl district, Russia 2 Biological Faculty, Herzen Pedagogical State University, St. Petersburg, Russia Summary Cercomonads are very common heterotrophic flagellates in water and soil. Phylogenetically they are a key group of a protistan phylum Cercozoa. Morphological and taxonomical analysis of cercomonads reveals that the order Cercomonadida (Vickerman) Mylnikov, 1986 includes two families: Cercomonadidae Kent, 1880 (=Cercobodonidae Hollande, 1942) and Heteromitidae Kent, 1880 em. Mylnikov, 2000 (=Bodomorphidae Hollande, 1952), which differ in several characters: body shape, temporary/habitual pseudopodia, presence/absence of plasmodia stage and microtubular cone, type of extrusomes. The family Cercomonadidae includes Cercomonas Dujardin, 1841 and Helkesimastix Woodcock et Lapage, 1914. All species of Cercobodo are transferred to the genus Cercomonas. The family Heteromitidae includes Heteromita Dujardin, 1841 emend. Mylnikov et Karpov, Protaspis Skuja, 1939, Allantion Sandon, 1924, Sainouron Sandon, 1924, Cholamonas Flavin et al., 2000 and Katabia Karpov et al., 2003. The names Bodomorpha and Sciviamonas are regarded as junior synonyms of Heteromita. The genus Proleptomonas Woodcock, 1916 according to its morphology is not a cercomonad, and is not included in the order. The genus Massisteria Larsen and Patterson, 1988 is excluded from
    [Show full text]
  • A Revised Classification of Naked Lobose Amoebae (Amoebozoa
    Protist, Vol. 162, 545–570, October 2011 http://www.elsevier.de/protis Published online date 28 July 2011 PROTIST NEWS A Revised Classification of Naked Lobose Amoebae (Amoebozoa: Lobosa) Introduction together constitute the amoebozoan subphy- lum Lobosa, which never have cilia or flagella, Molecular evidence and an associated reevaluation whereas Variosea (as here revised) together with of morphology have recently considerably revised Mycetozoa and Archamoebea are now grouped our views on relationships among the higher-level as the subphylum Conosa, whose constituent groups of amoebae. First of all, establishing the lineages either have cilia or flagella or have lost phylum Amoebozoa grouped all lobose amoe- them secondarily (Cavalier-Smith 1998, 2009). boid protists, whether naked or testate, aerobic Figure 1 is a schematic tree showing amoebozoan or anaerobic, with the Mycetozoa and Archamoe- relationships deduced from both morphology and bea (Cavalier-Smith 1998), and separated them DNA sequences. from both the heterolobosean amoebae (Page and The first attempt to construct a congruent molec- Blanton 1985), now belonging in the phylum Per- ular and morphological system of Amoebozoa by colozoa - Cavalier-Smith and Nikolaev (2008), and Cavalier-Smith et al. (2004) was limited by the the filose amoebae that belong in other phyla lack of molecular data for many amoeboid taxa, (notably Cercozoa: Bass et al. 2009a; Howe et al. which were therefore classified solely on morpho- 2011). logical evidence. Smirnov et al. (2005) suggested The phylum Amoebozoa consists of naked and another system for naked lobose amoebae only; testate lobose amoebae (e.g. Amoeba, Vannella, this left taxa with no molecular data incertae sedis, Hartmannella, Acanthamoeba, Arcella, Difflugia), which limited its utility.
