Aequorea Victoria Class: Hydrozoa, Hydroidolina Order: Leptomedusae Family: Aequoreidae Crystal Jelly

Total Page:16

File Type:pdf, Size:1020Kb

Aequorea Victoria Class: Hydrozoa, Hydroidolina Order: Leptomedusae Family: Aequoreidae Crystal Jelly View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Oregon Scholars' Bank Phylum: Cnidaria Aequorea victoria Class: Hydrozoa, Hydroidolina Order: Leptomedusae Family: Aequoreidae Crystal Jelly Taxonomy: Originally described as Bell: The bell is large and relatively Mesonema victoria (Murbach and Shearer, flat, and contracts when swimming. 1902), current synonyms and previous names It is thick, gelatinous, and rigid, with a ring for Aequorea victoria include Aequorea canal around the margin and radial canals aequorea, A. forskalea, and Campanulina running from the mouth to the margin (Fig. 1). membranosa (a name proposed for the polyp It has a short, thick peduncle (Arai and form by Strong 1925) (Mills et al. 2007; Brinckmann-Voss 1980). Schuchert 2015). The taxonomy of Radial Canals: Aequorea Aequoreidae is currently in flux and awaiting victoria individuals can have over 100 further molecular research (Mills et al. 2007). symmetrical, unbranched radial canals. In mature specimens all radial canals reach the Description bell margin (Mills et al. 2007, Kozloff 1987) General Morphology: Aequorea victoria has (Figs. 1, 2). Excretory pores open at the two forms. Its sexual morphology is a canal bases near the tentacles (Hyman gelatinous hydromedusa. It has a wide bell, 1940). many tentacles, and radial canals that run Ring Canals: The ring canal from the mouth to the bell margin, where they surrounds the bell margin. are connected by a ring canal. Suspended Mouth: The mouth is part of from the inside of the bell by a peduncle is the the tubular manubrium, which is large and manubrium, or mouth. A velum rings the surrounded by numerous frilled lips (Fig. 2). inside of the bell margin (Fig. 1). Its asexual Tentacles: The tentacles are morphology is a small polyp. Each polyp has hollow, unbranched, and numerous (up to a stem (hydrocaulus), and most have a 150, often about as many as radial canals) sheathed (thecate) hydranth with a mouth (Arai and Brinckmann-Voss 1980, Mills et al. (manubrium), stomach, tentacles, and an 2007). They occur on a single whorl on the operculum (Fig. 4). Rather than having ring canal (Mills et al. 2007). Not all of the hydranths, some polyps have gonophores tentacles are the same length and they can (Fig. 5). be very long when extended (Kozloff 1987). They have stinging cells (nematocysts) used Medusa: in prey capture and defense. According to Size: Aequorea victoria is much wider Purcell (1989) these nematocysts are isorhiza than tall and can get up to 12 cm in diameter and microbasic mastigophore, but there is (Kozloff 1987), but only 4 cm in height (Arai variation in cnidoblast naming schemes and Brinckmann-Voss 1980). between researchers. Color: Adult specimens are Velum: The velum is a flap of transparent aqua blue with whitish radial tissue, barely visible inside the bell rim, which canals, while juveniles have a green sub- is used for swimming (Fig. 1) (Hyman 1940). umbrella, opalescent gray or milky gonads, Gonads: Gonads in A. victoria are and occasionally have brown tentacle bulbs not finger-like as in many other (Arai and Brinckmann-Voss 1980). Mature hydromedusae. They develop once the bell specimens also fluoresce and luminesce, with diameter reaches 25 mm (Mills and their luminescence concentrated around the Strathmann 1987), and are suspended from bell margin (Kozloff 1983). and span nearly the entire length of the radial Body: canals (Fig. 1) (Mills et al. 2007, Kozloff 1987). Piazzola, C.D. 2015. Aequorea victoria. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12624 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Sensory: Aequorea victoria lacks eyespots further offshore than A. victoria (Mills et al. but has statocysts, which are used for 2007). balance and orientation in the water column Aequorea victoria medusae are very (Kozloff 1983). large among hydrozoans, and this species is Polyp: Rare (Mills 2001). the only Leptomedusa with more than 24 Size: Very small (0.5-1 mm) (Figs. 3– radial canals (most have only four) (Rees and 5) and composed of simple or slightly Hand 1975). The Scyphozoa, or true jellyfish, branched colonies with rarely more than two are large, have fringed mouth lobes, polyps (Strong 1925). scalloped margins, no velum, and a complex Color: pattern of radial canals (Rees and Hand Body: 1975). Some scyphozoans also have Pedicel: The polyp is prominent, pendant oral arms. Very young A. pedicellate (Kozloff 1987; Mills et al. 2007), victoria, up to 4 mm in diameter, can look with hydrocaulus (stem) up to 2.5 mm in similar to Polyorchis penicillatus in shape (Fig. length, and is ringed rather