On Access Network Selection Models and Mobility Support in Heterogeneous Wireless Networks

Total Page:16

File Type:pdf, Size:1020Kb

On Access Network Selection Models and Mobility Support in Heterogeneous Wireless Networks ISSN: 1402-1544 ISBN 978-91-7439-XXX-X Se i listan och fyll i siffror där kryssen är DOCTORAL T H E SI S Karl Andersson Karl Department of Computer Science and Electrical Engineering Mobile Systems ISSN: 1402-1544 ISBN 978-91-7439-151-0 Access Selection Network Models On Networks Wireless and Mobility Support in Heterogeneous On Access Network Selection Luleå University of Technology 2010 Models and Mobility Support in Heterogeneous Wireless Networks Karl Andersson On Access Network Selection Models and Mobility Support in Heterogeneous Wireless Networks Karl Andersson Mobile Systems Department of Computer Science and Electrical Engineering Luleå University of Technology SE-971 87 Luleå Sweden November 2010 Supervisors Associate Professor Christer Åhlund Professor Arkady Zaslavsky Printed by Universitetstryckeriet, Luleå 2010 ISSN: 1402-1544 ISBN 978-91-7439-151-0 Luleå 2010 www.ltu.se Abstract The aim of this thesis is to define a solution offering end-users seamless mobility in a multi-radio access technology environment. Today an increasing portion of cell phones and PDAs have more than one radio access technology and wireless access networks of various types are commonly available with overlapping coverage. This creates a heterogeneous network environment in which mobile devices can use several networks in parallel. In such environment the device needs to select the best network for each application to use available networks wisely. Selecting the best network for individual applications constitutes a major core problem. The thesis proposes a host-based solution for access network selection in heterogeneous wireless networking environments. Host-based solutions use only information available in mobile devices and are independent of information available in the networks to which these devices are attached. The host-based decision mechanism proposed in this thesis takes a number of constraints into account including network characteristics and mobility patterns in terms of movement speed of the user. The thesis also proposes a solution for network-based mobility management contrasting the other proposals using a host-based approach. Finally, this thesis proposes an architecture supporting mobility for roaming users in heterogeneous environments avoiding the need for scanning the medium when performing vertical handovers. Results include reduced handover latencies achieved by allowing hosts to use multihoming, bandwidth savings on the wireless interface by removing the tunneling overhead, and handover guidance through the usage of directory-based solutions instead of scanning the medium. User-perceived quality of voice calls measured on the MOS (Mean Opinion Score) scale shows no or very little impact from the mobility support procedures proposed in this thesis. Results also include simulation models, real-world prototypes, and testbeds that all could be used in future work. The proposed solutions in this thesis are mainly evaluated using simulations and experiments with prototypes in live testbeds. Analytical methods are used to complement some results from simulations and experiments. iii iv Table of Contents Abstract ................................................................................................................... iii Table of Contents ..................................................................................................... v Publications ............................................................................................................. ix Acknowledgments ................................................................................................... xi Chapter 1: Thesis Introduction and Methodology .................................................... 1 1.1 Introduction............................................................................................... 1 1.1.1 Research Area and Outcomes .................................................................. 1 1.1.2 Thesis Contribution ................................................................................. 2 1.1.3 Thesis Organization ................................................................................. 4 1.2 Research Methodology ............................................................................. 4 1.3 Thesis Methodology ................................................................................. 6 1.4 Roadmap and Summaries of the Publications ........................................... 7 1.4.1 Roadmap ................................................................................................. 7 1.4.2 Summary of Included Publications ......................................................... 7 1.5 Chapter Summary ................................................................................... 10 Chapter 2: Background .......................................................................................... 11 2.1 Evolution of Wireless Networks ............................................................. 11 2.1.1 GSM ...................................................................................................... 11 2.1.2 UMTS .................................................................................................... 13 2.1.3 cdmaOne and CDMA2000 .................................................................... 14 2.1.4 LTE ....................................................................................................... 15 2.1.5 WLAN ................................................................................................... 