    [Show full text]
  • Protist Phylogeny and the High-Level Classification of Protozoa
    Europ. J. Protistol. 39, 338–348 (2003) © Urban & Fischer Verlag http://www.urbanfischer.de/journals/ejp Protist phylogeny and the high-level classification of Protozoa Thomas Cavalier-Smith Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK; E-mail: [email protected] Received 1 September 2003; 29 September 2003. Accepted: 29 September 2003 Protist large-scale phylogeny is briefly reviewed and a revised higher classification of the kingdom Pro- tozoa into 11 phyla presented. Complementary gene fusions reveal a fundamental bifurcation among eu- karyotes between two major clades: the ancestrally uniciliate (often unicentriolar) unikonts and the an- cestrally biciliate bikonts, which undergo ciliary transformation by converting a younger anterior cilium into a dissimilar older posterior cilium. Unikonts comprise the ancestrally unikont protozoan phylum Amoebozoa and the opisthokonts (kingdom Animalia, phylum Choanozoa, their sisters or ancestors; and kingdom Fungi). They share a derived triple-gene fusion, absent from bikonts. Bikonts contrastingly share a derived gene fusion between dihydrofolate reductase and thymidylate synthase and include plants and all other protists, comprising the protozoan infrakingdoms Rhizaria [phyla Cercozoa and Re- taria (Radiozoa, Foraminifera)] and Excavata (phyla Loukozoa, Metamonada, Euglenozoa, Percolozoa), plus the kingdom Plantae [Viridaeplantae, Rhodophyta (sisters); Glaucophyta], the chromalveolate clade, and the protozoan phylum Apusozoa (Thecomonadea, Diphylleida). Chromalveolates comprise kingdom Chromista (Cryptista, Heterokonta, Haptophyta) and the protozoan infrakingdom Alveolata [phyla Cilio- phora and Miozoa (= Protalveolata, Dinozoa, Apicomplexa)], which diverged from a common ancestor that enslaved a red alga and evolved novel plastid protein-targeting machinery via the host rough ER and the enslaved algal plasma membrane (periplastid membrane).
    [Show full text]
  • Hymenoptera: Tenthredinidae) 405-417 © Biologiezentrum Linz/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Linzer biologische Beiträge Jahr/Year: 2003 Band/Volume: 0035_1 Autor(en)/Author(s): Altenhofer Ewald, Pschorn-Walcher Hubert Artikel/Article: Biologische Notizen über die Blattwespen-Gattungen Metallus FORBES, Monostegia A. COSTA und Phymatocera DAHLBOM (Hymenoptera: Tenthredinidae) 405-417 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Linzer biol. Beitr. 35/1 405-417 30.6.2003 Biologische Notizen über die Blattwespen-Gattungen Metallus FORBES, Monostegia A. COSTA und Phymatocera DAHLBOM (Hymenoptera: Tenthredinidae) E. ALTENHOFER & H. PSCHORN-WALCHER Abstract: Larval collections and rearings have been made of the European species of the sawfly genera Metallus, Monostegia, and Phymatocera. The biology of Metallus albipes, a leaf-miner specialized on raspberries, is described in some detail. M. pumilus has been reared mainly from dewberries (Rubus caesius), less often from rock bramble (R. saxatilis), but has rarely been found on blackberries (R. fruticosus agg.). M. lanceolatus, mining the leaves of wood avens (Geum urbanum), is also briefly dealt with. The larvae of these leaf-miners are described and a total of 11 species of parasitoids have been reared from them, including 3 highly specific Ichneumonid species of the genera Lathrolestes and Grypocentrus. Monostegia nigra, an entirely black sawfly species separated from M. abdominalis by TAEGER (1987), has been reared from Lysimachia punctata in gardens. In contrast to M. abdominalis, frequently reared also from L. vulgaris (yellow loosestrife), M. nigra lays several eggs dispersed over a leaf (not in an oblong cluster) and the head capsule of the larvae is uniformly yellowish (not with a dark stripe on the vertex).
    [Show full text]
  • Arcellinida: Rhizopoda) from India
    Journal on New Biological Reports ISSN 2319 – 1104 (Online) JNBR 4(1) 41 – 45 (2015) Published by www.researchtrend.net First record of Centropyxis delicatula Penard, 1902 (Arcellinida: Rhizopoda) from India Jasmine Purushothaman1* and Bindu.L2 1* Protozoology Section, Zoological Survey of India, Kolkata-700053, India 2Marine Biology Regional Centre, Zoological Survey of India, Chennai. *Corresponding author:[email protected] | Received: 03February 2015 | Accepted: 07 March 2015 | ABSTRACT This is the first record of Centropyxis delicatula Penard, 1902 in India. Specimens were collected from the soil moss habitats of the state of Assam (Mangaldoi) and Tamilnadu (Villupuram, Kaliveli Lake). Distribution details and the key to the Centropyxis species reported from India are also presented. Key Words: Centropyxis delicatula, Assam, Soilmoss, Tamilnadu observed from two different habitats of two states INTRODUCTION of India, viz., Assam and Tamil Nadu. Centropyxis is a genus of testate amoeba of MATERIAL AND METHODS the class lobosea with a discoid or flattened test. The Genus Centropyxis belonging to the order The samples examined for the above cited species Arcellinida. It was erected by Stein 1857 with a were collected from the soil moss habitats of the type species Centropyxis aculeata and later it was Mangaldai town of Darrang district during the recorded by many workers worldwide. To date faunal survey of Assam in December, 2012. The more than 135 species and many varieties were district Darrang is situated in the central part of reported from world-wide and according to the Assam and on the northern side of the river natural habitat variability a variety of forms were Brahmaputra.
