A Self-Optimizing Technique Based on Vertical Handover for Load Balancing in Heterogeneous Wireless Networks Using Big Data Analytics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GPS-Based Mobility Management for Efficient Handover in 5G
WASEDA UNIVERSITY MASTER’S THESIS GPS-based Mobility Management for efficient Handover in 5G Author: Supervisor: Anosha MOHAMMADI Prof. Takuro SATO Research guidance: Research on Ubiquitous Communication System A thesis submitted to the Department of Computer Science and Communication Engineering, the Graduate School of Fundamental Science and Engineering of Waseda University in Partial Fulfillment of the Requirements for the degree of Master of Engineering Student ID: 5117F086-5 February 1st, 2019 ii WASEDA UNIVERSITY Abstract Graduate School of Fundamental Science and Engineering Department of Computer Science and Communications Engineering Master of Engineering GPS-based Mobility Management for efficient Handover in 5G by Anosha MOHAMMADI For the next wireless communication systems, the major challenges are to pro- vide ubiquitous wireless access abilities, and maintain the quality of service and seamless handover for mobile communication devices in heterogeneous networks [8]. Due to rapid growth of mobile users, this demand becomes more challeng- ing where the users always require seamless connectivity while they move to other places at anytime.As the number of users increase , the network load also increases, the handover process needs to be performed in an efficient way. How- ever in many situations, the handover blocking, and unnecessary handover fre- quently happen, then affect the network and reduces its performance. The prob- lem arises with the movement of mobile user between base stations while the link connectivity becomes weaker and the mobile node tries to switch to another base station to have a better link quality during a call for higher QoS. In this thesis we aim to reduce the blocking error using the position of mobile node (MN) at the cell boundary, and the handover operation is performed by using geolocation information provided by a GPS system. -
Stochastic Geometry-Based Analysis of Heterogeneous Wireless Network Spectral, Energy and Deployment Efficiency
electronics Communication Stochastic Geometry-Based Analysis of Heterogeneous Wireless Network Spectral, Energy and Deployment Efficiency Jasmin Musovic 1 , Vlatko Lipovac 2 and Adriana Lipovac 2,* 1 Communications Regulatory Agency, 71000 Sarajevo, Bosnia and Herzegovina; [email protected] 2 Deparetmet of Electrical Engineering and Computing, University of Dubrovnik, 20000 Dubrovnik, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-20445734 Abstract: For quite a while, it has been evident that homogeneous network architectures, based on cells with a uniform radiation pattern, cannot fulfill the ever increasing demand of mobile users for capacity and service quality while still preserving spectrum and energy. However, only with the introduction of the Fourth Generation mobile communication networks to deal with the surging data traffic of multimedia applications, have smaller cells been widely used to break down service zone areas of macro base stations into multiple tiers, thus improving network performance, reducing traffic congestion, and enabling better management of spectrum and energy consumption in a macro network. In this paper, we present an analytical model for assessing the efficiency of bandwidth and energy usage, as well as of network deployment, taking into account overall network investment and maintenance costs. This paves the way to the improved planning of network coverage, and its capacity and reliability, thus preserving its spectrum and energy, as well as the environment. The analysis considers the downlink of an arbitrary heterogeneous cellular network by using tools Citation: Musovic, J.; Lipovac, V.; of stochastic geometry that adopt the distribution of base stations in the form of a Poisson Point Lipovac, A. -
Optimal Radio Access Technology Selection Algorithm for LTE-Wifi