17 2.1.6 WiMAX................................................................................................. 18 2.2 Heterogeneous Wireless Networks and Mobility Management .............. 19 2.2.1 Integration Architectures for Heterogeneous Wireless Networks ......... 19 2.2.2 Mobility Management in Heterogeneous Wireless Networks ............... 21 2.2.3 Examples on Mobility Management at the Datalink Layer ................... 21 2.2.4 Mobility Management at the Network Layer ........................................ 22 2.2.5 Mobility Management at the Transport Layer ....................................... 25 2.2.6 Mobility Management at the Application Layer ................................... 26 2.2.7 Mobility Management Using Cross-layer Designed Solutions ............. 27 2.2.8 Other Mobility types than Terminal Mobility ....................................... 27 2.3 Access Network Selection in Heterogeneous Wireless Networks .......... 27 2.3.1 Algorithms Using Cost Functions ......................................................... 28 2.3.2 Knowledge-based Systems .................................................................... 28 2.3.3 Algorithms Using Markov Decision Processes (MDPs) ....................... 28 2.3.4 Algorithms Using Analytical Hierarchy Process (AHP) and Grey Relational Analysis (GRA) ................................................................................. 29 2.3.5 Algorithms Using Optimization Techniques ......................................... 29 2.4 Relevant Industrial Standards ................................................................. 29 2.4.1 IP Multimedia Core Network Subsystem (IMS) ................................... 29 2.4.2 Wireless LAN Interworking (I-WLAN) ................................................ 30 2.4.3 Unlicensed Mobile Access (UMA), Generic Access Network (GAN) . 31 2.4.4 Voice Call Continuity (VCC) ................................................................ 31 2.4.5 Interworking in LTE .............................................................................. 32 v 2.4.6 Media Independent Handover Services ................................................. 32 2.4.7 Upcoming Standards ............................................................................. 34 2.5 Chapter Summary ................................................................................... 35 Chapter 3: Related Work ........................................................................................ 37 3.1 Related Work within Architectures for Mobility Management in Heterogeneous Wireless Networks ......................................................................... 37 3.2 Related Work within Access Network Selection Algorithms in Heterogeneous Wireless Networks ......................................................................... 38 3.3 Chapter Summary ................................................................................... 40 Chapter 4: Multihomed Mobile IPv6: OPNET Simulation of Network Selection and Handover Timing in Heterogeneous Networking Environments ................ 41 4.1 Introduction............................................................................................. 43 4.2 Mobility Management Architectures ...................................................... 44 4.3 Mobility Management with Mobile IP ................................................... 45 4.4 Reference Architecture ........................................................................... 45 4.5 The OPNET Simulation Model .............................................................. 48 4.6 Results .................................................................................................... 50 4.7 Chapter Summary ................................................................................... 53 Chapter 5: M4: MultiMedia Mobility Manager - A Seamless Mobility Management Architecture Supporting Multimedia Applications ...........................................
Recommended publications
  • Mobile Networks and Internet of Things Infrastructures to Characterize Smart Human Mobility
    smart cities Article Mobile Networks and Internet of Things Infrastructures to Characterize Smart Human Mobility Luís Rosa 1,* , Fábio Silva 1,2 and Cesar Analide 1 1 ALGORITMI Centre, Department of Informatics, University of Minho, 4710-057 Braga, Portugal; [email protected] (F.S.); [email protected] (C.A.) 2 CIICESI, School of Management and Technology, Politécnico do Porto, 4610-156 Felgueiras, Portugal * Correspondence: [email protected] Abstract: The evolution of Mobile Networks and Internet of Things (IoT) architectures allows one to rethink the way smart cities infrastructures are designed and managed, and solve a number of problems in terms of human mobility. The territories that adopt the sensoring era can take advantage of this disruptive technology to improve the quality of mobility of their citizens and the rationalization of their resources. However, with this rapid development of smart terminals and infrastructures, as well as the proliferation of diversified applications, even current networks may not be able to completely meet quickly rising human mobility demands. Thus, they are facing many challenges and to cope with these challenges, different standards and projects have been proposed so far. Accordingly, Artificial Intelligence (AI) has been utilized as a new paradigm for the design and optimization of mobile networks with a high level of intelligence. The objective of this work is to identify and discuss the challenges of mobile networks, alongside IoT and AI, to characterize smart human mobility and to discuss some workable solutions to these challenges. Finally, based on this discussion, we propose paths for future smart human mobility researches.