than spirally 6); additionally, the young A. victoria lack the grooved (Mills et al. 2007). many radial canals that they will develop as Hydranth: Each polyp has they mature, and so seem more similar to the about twenty tentacles, a mouth, and an P. penicillatus with its four radial canals intertentacular web armed with nematocysts. (Russell 1953). The colonies are stolonal (connected by horizontal shoots at the base of each Ecological Information hydrocaulus) (Mills et al. 2007). The hydranth Range: Type localities are Victoria Harbor, is covered by a theca (hydrothecae) that is British Columbia and Puget Sound, deeper than it is wide and is able to hold the Washington (Murbach and Shearer 1902). entire hydranth when contracted (Mills et al. Found in temperate waters in both northern 2007; Kozloff 1987) and the hydrothecae are and southern hemispheres. Well known in radially symmetrical and do not have true Puget Sound and British Columbia. marginal cups (Mills et al. 2007). Instead, they Local Distribution: Oregon distribution have longitudinal striations with straight walls includes most bays and nearshore waters. (Mills et al. 2007; Kozloff 1987), and the Habitat: Medusae are found in plankton and opercular valves are continuations of the harbors (e.g., Charleston boat basin). The hydrothecal margin (Mills et al. 2007; Kozloff attached, or polyp, forms have been found 1987). intertidally (Mills et al. 2007). Gonangium: Some branches Salinity: Collected at salinities of 30 and of a colony have gonophores (Fig. 5) that cannot tolerate large fresh water influx (e.g., reproduce by releasing free, spherical from storms, MacGinitie and MacGinitie medusae (Mills et al. 2007; Kozloff 1987). 1949). Cnidae: The intertentacular web Temperature: A cold to temperate species. contains nematocysts (Mills et al. 2007). Tidal Level: Medusae are pelagic, while polyps are intertidal. Possible Misidentifications Associates: The small anemone, Peachia The family Aequoreidae includes quinquecapitata, is sometimes parasitic on A. leptomedusae with numerous radial canals, victoria individuals (Puget Sound, gonads attached to the radial canals, a broad Washington). Aequorea victoria ingests P. short stomach, but lacking marginal or lateral quinquecapitata larvae, and once inside the cirri (Arai and Brinckmann-Voss 1980). There hydromedusae, the larvae feed on nutrients in is only one other Aequorea species locally: A. the radial canals and gonads. These parasitic coerulescens. It is larger than A. victoria and larvae grow and metamorphose into juveniles having a bell that is up to 25 cm in width with while still inside A. victoria. Ultimately, the three to six times as many tentacles as radial juvenile leaves its host mid-water and may canals. It is also less common and lives Piazzola, C.D. 2015. Aequorea victoria. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. become ectoparasitic on another A. victoria scattered exumbrellar nematocysts that form host (Mills and Strathmann 1987). a broad ring on the lower half of the bell (Fig. The hydromedusae are also parasitized by 6) (Mills et al. 2007 and Kozloff 1987). They larval and juvenile forms of Hyperia are not considered mature until they reach medusarum. Aequorea victoria provides a about 50 mm in diameter (Mills and pelagic host on which hyperiid amphipods can Strathmann 1987). Juvenile recruitment overwinter (Boonstra et al. 2015, Towanda occurs in the spring (Larson 1986). and Thuesen 2006). Longevity: Unknown. Abundance: Aequorea victoria is one of the Growth Rate: Medusae grow very quickly, most common large medusae. At the right especially as compared to anthozoans time of year, it can occur in great numbers (MacGinitie and MacGinitie 1949). In locally. It was present in high densities in laboratory conditions they grow from egg to Puget Sound, Washington, from the early polyp in less than six days (Strong 1925). 1960s to the mid-1990s. At that time, Food: Their diet consists predominately of thousands were collected by researchers for soft-bodied prey (e.g. ctenophores, medusae, their aequorin (luminescent protein) and GFP cannery refuse), but they also eat mature (Green Fluorescent Protein). Since the mid- crustaceans, crustacean larvae (Purcell 1990s, A. victoria populations have 1989), and polychaetes. They are an decreased in both number and size, though important predator of fish larvae and eggs this trend may be due to environmental (Purcell 1989), but once the fish larvae pass change as well as high takes (Friday Harbor) the post-yolksac stage they are better able to (Mills 2001). escape the medusae and are less commonly preyed upon (Purcell et al. 1987). They also Life-History Information participate in intraguild predation, eating other Reproduction: Hydrozoans provide a good gelatinous species that compete for example of alternation of generations.
