Constraints and Consequences in Medusan Evolution. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 J.H

Total Page:16

File Type:pdf, Size:1020Kb

Constraints and Consequences in Medusan Evolution. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 J.H 1 Constraints and consequences in medusan evolution. 2 3 J.H. Costello1 4 S.P. Colin2 5 J.O. Dabiri3 6 7 1 Biology Department 8 Providence College 9 Providence, RI 02819 10 Email: [email protected] 11 2 Environmental Sciences 12 Roger Williams University 13 One Old Ferry Rd. 14 Bristol, RI 02809 USA 15 Email: [email protected] 16 17 3 John O. Dabiri 18 Mail Code 138-78 19 California Institute of Technology 20 Pasadena, CA 91125 21 Email: [email protected] 22 23 24 25 = Corresponding Author 26 27 2 1 Abstract 2 Medusae were the earliest animals to evolve muscle-powered swimming in the seas. 3 Although they have achieved diverse and prominent ecological roles throughout the 4 world’s oceans, the limited cellular inheritance of the Medusozoa has constrained its 5 ecology and evolution. We argue that the primitive organization of cnidarian muscle 6 tissue limits force production and, hence, the mechanical alternatives for swimming bell 7 function. We present a model comparing the potential force production with the 8 hydrodynamic requirements of jet propulsion and conclude that jet production is possible 9 only at relatively small bell diameters. In contrast, production of a more complex wake 10 via what we term rowing propulsion permits much larger size but requires a different 11 suite of morphological features. Analysis of morphometric data from all medusan taxa 12 independently confirms size-dependent patterns of bell forms that correspond with model 13 predictions. Further, morphospace analysis indicates that various lineages within the 14 Medusozoa have proceeded along either of two evolutionary trajectories. The first 15 alternative involved restriction of jet propelled medusan bell diameters to small 16 dimensions. These medusae may either be solitary individuals (characteristic of 17 Anthomedusae and Trachymedusae), or aggregates of small individual medusan units 18 into larger colonial forms (characteristic of the nectophores of many members of the 19 Siphonophorae). The second trajectory involved use of rowing propulsion (characteristic 20 of Scyphozoa and some hydromedusan lineages such as the Leptomedusae and 21 Narcomedusae) that allows much larger bell sizes. Convergence on either of the differing 22 propulsive alternatives within the Medusozoa has emerged via parallel evolution among 23 different medusan lineages. For example, rowing propulsion has evolved independently 24 within the Scyphozoa, Leptomedusae and Narcomedusae. The variety of developmental 25 pathways and morphological structures employed among medusan lineages to achieve 26 either propulsive mode suggests that strong selective pressures underlie the highly 27 polarized medusan morphospace. The distinctions between propulsive modes have 28 important ecological ramifications because swimming and foraging are interdependent 29 activities for medusae. Prey selection is therefore dependent upon foraging mode. 30 Rowing swimmers are characteristically cruising predators that select different prey types 31 than jet-propelled medusae that are predominantly ambush predators. These relationships 32 indicate that the different biomechanical solutions to constraints on bell function have 33 entailed ecological consequences that are evident in the prey selection patterns and 34 trophic impacts of contemporary medusan lineages. 3 1 I. Introduction 2 Medusae are a diverse array of planktonic cnidarians occupying all of the world’s 3 oceans and some freshwater habitats. The Cnidaria is an ancient clade with origins in an 4 early radiation within the basal lineage giving rise to the rest of the animal kingdom 5 (Valentine 2004). Although the exact relationship between the ancient Cnidaria and the 6 rest of the Metazoa remain unresolved, it is clear that the cellular inheritance of medusae 7 rivals even the sponges in the restricted number of cell types available for body 8 construction (Bonner 1965, Valentine et al. 1994). Yet, unlike sponges, medusae are 9 characterized by the evolutionary innovation of muscle-powered motility. Diversification 10 of this muscular body plan allowed medusae to radiate into a variety of ecological niches 11 within planktonic and some benthic marine environments. However, the limited cellular 12 repertoire of the medusae also provides the opportunity to examine the means by which a 13 major animal lineage resolved constraints dictated by its phylogeny. By examining both 14 constraints and evolutionary solutions, we seek to define basic principles that organize 15 the structure and function of medusae. 