    [Show full text]
  • Oracle Communications Mobile Security Gateway
    ` ORACLE DATA SHEET Oracle Communications Mobile Security Gateway The Oracle Communications Mobile Security Gateway is a high-performance gateway that allows the Communications Service Provider (CSP) to cost effectively expand network coverage and increase capacity by incorporating Heterogeneous Networks (HetNets). It secures the delivery of voice and data services from the trusted service provider’s core network through untrusted, internet and/or Wi-Fi access to Wi-Fi devices and femtocells. Network Capacity and Coverage Challenges Mobile data traffic is projected to grow at a 57% CAGR between 2014 and 20191 KEYBUSNIESS BENEFITS stressing the capacity of the macro network. Peaks in demand at stadiums during • Cost effectively improve coverage and increase capacity sporting events or at airports can exceed cell capacity. Further, gaps in coverage leave • Address indoor coverage challenges some areas with no or poor coverage and modern building techniques with reinforced concrete and double glazed windows make indoor coverage a difficult challenge. With • Efficiently improve capacity in the macro network to serve more 80% of traffic being consumed indoors and indoor traffic growing 20% faster than customers outdoor traffic, indoor coverage can significantly impact the customer’s experience. For • Increase customer satisfaction and example, in the hospitality industry it has been reported that 54% of adults will not return decrease churn to a hotel where they have experienced poor cell phone coverage2 resulting in a material • Regain mindshare with customers impact on the business. KEY FEATURES • Safely and securely leverage Wi-Fi and the internet to supplement Macro RAN • Wi-Fi Calling to address indoor voice coverage • Wi-Fi Offload to mitigate macro network expansions • Onload Wi-Fi devices to regain mindshare and create monetization Figure 1: Coverage and Capacity Challenges opportunities Adding additional spectrum is an expensive option to address coverage and capacity • Femtocell support to address issues.
    [Show full text]
  • Handover Parameters Optimisation Techniques in 5G Networks
    sensors Article Handover Parameters Optimisation Techniques in 5G Networks Wasan Kadhim Saad 1,2,*, Ibraheem Shayea 2, Bashar J. Hamza 1, Hafizal Mohamad 3, Yousef Ibrahim Daradkeh 4 and Waheb A. Jabbar 5,6 1 Engineering Technical College-Najaf, Al-Furat Al-Awsat Technical University (ATU), Najaf 31001, Iraq; [email protected] 2 Electronics and Communication Engineering Department, Faculty of Electrical and Electronics Engineering, Istanbul Technical University (ITU), Istanbul 34467, Turkey; [email protected] 3 Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Malaysia; hafi[email protected] 4 Department of Computer Engineering and Networks, College of Engineering at Wadi Addawasir, Prince Sattam Bin Abdulaziz University, Al Kharj 11991, Saudi Arabia; [email protected] 5 Faculty of Electrical & Electronics Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Malaysia; [email protected] 6 Center for Software Development & Integrated Computing, Universiti Malaysia Pahang, Gambang 26300, Malaysia * Correspondence: [email protected] Abstract: The massive growth of mobile users will spread to significant numbers of small cells for the Fifth Generation (5G) mobile network, which will overlap the fourth generation (4G) network. A tremendous increase in handover (HO) scenarios and HO rates will occur. Ensuring stable and reliable connection through the mobility of user equipment (UE) will become a major problem in future mobile networks. This problem will be magnified with the use of suboptimal handover control parameter (HCP) settings, which can be configured manually or automatically. Therefore, Citation: Saad, W.K.; Shayea, I.; the aim of this study is to investigate the impact of different HCP settings on the performance Hamza, B.J.; Mohamad, H.; of 5G network.
    [Show full text]
  • A Self-Optimizing Technique Based on Vertical Handover for Load Balancing in Heterogeneous Wireless Networks Using Big Data Analytics
    applied sciences Article A Self-Optimizing Technique Based on Vertical Handover for Load Balancing in Heterogeneous Wireless Networks Using Big Data Analytics Mykola Beshley 1 , Natalia Kryvinska 2,* , Oleg Yaremko 1 and Halyna Beshley 1 1 Department of Telecommunications, Lviv Polytechnic National University, Bandera Str. 12, 79013 Lviv, Ukraine; [email protected] (M.B.); [email protected] (O.Y.); [email protected] (H.B.) 2 Department of Information Systems, Faculty of Management, Comenius University, 25 82005 Bratislava, Slovakia * Correspondence: [email protected] Abstract: With the heterogeneity and collaboration of many wireless operators (2G/3G/4G/5G/Wi-Fi), the priority is to effectively manage shared radio resources and ensure transparent user movement, which includes mechanisms such as mobility support, handover, quality of service (QoS), security and pricing. This requires considering the transition from the current mobile network architecture to a new paradigm based on collecting and storing information in big data for further analysis and decision making. For this reason, the management of big data analytics-driven networks in a cloud environment is an urgent issue, as the growth of its volume is becoming a challenge for today’s mobile infrastructure. Thus, we have formalized the problem of access network selection to improve the quality of mobile services through the efficient use of heterogeneous wireless network resources and Citation: Beshley, M.; Kryvinska, N.; optimal horizontal–vertical handover procedures. We proposed a method for adaptive selection of a Yaremko, O.; Beshley, H. A Self- wireless access node in a heterogeneous environment. A structural diagram of the optimization stages Optimizing Technique Based on for wireless heterogeneous networks was developed, making it possible to improve the efficiency of Vertical Handover for Load Balancing their functioning.