Recommended publications
  • Poster Final Copy
    Introduction to Jellyfish Jellyfish have been around for over 700 million years making them one of the oldest living creatures on earth. There are almost 3,000 species of jellyfish found throughout the world's oceans. From Cnidarian jellyfish, which are often referred as “true” jellyfish, to Ctenophores (comb jellyfish), Cubic Aquarium Systems have compiled this poster showing some of the most interesting species found around the globe. Moon Jellyfish Amakusa Jellyfish Mauve Stinger Purple Striped Jellyfish Japanese Sea Nettle Aurelia aurita Sanderia malayensis Pelagia noctilca Chrysaora colorata Chrysaora pacifica Pacific Sea Nettle Black Sea Nettle Lion’s Mane Jellyfish Blue Fire Jellyfish Egg Yolk Jellyfish Chrysaora fuscescens Chrysaora achlyos Cyanea capillata Cyanea lamarckii Phacellophora camtschatica Flame Jellyfish Blue Blubber Spotted Lagoon Jellyfish Australian Spotted Lagoon Jellyfish Upside Down Jellyfish Rhopilema esculentum Catostylus mosaicus Mastigias papu Phyllorhiza punctata Cassioppea sp. Mediterranean Jellyfish Crown Jellyfish Purple Jellyfish Chrystal Jellyfish Flower Hat Jellyfish Cotylorhiza tuberculata Cephea cephea Thysanostoma thysanura Aequorea victoria Olindias formosa Immortal Jellyfish Portuguese Man O’ War Box Jellyfish Comb Jellyfish Sea Gooseberry Turritopsis dohrni Physalia physali Chironex sp. Bolinopsis sp. Pleurobrachia bachei Cubic Aquarium Systems Exotic Aquaculture Jellyfish aquariums and specialised fish tanks | Cubic Aquarium Syste International Jellyfish Wholesale Cubic Aquarium Systems build a range of unique, specialised aquariums Exotic Aquaculture are a Hong Kong based aquarium livestock supplier for jellyfish and other unusual sea creatures specializing in jellyfish wholesale to the public and home aquarium trade. www.cubicaquarium.com Copyright Sanderia Group Limited www.exoticaquaculture.com All rights reserved.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Ectosymbiotic Behavior of Cancer Gracilis and Its Trophic Relationships with Its Host Phacellophora Camtschatica and the Parasitoid Hyperia Medusarum
    MARINE ECOLOGY PROGRESS SERIES Vol. 315: 221–236, 2006 Published June 13 Mar Ecol Prog Ser Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum Trisha Towanda*, Erik V. Thuesen Laboratory I, Evergreen State College, Olympia, Washington 98505, USA ABSTRACT: In southern Puget Sound, large numbers of megalopae and juveniles of the brachyuran crab Cancer gracilis and the hyperiid amphipod Hyperia medusarum were found riding the scypho- zoan Phacellophora camtschatica. C. gracilis megalopae numbered up to 326 individuals per medusa, instars reached 13 individuals per host and H. medusarum numbered up to 446 amphipods per host. Although C. gracilis megalopae and instars are not seen riding Aurelia labiata in the field, instars readily clung to A. labiata, as well as an artificial medusa, when confined in a planktonkreisel. In the laboratory, C. gracilis was observed to consume H. medusarum, P. camtschatica, Artemia franciscana and A. labiata. Crab fecal pellets contained mixed crustacean exoskeletons (70%), nematocysts (20%), and diatom frustules (8%). Nematocysts predominated in the fecal pellets of all stages and sexes of H. medusarum. In stable isotope studies, the δ13C and δ15N values for the megalopae (–19.9 and 11.4, respectively) fell closely in the range of those for H. medusarum (–19.6 and 12.5, respec- tively) and indicate a similar trophic reliance on the host. The broad range of δ13C (–25.2 to –19.6) and δ15N (10.9 to 17.5) values among crab instars reflects an increased diversity of diet as crabs develop. The association between C.