Optimal Radio Access Technology Selection Algorithm for LTE-WiFi Network Arghyadip Roy, Prasanna Chaporkar and Abhay Karandikar Department of Electrical Engineering Indian Institute of Technology Bombay, Mumbai, India, 400076 e-mail: farghyadip, chaporkar, [email protected] Abstract A Heterogeneous Network (HetNet) comprises of multiple Radio Access Technologies (RATs) allowing a user to associate with a specific RAT and steer to other RATs in a seamless manner. To cope up with the unprecedented growth of data traffic, mobile data can be offloaded to Wireless Fidelity (WiFi) in a Long Term Evolution (LTE) based HetNet. In this paper, an optimal RAT selection problem is considered to maximize the total system throughput in an LTE-WiFi system with offload capability. Another formulation is also developed where maximizing the total system throughput is subject to a constraint on the voice user blocking probability. It is proved that the optimal policies for the association and offloading of voice/data users contain threshold structures. Based on the threshold structures, we propose algorithms for the association and offloading of users in LTE-WiFi HetNet. Simulation results are presented to demonstrate the voice user blocking probability and the total system throughput performance of the proposed algorithms in comparison to another benchmark algorithm. Index Terms User association, LTE-WiFi offloading, CMDP, Threshold policy. I. INTRODUCTION To meet the ever-increasing Quality of Service (QoS) requirements of users, various Radio Access Technologies (RATs) have been standardized [1]. Each RAT has different characteristics regarding associated parameters like coverage and capacity. It has been predicted that by 2021 monthly global mobile data traffic will exceed 49 exabytes [2]. -
Improvement of the Vertical Handover Decision and Quality of Service in Heterogeneous Wireless Networks Using Software Defined Network
(IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 9, No. 12, 2018 Improvement of the Vertical Handover Decision and Quality of Service in Heterogeneous Wireless Networks using Software Defined Network Fatima Laassiri1, a, Mohamed Moughit2, b, Noureddine Idboufker3, c a, bIR2M Laboratory, FST, Univ Hassan UH1- Settat, Morocco bEEA&TI Laboratory, FST, Univ Hassan, Mohammedia, Morocco bNational Schools of Applied Sciences Khouribga, Univ Hassan 1, UH1- Settat, Morocco cNational School of Applied Sciences, Univ Cadi Ayyad Marrakech, Morocco Abstract—The development of wireless networks brings mobile device to switch to a superimposed WiMAX network people great convenience. More state-of-the-art communication only when the WiFi services are out of range or when its protocols of wireless networks are getting mature. People attach quality of service becomes unacceptable, which means that the more importance to the connections between heterogeneous WiMAX coverage is supposed to be always available and that wireless networks as well as the transparency of transmission the mobile terminal has to switch between WiFi depending on quality guarantees. Wireless networks are an emerging solution the availability of WiFi access points. based on users' access to information and services, regardless of their geographic location. The success of these networks in recent It offers another aspect of how conventional remote years has generated great interest from individuals, businesses systems have been described, due to the effects of innovation and industry. Although there are several access technologies on the public and its impact on the environnent. The available to the user such as IEEE standards (802.11, and mechanical points of interest of WiMAX are central points of 802.16).SDN is a new network paradigm used to simplify unprecedented WiMAX radio change, it works in the field of network management, reducing the complexity of network security and quality, and it has an open access base focused on technology. -
Advance Seamless Handover Technique in Lte Network: a Review
Int. J. Elec&Elecn.Eng&Telcomm. 2016 Prabhdeep Singh and Neelam, 2016 ISSN 2319 – 2518 www.ijeetc.com Vol. 5, No. 4, October 2016 © 2016 IJEETC. All Rights Reserved Review Article ADVANCE SEAMLESS HANDOVER TECHNIQUE IN LTE NETWORK: A REVIEW Prabhdeep Singh1* and Neelam2 *Corresponding Author: Prabhdeep Singh, [email protected] The rapid improvement of the mobile generations was for the purpose of supporting as many mobile devices as possible that could benefit the users at anytime and anywhere in terms of common practical applications such as internet access, video-on-demand, video conferencing system and many more applications. Wireless communication is facing the fastest revolutionary changes in technology. The control plane 4G speeds are meant to exceed that of 3G. Current 3G speeds have an upper cap at 14 Mbps downlink and 5.8Mbps uplink. If we achieve the speed of up to 100 Mbps for a moving user and 1 Gbps for stationary user is