    [Show full text]
  • Testate Lobose Amoebae)
    Palaeontologia Electronica palaeo-electronica.org Mediolus, a new genus of Arcellacea (Testate Lobose Amoebae) R. Timothy Patterson ABSTRACT Mediolus, a new arcellacean genus of the Difflugidae (informally known as the- camoebia, testate rhizopods, or testate lobose amoebae) differs from other genera of the family in having distinctive tooth-like inward oriented apertural crenulations and tests generally characterized by a variable number of hollow basal spines. R. Timothy Patterson. Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario, K1S 5B6, Canada. [email protected] Keywords: Arcellacea; thecamoebian; testate lobose amoebae; Quaternary, new genus INTRODUCTION of the simple unilocular test (e.g., Bonnet, 1975; Medioli et al., 1987, 1990; Beyens and Meisterfeld, Arcellacea (also informally known as the- 2001), although some researchers have placed camoebians, testate amoebae, testate rhizopods, more emphasis on test composition (e.g., Ander- or testate lobose amoebae; Patterson et al., 2012) son, 1988). The proliferation of species descrip- are a diverse group of unicellular testate rhizopods tions within the Difflugia, often based on subtle test that occur in a wide array of aquatic and terrestrial differences, has resulted in considerable taxo- environments (Patterson and Kumar, 2002) from nomic confusion (Patterson and Kumar, 2002). the tropics to poles (Dalby et al., 2000). Although Researchers have often described new species most common in Quaternary sediments fossil based on regional interest, often with little consid- arcellaceans have been found preserved in sedi- eration of the previous literature or the systematic ments deposited under freshwater and brackish value of distinguishing characters (see discussions conditions spanning the Phanerozoic and into the in Medioli and Scott, 1983; Medioli et al., 1987; Neoproterozoic (Porter and Knoll, 2000; Van Ogden and Hedley, 1980; Tolonen, 1986; Bobrov Hengstum, 2007).
    [Show full text]
  • Barthelonids Represent a Deep-Branching Metamonad Clade with Mitochondrion-Related Organelles Generating No
    bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 3 Barthelonids represent a deep-branching Metamonad clade with mitochondrion-related 4 organelles generating no ATP. 5 6 Euki Yazaki1*, Keitaro Kume2, Takashi Shiratori3, Yana Eglit 4,5,, Goro Tanifuji6, Ryo 7 Harada7, Alastair G.B. Simpson4,5, Ken-ichiro Ishida7,8, Tetsuo Hashimoto7,8 and Yuji 8 Inagaki7,9* 9 10 1Department of Biochemistry and Molecular Biology, Graduate School and Faculty of 11 Medicine, The University of Tokyo, Tokyo, Japan 12 2Faculty of Medicine, University of Tsukuba, Ibaraki, Japan 13 3Department of Marine Diversity, Japan Agency for Marine-Earth Science and Technology, 14 Yokosuka, Japan 15 4Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada 16 5Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, 17 Halifax, Nova Scotia, Canada 18 6Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan 19 7Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 20 Ibaraki, Japan 21 8Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan 22 9Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan 23 24 Running head: Phylogeny and putative MRO functions in a new metamonad clade. 25 26 *Correspondence addressed to Euki Yazaki, [email protected] and Yuji Inagaki, 27 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/805762; this version posted October 29, 2019.
    [Show full text]