    [Show full text]
  • CNIDARIA Corals, Medusae, Hydroids, Myxozoans
    FOUR Phylum CNIDARIA corals, medusae, hydroids, myxozoans STEPHEN D. CAIRNS, LISA-ANN GERSHWIN, FRED J. BROOK, PHILIP PUGH, ELLIOT W. Dawson, OscaR OcaÑA V., WILLEM VERvooRT, GARY WILLIAMS, JEANETTE E. Watson, DENNIS M. OPREsko, PETER SCHUCHERT, P. MICHAEL HINE, DENNIS P. GORDON, HAMISH J. CAMPBELL, ANTHONY J. WRIGHT, JUAN A. SÁNCHEZ, DAPHNE G. FAUTIN his ancient phylum of mostly marine organisms is best known for its contribution to geomorphological features, forming thousands of square Tkilometres of coral reefs in warm tropical waters. Their fossil remains contribute to some limestones. Cnidarians are also significant components of the plankton, where large medusae – popularly called jellyfish – and colonial forms like Portuguese man-of-war and stringy siphonophores prey on other organisms including small fish. Some of these species are justly feared by humans for their stings, which in some cases can be fatal. Certainly, most New Zealanders will have encountered cnidarians when rambling along beaches and fossicking in rock pools where sea anemones and diminutive bushy hydroids abound. In New Zealand’s fiords and in deeper water on seamounts, black corals and branching gorgonians can form veritable trees five metres high or more. In contrast, inland inhabitants of continental landmasses who have never, or rarely, seen an ocean or visited a seashore can hardly be impressed with the Cnidaria as a phylum – freshwater cnidarians are relatively few, restricted to tiny hydras, the branching hydroid Cordylophora, and rare medusae. Worldwide, there are about 10,000 described species, with perhaps half as many again undescribed. All cnidarians have nettle cells known as nematocysts (or cnidae – from the Greek, knide, a nettle), extraordinarily complex structures that are effectively invaginated coiled tubes within a cell.
    [Show full text]
  • A New Jellyfish Species in the Turkish Coastal Waters - Aequorea Forskalea Péron & Lesueur, 1810 (Cnidaria: Hydrozoa)
    J. Black Sea/Mediterranean Environment Vol. 19, No. 3: 380˗384 (2013) SHORT COMMUNICATION A new jellyfish species in the Turkish coastal waters - Aequorea forskalea Péron & Lesueur, 1810 (Cnidaria: Hydrozoa) Mevlüt Gürlek1, Deniz Yağlıoğlu2, Deniz Ergüden1, Cemal Turan1* 1Marine Science and Technology Faculty, Mustafa Kemal University, 31220 Iskenderun, Hatay, TURKEY 2Biodiversity Implementation and Research Center (DU–BIYOM), Duzce University, Duzce, TURKEY *Corresponding author: [email protected] Abstract Aequorea forskalea Péron & Lesueur, 1810 was recorded for the first time from the Turkish coastal waters. A. forskalea was observed from January 2012 until September 2012 in Iskenderun Bay, the northeastern Mediterranean coast of Turkey. The occurrence of this species in the Turkish coastal waters may be related to its extension from the western Mediterranean waters. Keywords: Jellyfish, Aequorea forskalea, Turkish Coastal Waters. Introduction The family Aequoreidae include five genera (Aequorea, Aldersladia, Gangliostoma, Rhacostoma and Zygocanna) in the world, of which only Aequorea and Zygocanna genera are found in the Mediterranean Sea (Bouillon et al. 2004; Schuchert 2013). The genus Aequorea has 24 species in the world and 3 species in the Mediterranean Sea (Bouillon et al. 2004; WoRMS 2013). Aequorea forskalea Péron and Lesueur, 1810, common in north-western Europe, from where it extends southwards along the west coast of Africa as far as the Gulf of Guinea, on the east coast of Africa and Indian Ocean and Mediterranean. A. forskalea also occurs on the Pacific coast of North America (Kramp 1956; 1968; Navas-Pereira and Vannucci 1991; Bouillon et al. 2004; Schuchert 2013). In the Mediterranean, A. forskalea is distributed in the eastern 380 and western Mediterranean, including the Adriatic (Bouillon et al.