    [Show full text]
  • Enhanced Mobility Management Mechanisms for 5G Networks
    Enhanced mobility management mechanisms for 5G Networks Akshay Jain ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del r e p o s i t o r i i n s t i t u c i o n a l UPCommons (http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX ( h t t p : / / w w w . t d x . c a t / ) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons (http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale- attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una ventana o marco ajeno a UPCommons (framing).
    [Show full text]
  • LTE-M Deployment Guide to Basic Feature Set Requirements
    LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS JUNE 2019 LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS Table of Contents 1 EXECUTIVE SUMMARY 4 2 INTRODUCTION 5 2.1 Overview 5 2.2 Scope 5 2.3 Definitions 6 2.4 Abbreviations 6 2.5 References 9 3 GSMA MINIMUM BAseLINE FOR LTE-M INTEROPERABILITY - PROBLEM STATEMENT 10 3.1 Problem Statement 10 3.2 Minimum Baseline for LTE-M Interoperability: Risks and Benefits 10 4 LTE-M DATA ARCHITECTURE 11 5 LTE-M DePLOYMENT BANDS 13 6 LTE-M FeATURE DePLOYMENT GUIDE 14 7 LTE-M ReLEAse 13 FeATURes 15 7.1 PSM Standalone Timers 15 7.2 eDRX Standalone 18 7.3 PSM and eDRX Combined Implementation 19 7.4 High Latency Communication 19 7.5 GTP-IDLE Timer on IPX Firewall 20 7.6 Long Periodic TAU 20 7.7 Support of category M1 20 7.7.1 Support of Half Duplex Mode in LTE-M 21 7.7.2 Extension of coverage features (CE Mode A / B) 21 7.8 SCEF 22 7.9 VoLTE 22 7.10 Connected Mode Mobility 23 7.11 SMS Support 23 7.12 Non-IP Data Delivery (NIDD) 24 7.13 Connected-Mode (Extended) DRX Support 24 7.14 Control Plane CIoT Optimisations 25 7.15 User Plane CIoT Optimisations 25 7.16 UICC Deactivation During eDRX 25 7.17 Power Class 26 LTE-M DEPLOYMENT GUIDE TO BASIC FEATURE SET REQUIREMENTS 8 LTE-M ReLEAse 14 FeATURes 27 8.1 Positioning: E-CID and OTDOA 27 8.2 Higher data rate support 28 8.3 Improvements of VoLTE and other real-time services 29 8.4 Mobility enhancement in Connected Mode 29 8.5 Multicast transmission/Group messaging 29 8.6 Relaxed monitoring for cell reselection 30 8.7 Release Assistance Indication
    [Show full text]
  • A Novel WLAN Vehicle-To-Anything (V2X) Channel Access Scheme for IEEE 802.11P-Based Next-Generation Connected Car Networks
    applied sciences Article A Novel WLAN Vehicle-To-Anything (V2X) Channel Access Scheme for IEEE 802.11p-Based Next-Generation Connected Car Networks Jinsoo Ahn 1 , Young Yong Kim 1 and Ronny Yongho Kim 2,* 1 School of Electrical & Electronics Engineering, Yonsei University, Seoul 03722, Korea; [email protected] (J.A.); [email protected] (Y.Y.K.) 2 Department of Railroad Electrical and Electronic Engineering, Korea National University of Transportation, Gyeonggi 16106, Korea * Correspondence: [email protected]; Tel.: +82-31-460-0573 Received: 15 September 2018; Accepted: 29 October 2018; Published: 1 November 2018 Featured Application: V2X system for next-generation connected car networks. Abstract: To support a massive number of connected cars, a novel channel access scheme for next-generation vehicle-to-anything (V2X) systems is proposed in this paper. In the design of the proposed scheme, two essential aspects are carefully considered: backward compatibility and massive V2X support. Since IEEE 802.11p-based V2X networks are already being deployed and used for intelligent transport systems, next-generation V2X shall be designed considering IEEE 802.11p-based V2X networks to provide backward compatibility. Since all future cars are expected to be equipped with a V2X communication device, a dense V2X communication scenario will be common and massive V2X communication support will be required. In the proposed scheme, IEEE 802.11-based extension is employed to provide backward compatibility and the emerging IEEE 802.11ax standard-based orthogonal frequency-division multiple access is adopted and extended to provide massive V2X support. The proposed scheme is further extended with a dedicated V2X channel and a scheduled V2X channel access to ensure high capacity and low latency to meet the requirements of the future V2X communication systems.