16 Medusan diversity 17 Medusae are members of the subphylum Medusozoa that is characterized by 18 possession of a medusan stage during the life cycle of many members of the constituent 19 classes. The extant medusa-producing taxa within the Medusozoa include the classes 20 Hydrozoa, Scyphozoa and the Cubozoa. A fourth class, the Staurozoa, is an early 21 medusozoan taxon (Collins et al. 2006, van Iten et al. 2006) but produces no medusae. 22 Although possession of a medusa stage characterizes many members of the 23 Medusozoa, the form and organization of medusae vary substantially between and even 4 1 within the major medusozoan lineages. Among the extant medusozoans, the Cubozoa 2 and Scyphozoa bear a number of shared characters (Marques and Collins 2004, Collins et 3 al. 2006) and appear to form an early medusozoan clade (Collins et al. 2006). The 4 Cubozoa may represent the oldest class (Fig. 1) and it contains medusae noted for their 5 box-like shape (often known as "box-jellies"). The Cubozoa is not as species rich as the 6 other medusozoan classes and are generally thought to move via jet propulsion 7 (Gladfelter 1973, Shorten et al. 2005) and capture prey on extended tentacles (Larson 8 1976). The largest medusae are found in the Scyphozoa, which includes three orders: 9 Coronatae, Semaestomae and Rhizostomae. Among these, the latter two orders are the 10 most diverse. Members of these orders possess developed oral arms that often extend 11 well below the margin of the swimming bell. Among the Rhizostomae, these oral arms 12 are fused into complex oral arm cylinders containing hundreds to thousands of small 13 mouthlets used to consume prey. The most diverse medusozoan class, the Hydrozoa, is 14 comprised of two major clades, the Trachylina and the Hydroidolina, that have each 15 radiated into several medusa-producing lineages (Collins et al. 2006, Fig. 1). The 16 lineages within Trachylina appear to be well differentiated as the Limnomedusae, 17 Trachymedusae and the Narcomedusae. The second hydrozoan clade, the Hydroidolina, 18 has produced the most species rich lineages and the phylogenetic relationships between 19 some of these groups remain incompletely resolved at present (Collins et al. 2006). We 20 have chosen to use nomenclature that refers to the medusan component of the life history 21 and is therefore congruent with the medusan literature, rather than more recent and 22 systematically appropriate nomenclature that is less readily connected to the functional 23 ecology literature. Hcnce, our use of the terms Anthomedusae and Leptomedusae refer to 5 1 the taxa Anthoathecata and Leptothecata (Marques and Collins 2004, Collins et al. 2006) 2 respectively (as in Fig. 1). The Hydroidolina additionally contains a taxon that possesses 3 clonal aggregations of medusae as components of larger colonies – the Siphonophorae 4 (Fig. 1). 5 Life history organization within the Medusozoa varies substantially with some 6 species maintaining holoplanktonic life histories while a large number alternate between 7 benthic, asexually reproducing forms and sexually reproducing medusae (for examples, 8 see Boero et al. 1992). Although medusae are frequently independent, sexually mature, 9 feeding individuals, their function may be limited to brief periods of free swimming prior 10 to reproduction. In some forms, termed medusoids, the medusa form may remain 11 attached to the colony and is functionally reduced solely to reproduction. 12 Paralleling the diverse shapes and life history variations, medusae extend through 13 a spectrum of sizes spanning three orders of magnitude for mature individuals. Sexually 14 mature hydromedusae include species as small as 2.0 mm diameter while some adult 15 scyphomedusae may exceed 2.0 m in diameter (Omori and Kitamura 2004). 16 Siphonophoran colonies consisting of hundreds of individuals members may extend tens 17 of meters in length (Tregouboff and Rose 1957). 18 The taxonomic diversity of the Medusozoa, combined with the array of sizes, 19 shapes, and clonal organizations of its members has produced a diverse collection of 20 extant medusae. Our goal is identification of unifying patterns that underlie this 21 variation. 6 1 II. Patterns of swimming bell design within the Medusozoa 2 One of the chief defining characters of a medusa is the possession of a swimming 3 bell. Planktonic motility alone does not distinguish the medusozoans because many non- 4 medusan cnidarians possess planular larval stages which swim via cilia. However, 5 possession of a muscular swimming bell capable of propulsion is unique to the 6 Medusozoa. For many medusae, it is also the largest portion of the body and houses 7 most, if not all, of the digestive, reproductive and neural systems. Its dominance as an 8 essential medusan structure makes the swimming bell an appropriate first character for 9 describing medusan morphological patterns. 10 Is there an appropriate single variable that can be used to describe patterns