    [Show full text]
  • Identification of a Fluorescent Protein from Rhacostoma Atlantica
    Photochemistry and Photobiology, 2016, 92: 667–677 Identification of a Fluorescent Protein from Rhacostoma Atlantica† Michael R. Tota1, Jeanna M. Allen1, Jan O. Karolin2, Chris D. Geddes2 and William W. Ward*3 1Brighter Ideas, Inc., Metuchen, NJ 2Institute of Fluorescence and Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 3Department of Biochemistry and Molecular Biology, Rutgers University, New Brunswick, NJ Received 21 February 2016, accepted 2 June 2016, DOI: 10.1111/php.12609 ABSTRACT been difficult to generate a sensitive far-red variant of the Aequorea victoria green FP (4,6). Improvements are also being fl fi We have cloned a novel uorescent protein from the jelly sh made to cyan FPs by altering their fluorescent lifetimes to serve fl Rhacostoma atlantica. The closest known related uorescent as better FRET donors (7,8). It would be desirable to increase fl protein is the Phialidium yellow uorescent protein, with only the repertoire of FP sequences in the hope that novel properties a 55% amino acid sequence identity. A somewhat unusual could be discovered, from either native or mutated sequences. – – alanine tyrosine glycine amino acid sequence forms the pre- Rhacostoma atlantica has been classified as a member of the sumed chromophore of the novel protein. The protein has an order Leptomedusae and family Aequoreidae (9,10). The biolu- fl absorption peak at 466 nm and a uorescence emission peak minescent jellyfish is often seen on the coasts of the northeastern fl at 498 nm. The uorescence quantum yield was measured to United States. We have observed them from the New Jersey to fi À1 À1 be 0.77 and the extinction coef cient is 58 200 M cm .
    [Show full text]
  • Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) Paulyn Cartwright1, Nathaniel M
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 10. #2008 Marine Biological Association of the United Kingdom doi:10.1017/S0025315408002257 Printed in the United Kingdom Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) paulyn cartwright1, nathaniel m. evans1, casey w. dunn2, antonio c. marques3, maria pia miglietta4, peter schuchert5 and allen g. collins6 1Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049, USA, 2Department of Ecology and Evolutionary Biology, Brown University, Providence RI 02912, USA, 3Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, SP, Brazil, 4Department of Biology, Pennsylvania State University, University Park, PA 16802, USA, 5Muse´um d’Histoire Naturelle, CH-1211, Gene`ve, Switzerland, 6National Systematics Laboratory of NOAA Fisheries Service, NMNH, Smithsonian Institution, Washington, DC 20013, USA Hydroidolina is a group of hydrozoans that includes Anthoathecata, Leptothecata and Siphonophorae. Previous phylogenetic analyses show strong support for Hydroidolina monophyly, but the relationships between and within its subgroups remain uncertain. In an effort to further clarify hydroidolinan relationships, we performed phylogenetic analyses on 97 hydroidolinan taxa, using DNA sequences from partial mitochondrial 16S rDNA, nearly complete nuclear 18S rDNA and nearly complete nuclear 28S rDNA. Our findings are consistent with previous analyses that support monophyly of Siphonophorae and Leptothecata and do not support monophyly of Anthoathecata nor its component subgroups, Filifera and Capitata. Instead, within Anthoathecata, we find support for four separate filiferan clades and two separate capitate clades (Aplanulata and Capitata sensu stricto). Our data however, lack any substantive support for discerning relationships between these eight distinct hydroidolinan clades.