    [Show full text]
  • Stochastic Geometry-Based Analysis of Heterogeneous Wireless Network Spectral, Energy and Deployment Efficiency
    electronics Communication Stochastic Geometry-Based Analysis of Heterogeneous Wireless Network Spectral, Energy and Deployment Efficiency Jasmin Musovic 1 , Vlatko Lipovac 2 and Adriana Lipovac 2,* 1 Communications Regulatory Agency, 71000 Sarajevo, Bosnia and Herzegovina; [email protected] 2 Deparetmet of Electrical Engineering and Computing, University of Dubrovnik, 20000 Dubrovnik, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-20445734 Abstract: For quite a while, it has been evident that homogeneous network architectures, based on cells with a uniform radiation pattern, cannot fulfill the ever increasing demand of mobile users for capacity and service quality while still preserving spectrum and energy. However, only with the introduction of the Fourth Generation mobile communication networks to deal with the surging data traffic of multimedia applications, have smaller cells been widely used to break down service zone areas of macro base stations into multiple tiers, thus improving network performance, reducing traffic congestion, and enabling better management of spectrum and energy consumption in a macro network. In this paper, we present an analytical model for assessing the efficiency of bandwidth and energy usage, as well as of network deployment, taking into account overall network investment and maintenance costs. This paves the way to the improved planning of network coverage, and its capacity and reliability, thus preserving its spectrum and energy, as well as the environment. The analysis considers the downlink of an arbitrary heterogeneous cellular network by using tools Citation: Musovic, J.; Lipovac, V.; of stochastic geometry that adopt the distribution of base stations in the form of a Poisson Point Lipovac, A.
    [Show full text]
  • Network 2020: Mission Critical Communications NETWORK 2020 MISSION CRITICAL COMMUNICATIONS
    Network 2020: Mission Critical Communications NETWORK 2020 MISSION CRITICAL COMMUNICATIONS About the GSMA Network 2020 The GSMA represents the interests of mobile operators The GSMA’s Network 2020 Programme is designed to help worldwide, uniting nearly 800 operators with almost 300 operators and the wider mobile industry to deliver all-IP companies in the broader mobile ecosystem, including handset networks so that everyone benefits regardless of where their and device makers, software companies, equipment providers starting point might be on the journey. and internet companies, as well as organisations in adjacent industry sectors. The GSMA also produces industry-leading The programme has three key work-streams focused on: The events such as Mobile World Congress, Mobile World Congress development and deployment of IP services, The evolution of the Shanghai, Mobile World Congress Americas and the Mobile 360 4G networks in widespread use today The 5G Journey, developing Series of conferences. the next generation of mobile technologies and service. For more information, please visit the GSMA corporate website For more information, please visit the Network 2020 website at www.gsma.com. Follow the GSMA on Twitter: @GSMA. at: www.gsma.com/network2020 Follow the Network 2020 on Twitter: #Network2020. With thanks to contributors: DISH Network Corporation EE Limited Ericsson Gemalto NV Huawei Technologies Co Ltd KDDI Corporation KT Corporation NEC Corporation Nokia Orange Qualcomm Incorporated SK Telecom Co., Ltd. Telecom Italia SpA TeliaSonera
    [Show full text]
  • Mobility Management for All-IP Core Network
    Mobility Management for All-IP Core Network Mobility Management All-IP Core Network Standardization Special Articles on SAE Standardization Technology Mobility Management for All-IP Core Network †1 PMIPv6 is a network-based IP mobility management proto- DOCOMO Communications Laboratories Europe Julien Laganier GmbH col which is adopted in the 3GPP Release 8 SAE standard- Takeshi Higuchi†0 †0 ization. It allows mobile-terminal mobility management that Core Network Development Department Katsutoshi Nishida is independent of the type of access system or terminal capa- †0 bilities. NTT DOCOMO completed the standardization of †0 PMIPv6 with the IETF and contributed proactively to its adoption in the standardization of SAE. transmission path for packets addressed With the 3GPP [3], it secured prospects 1. Introduction to the IP address assigned to mobile