Recommended publications
  • Towards Understanding the Phylogenetic History of Hydrozoa: Hypothesis Testing with 18S Gene Sequence Data*
    SCI. MAR., 64 (Supl. 1): 5-22 SCIENTIA MARINA 2000 TRENDS IN HYDROZOAN BIOLOGY - IV. C.E. MILLS, F. BOERO, A. MIGOTTO and J.M. GILI (eds.) Towards understanding the phylogenetic history of Hydrozoa: Hypothesis testing with 18S gene sequence data* A. G. COLLINS Department of Integrative Biology and Museum of Paleontology, University of California, Berkeley, CA 94720, USA SUMMARY: Although systematic treatments of Hydrozoa have been notoriously difficult, a great deal of useful informa- tion on morphologies and life histories has steadily accumulated. From the assimilation of this information, numerous hypotheses of the phylogenetic relationships of the major groups of Hydrozoa have been offered. Here I evaluate these hypotheses using the complete sequence of the 18S gene for 35 hydrozoan species. New 18S sequences for 31 hydrozoans, 6 scyphozoans, one cubozoan, and one anthozoan are reported. Parsimony analyses of two datasets that include the new 18S sequences are used to assess the relative strengths and weaknesses of a list of phylogenetic hypotheses that deal with Hydro- zoa. Alternative measures of tree optimality, minimum evolution and maximum likelihood, are used to evaluate the relia- bility of the parsimony analyses. Hydrozoa appears to be composed of two clades, herein called Trachylina and Hydroidolina. Trachylina consists of Limnomedusae, Narcomedusae, and Trachymedusae. Narcomedusae is not likely to be the basal group of Trachylina, but is instead derived directly from within Trachymedusae. This implies the secondary gain of a polyp stage. Hydroidolina consists of Capitata, Filifera, Hydridae, Leptomedusae, and Siphonophora. “Anthomedusae” may not form a monophyletic grouping. However, the relationships among the hydroidolinan groups are difficult to resolve with the present set of data.
    [Show full text]
  • Poster Final Copy
    Introduction to Jellyfish Jellyfish have been around for over 700 million years making them one of the oldest living creatures on earth. There are almost 3,000 species of jellyfish found throughout the world's oceans. From Cnidarian jellyfish, which are often referred as “true” jellyfish, to Ctenophores (comb jellyfish), Cubic Aquarium Systems have compiled this poster showing some of the most interesting species found around the globe. Moon Jellyfish Amakusa Jellyfish Mauve Stinger Purple Striped Jellyfish Japanese Sea Nettle Aurelia aurita Sanderia malayensis Pelagia noctilca Chrysaora colorata Chrysaora pacifica Pacific Sea Nettle Black Sea Nettle Lion’s Mane Jellyfish Blue Fire Jellyfish Egg Yolk Jellyfish Chrysaora fuscescens Chrysaora achlyos Cyanea capillata Cyanea lamarckii Phacellophora camtschatica Flame Jellyfish Blue Blubber Spotted Lagoon Jellyfish Australian Spotted Lagoon Jellyfish Upside Down Jellyfish Rhopilema esculentum Catostylus mosaicus Mastigias papu Phyllorhiza punctata Cassioppea sp. Mediterranean Jellyfish Crown Jellyfish Purple Jellyfish Chrystal Jellyfish Flower Hat Jellyfish Cotylorhiza tuberculata Cephea cephea Thysanostoma thysanura Aequorea victoria Olindias formosa Immortal Jellyfish Portuguese Man O’ War Box Jellyfish Comb Jellyfish Sea Gooseberry Turritopsis dohrni Physalia physali Chironex sp. Bolinopsis sp. Pleurobrachia bachei Cubic Aquarium Systems Exotic Aquaculture Jellyfish aquariums and specialised fish tanks | Cubic Aquarium Syste International Jellyfish Wholesale Cubic Aquarium Systems build a range of unique, specialised aquariums Exotic Aquaculture are a Hong Kong based aquarium livestock supplier for jellyfish and other unusual sea creatures specializing in jellyfish wholesale to the public and home aquarium trade. www.cubicaquarium.com Copyright Sanderia Group Limited www.exoticaquaculture.com All rights reserved.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Ectosymbiotic Behavior of Cancer Gracilis and Its Trophic Relationships with Its Host Phacellophora Camtschatica and the Parasitoid Hyperia Medusarum