    [Show full text]
  • The Ocean Genome: Conservation and the Fair, Equitable and Sustainable Use of Marine Genetic Resources
    Commissioned by BLUE PAPER The Ocean Genome: Conservation and the Fair, Equitable and Sustainable Use of Marine Genetic Resources LEAD AUTHORS Robert Blasiak, Rachel Wynberg, Kirsten Grorud-Colvert and Siva Thambisetty CONTRIBUTING AUTHORS Narcisa M. Bandarra, Adelino V.M. Canário, Jessica da Silva, Carlos M. Duarte, Marcel Jaspars, Alex D. Rogers, Kerry Sink and Colette C.C. Wabnitz oceanpanel.org About the High Level Panel for a Sustainable Ocean Economy The High Level Panel for a Sustainable Ocean Economy (Ocean Panel) is a unique initiative by 14 world leaders who are building momentum for a sustainable ocean economy in which effective protection, sustainable production and equitable prosperity go hand in hand. By enhancing humanity’s relationship with the ocean, bridging ocean health and wealth, working with diverse stakeholders and harnessing the latest knowledge, the Ocean Panel aims to facilitate a better, more resilient future for people and the planet. Established in September 2018, the Ocean Panel has been working with government, business, financial institutions, the science community and civil society to catalyse and scale bold, pragmatic solutions across policy, governance, technology and finance to ultimately develop an action agenda for transitioning to a sustainable ocean economy. Co-chaired by Norway and Palau, the Ocean Panel is the only ocean policy body made up of serving world leaders with the authority needed to trigger, amplify and accelerate action worldwide for ocean priorities. The Ocean Panel comprises members from Australia, Canada, Chile, Fiji, Ghana, Indonesia, Jamaica, Japan, Kenya, Mexico, Namibia, Norway, Palau and Portugal and is supported by the UN Secretary-General's Special Envoy for the Ocean.
    [Show full text]
  • Hermit Crabs - Paguridae and Diogenidae
    Identification Guide to Marine Invertebrates of Texas by Brenda Bowling Texas Parks and Wildlife Department April 12, 2019 Version 4 Page 1 Marine Crabs of Texas Mole crab Yellow box crab Giant hermit Surf hermit Lepidopa benedicti Calappa sulcata Petrochirus diogenes Isocheles wurdemanni Family Albuneidae Family Calappidae Family Diogenidae Family Diogenidae Blue-spot hermit Thinstripe hermit Blue land crab Flecked box crab Paguristes hummi Clibanarius vittatus Cardisoma guanhumi Hepatus pudibundus Family Diogenidae Family Diogenidae Family Gecarcinidae Family Hepatidae Calico box crab Puerto Rican sand crab False arrow crab Pink purse crab Hepatus epheliticus Emerita portoricensis Metoporhaphis calcarata Persephona crinita Family Hepatidae Family Hippidae Family Inachidae Family Leucosiidae Mottled purse crab Stone crab Red-jointed fiddler crab Atlantic ghost crab Persephona mediterranea Menippe adina Uca minax Ocypode quadrata Family Leucosiidae Family Menippidae Family Ocypodidae Family Ocypodidae Mudflat fiddler crab Spined fiddler crab Longwrist hermit Flatclaw hermit Uca rapax Uca spinicarpa Pagurus longicarpus Pagurus pollicaris Family Ocypodidae Family Ocypodidae Family Paguridae Family Paguridae Dimpled hermit Brown banded hermit Flatback mud crab Estuarine mud crab Pagurus impressus Pagurus annulipes Eurypanopeus depressus Rithropanopeus harrisii Family Paguridae Family Paguridae Family Panopeidae Family Panopeidae Page 2 Smooth mud crab Gulf grassflat crab Oystershell mud crab Saltmarsh mud crab Hexapanopeus angustifrons Dyspanopeus
    [Show full text]
  • (Gulf Watch Alaska) Final Report the Seward Line: Marine Ecosystem
    Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth Danielson Institute of Marine Science University of Alaska Fairbanks 905 N. Koyukuk Dr. Fairbanks, AK 99775-7220 Suzanne Strom Shannon Point Marine Center Western Washington University 1900 Shannon Point Road, Anacortes, WA 98221 Kathy Kuletz U.S. Fish and Wildlife Service 1011 East Tudor Road Anchorage, AK 99503 July 2018 The Exxon Valdez Oil Spill Trustee Council administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The Council administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Action of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972. If you believe you have been discriminated against in any program, activity, or facility, or if you desire further information, please write to: EVOS Trustee Council, 4230 University Dr., Ste. 220, Anchorage, Alaska 99508-4650, or [email protected], or O.E.O., U.S. Department of the Interior, Washington, D.C. 20240. Exxon Valdez Oil Spill Long-Term Monitoring Program (Gulf Watch Alaska) Final Report The Seward Line: Marine Ecosystem monitoring in the Northern Gulf of Alaska Exxon Valdez Oil Spill Trustee Council Project 16120114-J Final Report Russell R Hopcroft Seth L.