ter- for finalizing the EPC architecture and Proxy Mobile IPv6 (PMIPv6), minals, PMIPv6 is able to achieve the standardizing PMIPv6 with the IETF, which is an IP-based mobility manage- efficient packet transfer required by an and it also completed 3GPP standard- ment*1 protocol actively promoted by All-IP Network (AIPN)*3, and flexible ization work for PMIPv6 in the 3GPP NTT DOCOMO, was adopted in the QoS*4 and policy management*5 Core Network & Terminals (CT) WG4. Evolved Packet Core (EPC) specifica- through Policy and Charging Control In this article, we describe the IP tion, a provision in the 3GPP Release 8 (PCC) [1]. PMIPv6 also improves on mobility management requirements for System Architecture Evolution (SAE) utilization of wireless resources, hand- the AIPN. We also review standardiza- standardization. PMIPv6 is a common over performance, user privacy and net- tion activities with the IETF and 3GPP, mobility management approach that work security compared to the previous describe the features of the PMIPv6 supports mobility of terminals not only IP mobility management protocol, protocol and give an overview of its within Long Term Evolution (LTE) Mobile IPv6 (MIPv6) [2].
    [Show full text]
  • Topic Research Data Transmission Standards Over GSM/UMTS Networks
    Slavik Bryksin [email protected] CSE237a Fall 08 Topic research Data transmission standards over GSM/UMTS networks 1. Introduction There are a lot of emerging and existing standards that are used for data transmission over cellular networks. This paper is focused on the GSM/UMTS networks technologies that are marketed as 2G through 3G, their underlying technologies and concepts (channel access methods, duplexing, coding schemes, etc), data transmission rates, benefits and limitations. The generation that preceded 2G GSM was analog, whereas all following generations are digital. Generation labeling is mostly for marketing purposes, thus some technologies that existed in 2G are carried over and labeled 3G (i.e. EDGE versions), moreover, the timeline of adoption of the protocols and their inclusion under the umbrella of a certain generation might not align with the technology inception and certification. 2. (2G) Technologies 2.1. GSM (Global System for Mobile communications) GSM data transmission protocol is circuit switched with a fixed rate of 9.6Kbps and uses TDMA (Time Division Multiple Access) to assign static downlink and uplink timeslots for data.[16] The fact that data rate is fixed leads to inefficient usage of the available bandwidth due to the bursty network traffic.[1] 2.2. GPRS (General Packet Radio Service) GPRS standard is marketed as 2.5G and was the next step after circuit switched GSM standards. It is packet switched, which implies better bandwidth utilization, however packetization of data incurs the cost of extra information included in the packet, and the overhead of negotiation of transmission with the base station.
    [Show full text]
  • Deliverable 1.4 SODALES Simulations
    Ref. Ares(2015)10335 - 05/01/2015 Deliverable D1.4 Project SODALES Doc Simulations Date 29/12/2014 Grant Agreement No.: 318600 SODALES SOftware-Defined Access using Low-Energy Subsystems Funding Scheme: Small or medium-scale focused research project STREP - CP-FP- INFSO Activity: ICT-8-1.1 - Future Networks D1.4 Simulations and physical layer validations Due date of the Deliverable: Month 24 Actual submission date: 29th December 2014 Start date of project: November 1st 2012 Duration: 36 months Project Manager: Carlos Bock | i2CAT Version: 1.0 Author List: Carlos Bock (i2CAT), Jordi Ferrer Riera (i2CAT), Eduard Escalona (i2CAT), Michael C. Parker (UEssex) Project co-funded by the European Commission in the 7th Framework Programme (2007-2013) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Page 1 of 68 Deliverable D1.4 Project SODALES Doc Simulations Date 29/12/2014 This page is intentionally left blank. Page 2 of 68 Deliverable D1.4 Project SODALES Doc Simulations Date 29/12/2014 Abstract Deliverable 1.4 aims to demonstrate the benefits of deploying the SODALES convergent access infrastructure combining fixed and mobile access, by means of traffic studies and simulations. The objective of the work is to validate the SODALES architecture and to achieve a solid solution that supports high speed connectivity services in a robust manner, carefully analysing the requirements of present and future transmission services and studying the trends and behaviours of end users.
    [Show full text]