    MARINE ECOLOGY PROGRESS SERIES Vol. 315: 221–236, 2006 Published June 13 Mar Ecol Prog Ser Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum Trisha Towanda*, Erik V. Thuesen Laboratory I, Evergreen State College, Olympia, Washington 98505, USA ABSTRACT: In southern Puget Sound, large numbers of megalopae and juveniles of the brachyuran crab Cancer gracilis and the hyperiid amphipod Hyperia medusarum were found riding the scypho- zoan Phacellophora camtschatica. C. gracilis megalopae numbered up to 326 individuals per medusa, instars reached 13 individuals per host and H. medusarum numbered up to 446 amphipods per host. Although C. gracilis megalopae and instars are not seen riding Aurelia labiata in the field, instars readily clung to A. labiata, as well as an artificial medusa, when confined in a planktonkreisel. In the laboratory, C. gracilis was observed to consume H. medusarum, P. camtschatica, Artemia franciscana and A. labiata. Crab fecal pellets contained mixed crustacean exoskeletons (70%), nematocysts (20%), and diatom frustules (8%). Nematocysts predominated in the fecal pellets of all stages and sexes of H. medusarum. In stable isotope studies, the δ13C and δ15N values for the megalopae (–19.9 and 11.4, respectively) fell closely in the range of those for H. medusarum (–19.6 and 12.5, respec- tively) and indicate a similar trophic reliance on the host. The broad range of δ13C (–25.2 to –19.6) and δ15N (10.9 to 17.5) values among crab instars reflects an increased diversity of diet as crabs develop. The association between C.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Zootaxa, Haliclystus Californiensis, a “New” Species of Stauromedusa
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 2518: 49–59 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) Haliclystus californiensis, a “new” species of stauromedusa (Cnidaria: Staurozoa) from the northeast Pacific, with a key to the species of Haliclystus AMANDA S. KAHN1, GEORGE I. MATSUMOTO2, YAYOI M. HIRANO3 & ALLEN G. COLLINS4,5 1Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039. E-mail: [email protected] 2Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA 95039. E-mail: [email protected] 3 Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522. E-mail: [email protected] 4NMFS, National Systematics Laboratory, National Museum of Natural History, MRC-153, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012. E-mail: [email protected] 5Corresponding Author. E-mail: [email protected] Abstract We describe Haliclystus californiensis, a new species of stauromedusa from the northeast Pacific. Haliclystus californiensis differs from other species within the genus primarily by its horseshoe-shaped anchors, but also by the presence of prominent glandular pads at the base of its outermost secondary tentacles and by geographic range. It has been found from southern to northern California in coastal waters, 10 to 30 m depth. A single specimen of the species was originally described in an unpublished dissertation; nine additional specimens have been found since that time.
    [Show full text]
  • Stauromedusae on the East Pacific Rise
    Cah. Biol. Mar. (2006) 47 : 347-352 Stauromedusae on the East Pacific Rise Janet R. VOIGHT Department of Zoology , The Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL 60605 USA Tel. 312-665-7723, Fax 312-665-7754, E-mail: [email protected] Abstract: Dense aggregations of the large stauromedusae Lucernaria janetae Collins & Daly, 2005 are known from four sites near East Pacific Rise hydrothermal vents, but as is typical of circum-vent animals, their biology remains virtually unstudied. Observations of stauromedusae from near 8°36’N find that they are consistently near fissures from which warm, smoky water wafts. Collections of these animals and associated fauna suggest that the amphipods Halice hesmonectes Martin, France and Van Dover 1993 form the primary stauromedusan prey. The diversity and abundance of other taxa in the immediate area of the stauromedusae are low. The amphipods, notably sexually mature members of H. hesmonectes, may effectively transfer vent productivity to these stauromedusae, allowing them to reach extraordinary sizes and densities. Keywords: Lucernaria janetae l Predation l Halice hesmonectes l Distribution l Ventiella sulfuris Introduction near vents at four areas between 21°N and 20°S (Lutz et al., 1998; this volume; Halanych et al., 1999; Collins & Daly, Deep-sea hydrothermal vents on the East Pacific Rise 2005). A published towed camera image (Fig. 14C, ARGO- (EPR) have been among the most frequently targeted for RISE Group, 1988) also appears to show a field of submersible-based study to date, with the chemosynthetic stauromedusae at an unspecified location between 10°19’ to organisms unique to vents (tubeworms, mussels and clams) 11°53’N.