    [Show full text]
  • Proceedings of National Seminar on Biodiversity And
    BIODIVERSITY AND CONSERVATION OF COASTAL AND MARINE ECOSYSTEMS OF INDIA (2012) --------------------------------------------------------------------------------------------------------------------------------------------------------- Patrons: 1. Hindi VidyaPracharSamiti, Ghatkopar, Mumbai 2. Bombay Natural History Society (BNHS) 3. Association of Teachers in Biological Sciences (ATBS) 4. International Union for Conservation of Nature and Natural Resources (IUCN) 5. Mangroves for the Future (MFF) Advisory Committee for the Conference 1. Dr. S. M. Karmarkar, President, ATBS and Hon. Dir., C B Patel Research Institute, Mumbai 2. Dr. Sharad Chaphekar, Prof. Emeritus, Univ. of Mumbai 3. Dr. Asad Rehmani, Director, BNHS, Mumbi 4. Dr. A. M. Bhagwat, Director, C B Patel Research Centre, Mumbai 5. Dr. Naresh Chandra, Pro-V. C., University of Mumbai 6. Dr. R. S. Hande. Director, BCUD, University of Mumbai 7. Dr. Madhuri Pejaver, Dean, Faculty of Science, University of Mumbai 8. Dr. Vinay Deshmukh, Sr. Scientist, CMFRI, Mumbai 9. Dr. Vinayak Dalvie, Chairman, BoS in Zoology, University of Mumbai 10. Dr. Sasikumar Menon, Dy. Dir., Therapeutic Drug Monitoring Centre, Mumbai 11. Dr, Sanjay Deshmukh, Head, Dept. of Life Sciences, University of Mumbai 12. Dr. S. T. Ingale, Vice-Principal, R. J. College, Ghatkopar 13. Dr. Rekha Vartak, Head, Biology Cell, HBCSE, Mumbai 14. Dr. S. S. Barve, Head, Dept. of Botany, Vaze College, Mumbai 15. Dr. Satish Bhalerao, Head, Dept. of Botany, Wilson College Organizing Committee 1. Convenor- Dr. Usha Mukundan, Principal, R. J. College 2. Co-convenor- Deepak Apte, Dy. Director, BNHS 3. Organizing Secretary- Dr. Purushottam Kale, Head, Dept. of Zoology, R. J. College 4. Treasurer- Prof. Pravin Nayak 5. Members- Dr. S. T. Ingale Dr. Himanshu Dawda Dr. Mrinalini Date Dr.
    [Show full text]
  • 1Sl8 Lichtarge Lab 2006
    Pages 1–8 1sl8 Evolutionary trace report by report maker June 25, 2009 4.3.1 Alistat 6 4.3.2 CE 7 4.3.3 DSSP 7 4.3.4 HSSP 7 4.3.5 LaTex 7 4.3.6 Muscle 7 4.3.7 Pymol 7 4.4 Note about ET Viewer 7 4.5 Citing this work 7 4.6 About report maker 7 4.7 Attachments 7 1 INTRODUCTION From the original Protein Data Bank entry (PDB id 1sl8): Title: Calcium-loaded apo-aequorin from aequorea victoria Compound: Mol id: 1; molecule: aequorin 1; chain: a; engineered: yes Organism, scientific name: Aequorea Victoria; 1sl8 contains a single unique chain 1sl8A (181 residues long). 2 CHAIN 1SL8A CONTENTS 2.1 P07164 overview 1 Introduction 1 From SwissProt, id P07164, 99% identical to 1sl8A: Description: Aequorin-1 precursor. 2 Chain 1sl8A 1 Organism, scientific name: Aequorea victoria (Jellyfish). 2.1 P07164 overview 1 Taxonomy: Eukaryota; Metazoa; Cnidaria; Hydrozoa; Hydroida; 2.2 Multiple sequence alignment for 1sl8A 1 Leptomedusae; Aequoreidae; Aequorea. 2.3 Residue ranking in 1sl8A 1 Function: Ca(2+)-dependent bioluminescence photoprotein. Dis- 2.4 Top ranking residues in 1sl8A and their position on plays an emission peak at 470 nm (blue light). Trace amounts of the structure 1 calcium ion trigger the intramolecular oxidation of the chromophore, 2.4.1 Clustering of residues at 25% coverage. 2 coelenterazine into coelenteramide and CO(2) with the concomitant 2.4.2 Overlap with known functional surfaces at emission of light. 25% coverage. 2 Ptm: The reduction of the disulfide bond is necessary to regenerate 2.4.3 Possible novel functional surfaces at 25% aequorin from apoaequorin.
    [Show full text]