    [Show full text]
  • Eyes in Staurozoa (Cnidaria): a Review
    Eyes in Staurozoa (Cnidaria): a review Lucília Souza Miranda1,* and Allen Gilbert Collins2,* 1 Department of Zoology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil 2 National Systematics Laboratory, National Marine Fisheries Service (NMFS), National Museum of Natural History, Smithsonian Institution, District of Columbia, WA, United States of America * These authors contributed equally to this work. ABSTRACT The presence of dark pigment spots associated with primary tentacles (or structures derived from them, i.e., rhopalioids) in Staurozoa was recently overlooked in a study on the evolution of cnidarian eyes (defined as a ``region made of photoreceptor cells adjacent to pigment cells'', irrespective of image formation, i.e., including all photoreceptive organs). Review of old and recent literature on Staurozoa shows that dark pigment spots are present in virtually all species of Manania, as well as some species of Haliclystus, Stylocoronella, and probably Calvadosia. The known ultrastructure of ocelli seems to be compatible with light perception, but no immediate response to changes in light intensity have been observed in the behavior of staurozoans. Therefore, although further studies addressing photic behavior are required, we discuss an earlier hypothesis that the dark spots in some stauromedusae may be related to synchronous spawning, as well as the possible sensorial function of rhopalioids. Observations summarized here suggest a possible ninth independent origin of eyes in Cnidaria, within a lineage of benthic medusae. Alternatively, documented similarity across medusae of Cubozoa, Scyphozoa, and Staurozoa—with eyes being topologically associated with primary tentacles in each of these taxa—could indicate shared ancestry and a single origin of eyes in this clade known as Acraspeda.
    [Show full text]
  • Aequorea Victoria Class: Hydrozoa, Hydroidolina Order: Leptomedusae Family: Aequoreidae Crystal Jelly
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Oregon Scholars' Bank Phylum: Cnidaria Aequorea victoria Class: Hydrozoa, Hydroidolina Order: Leptomedusae Family: Aequoreidae Crystal Jelly Taxonomy: Originally described as Bell: The bell is large and relatively Mesonema victoria (Murbach and Shearer, flat, and contracts when swimming. 1902), current synonyms and previous names It is thick, gelatinous, and rigid, with a ring for Aequorea victoria include Aequorea canal around the margin and radial canals aequorea, A. forskalea, and Campanulina running from the mouth to the margin (Fig. 1). membranosa (a name proposed for the polyp It has a short, thick peduncle (Arai and form by Strong 1925) (Mills et al. 2007; Brinckmann-Voss 1980). Schuchert 2015). The taxonomy of Radial Canals: Aequorea Aequoreidae is currently in flux and awaiting victoria individuals can have over 100 further molecular research (Mills et al. 2007). symmetrical, unbranched radial canals. In mature specimens all radial canals reach the Description bell margin (Mills et al. 2007, Kozloff 1987) General Morphology: Aequorea victoria has (Figs. 1, 2). Excretory pores open at the two forms. Its sexual morphology is a canal bases near the tentacles (Hyman gelatinous hydromedusa. It has a wide bell, 1940). many tentacles, and radial canals that run Ring Canals: The ring canal from the mouth to the bell margin, where they surrounds the bell margin. are connected by a ring canal. Suspended Mouth: The mouth is part of from the inside of the bell by a peduncle is the the tubular manubrium, which is large and manubrium, or mouth.
    [Show full text]
  • Control of Swimming in the Hydrozoan Jellyfish Aequorea Victoria: Subumbrellar Organization and Local Inhibition
    3467 The Journal of Experimental Biology 211, 3467-3477 Published by The Company of Biologists 2008 doi:10.1242/jeb.018952 Control of swimming in the hydrozoan jellyfish Aequorea victoria: subumbrellar organization and local inhibition Richard A. Satterlie Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina, Wilmington, NC 28409, USA e-mail: [email protected] Accepted 4 September 2008 SUMMARY The subumbrella of the hydrozoan jellyfish Aequorea victoria (previously classified as Aequorea aequorea) is divided by numerous radial canals and attached gonads, so the subumbrellar musculature is partitioned into subumbrellar segments. The ectoderm of each segment includes two types of muscle: smooth muscle with a radial orientation, used for local (feeding and righting) and widespread (protective) radial responses, and striated muscle with a circular orientation which produces swim contractions. Two subumbrellar nerve nets were found, one of which stained with a commercial antibody produced against the bioactive peptide FMRFamide. Circular muscle cells produce a single, long-duration action potential with each swim, triggered by a single junctional potential. In addition, the circular cells are electrically coupled so full contractions require both electrotonic depolarization from adjacent cells and synaptic input from a subumbrellar nerve net. The radial cells, which form a layer superficial to the circular cells, are also activated by a subumbrellar nerve net, and produce short-duration action potentials. The radial muscle cells are electrically coupled to one another. No coupling exists between the two muscle layers. Spread of excitation between adjacent segments is decremental, and nerve net-activated junctional potentials disappear during local inhibition of swimming (such as with a radial response).
    [Show full text]
  • SUMMARY and FUTURE WORK Not Constitute Type Material Because Gill’S (1863) Descrip- Tion Was Clearly Based on a Single Specimen
    132 • SMITHSONIAN CONTRIBUTIONS TO THE MARINE SCIENCES FIGURE 11. Coryphopterus glaucofraenum, neotype, USNM 393907, Belize, 44 mm SL, DNA 6367: A, fresh; B, preserved. Designation of Neotype for Neotype Coryphopterus glaucofraenum Coryphopterus glaucofraenum Gill, USNM 393907, FIGURE 11 44 mm SL, DNA 6367, Twin Cays, Belize, mangrove edge on interior channel, 0– 6 ft. (GenBank accession no. Eschmeyer (2008) noted the need for designating a GQ367355.) neotype for Coryphopterus glaucofraenum Gill, because the whereabouts of the holotype are unknown. He also noted that four MCZ specimens assumed to be syntypes do SUMMARY AND FUTURE WORK not constitute type material because Gill’s (1863) descrip- tion was clearly based on a single specimen. Because of the Cytochrome c oxidase I sequences (DNA barcoding) historical confusion regarding the validity of C. tortugae were useful in determining the number of distinct genetic and C. venezuelae as distinct from C. glaucofraenum, and lineages within Caribbean Coryphopterus. We used the because the three species can be diffi cult to separate, we neighbor-joining tree (see Figure 1) derived from those se- have elected to designate a neotype for C. glaucofraenum quences to assemble voucher specimens (and color photo- from which we have successfully obtained a COI sequence graphs of them taken before preservation) into clades and that places the specimen in the C. glaucofraenum clade. then compared the morphology of specimens among those We hereby make the following type designation: clades. Assigning clades to species was relatively easy based 007_Baldwin_111-138_Lang.indd7_Baldwin_111-138_Lang.indd 113232 99/24/09/24/09 99:38:53:38:53 AAMM NUMBER 38 • 133 on review of original literature and examination of some CARMABI laboratory in Curacao.
    [Show full text]
  • Cnidaria: Staurozoa)
    Systematics of stalked jellyfishes (Cnidaria: Staurozoa) Lucı´lia S. Miranda1,*, Yayoi M. Hirano2, Claudia E. Mills3, Audrey Falconer4,5, David Fenwick6, Antonio C. Marques1,7 and Allen G. Collins8,* 1 Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, Brazil 2 Coastal Branch of Natural History Museum and Institute, Chiba, Katsuura, Chiba, Japan 3 Friday Harbor Laboratories and the Department of Biology, University of Washington, Friday Harbor, Washington, United States of America 4 Marine Research Group of the Field Naturalists Club of Victoria, Melbourne, Victoria, Australia 5 Sciences Department, Museum Victoria, Melbourne, Victoria, Australia 6 Penzance, Cornwall, England, United Kingdom 7 Centro de Biologia Marinha, Universidade de Sa˜o Paulo, Sa˜o Sebastia˜o, Sa˜o Paulo, Brazil 8 National Systematics Laboratory, National Marine Fisheries Service (NMFS), National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America * These authors contributed equally to this work. ABSTRACT Staurozoan classification is highly subjective, based on phylogeny-free inferences, and suborders, families, and genera are commonly defined by homoplasies. Additionally, many characters used in the taxonomy of the group have ontogenetic and intraspecific variation, and demand new and consistent assessments to establish their correct homologies. Consequently, Staurozoa is in need of a thorough systematic revision. The aim of this study is to propose a comprehensive phylogenetic hypothesis for Staurozoa, providing the first phylogenetic classification for the group. According to our working hypothesis based on a combined set of molecular data (mitochondrial markers COI and 16S, and nuclear markers ITS, 18S, and 28S), the traditional suborders Cleistocarpida (animals with claustrum) and Eleutherocarpida (animals without claustrum) are not Submitted 9 November 2015 Accepted 29 March 2016 monophyletic.
    [Show full text]