reached, it is classified as 4G technology. Seamless roaming and mobility management are the foremost challenges before heterogeneous 4G wireless networks. The 4G communication is aimed at making the user to freely, seamlessly roam across various networks and to provide connectivity to any wired or wireless systems. We propose the GPA method to be developed on the three layered platform to provide a simple architecture which performs both type of handovers considering wider range of factors for decision making Keywords: Generic algorithm, Quantitative decision, Vertical handover, Fourth generation INTRODUCTION TYPES OF HANDOVER In the terms of mobility, the network ensures a 1. Horizontal handover: To switch from one seamless connection for example in case of coverage zone to another the user uses fourth generation wireless networks. -
Intelligent Technique for Seamless Vertical Handover in Vehicular Networks
Intelligent Technique for Seamless Vertical Handover in Vehicular Networks Shidrokh Goudarzi1, Wan Haslina Hassan1, Mohammad Hossein Anisi2*, Muhammad Khurram Khan3, and S.A. Soleymani4 1 Communication System and Network (iKohza) Research Group, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur, Malaysia. [email protected], [email protected] 2 * School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, United Kingdom. [email protected] 3 Center of Excellence in Information Assurance, King Saud University, Riyadh 11451, Saudi Arabia. [email protected] 4 Department of Computing, Faculty of Computing, University of Teknologi Malaysia, Johor Bahru, Malaysia. [email protected] Abstract Seamless mobility is a challenging issue in the area of research of vehicular networks that are supportive of various applications dealing with the intelligent transportation system (ITS). The conventional mobility management plans for the Internet and the mobile ad hoc network (MANET) is unable to address the needs of the vehicular network and there is severe performance degradation because of the vehicular networks’ unique characters such as high mobility. Thus, vehicular networks require seamless mobility designs that especially developed for them. This research provides an intelligent algorithm in providing seamless mobility using the media independent handover, MIH (IEEE 802.21), over heterogeneous networks with different access technologies such as Worldwide Interoperability for Microwave Access (WiMAX), Wireless Fidelity (Wi-Fi), as well as the Universal Mobile Telecommunications System (UMTS) for improving the quality of service (QoS) of the mobile services in the provided by University of Essex Research Repository View metadata, citation and similar papers at core.ac.uk CORE vehicular networks. -
Quality of Service During Vertical Handover in 3G/4G Wireless Networks
MASTER THESIS REPORT MASTER OF SCIENCE IN ELECTRICAL ENGINEERING WITH EMPHASIS ON TELECOMMUNICATIONS QUALITY OF SERVICE DURING VERTICAL HANDOVER IN 3G/4G WIRELESS NETWORKS Blekinge Institute of Technology Feb 2009 STUDENT 1: MUHAMMAD AMIR LATIF 790721-8072 Email: [email protected] STUDENT 2: ABID AZIZ KHAN 820202-0734 Email: [email protected] Supervisor: Dr. Adrian Popescu Examiner: Dr. Adrian Popescu ACKNOWLEDGEMENT All praises and thanks to God, who is the creator of this world and who blessed us with potential and ability to contribute a drop of material to existing ocean of knowledge. The accomplishment of this Thesis is the result of great effort of me and my group member and the full devotion of our teachers. We would like to sincerely thank our supervisor Dr. Adrian Popescu , Blekinge Institute of Technology. Without his guidance and support it would have been impossible for us to accomplish this task successfully. We also want to mention that we never needed to make an appointment with Dr. Adrian Popescu because this is his quality that he is always available for his students. We are really impressed with our supervisor Dr. Adrian Popescu for his affection with his students. We are also thankful to our Program Manager Mr. Mikeal Åsman and student coordinator Miss Lena Magnusson for their help during our stay at BTH. Secondly we would like to thank our friends Mr. Azhar Ali Mian and Mr. Naeem Qaisar and Mr. Sardar Usman Khalid who helped us towards our task during the research. We particularly like to thank our parents for their continuous love and care. -
Heterogeneous Network Architectures a Layered Approach for Modeling Key Building Blocks for Continuing Network Evolution
Downloaded from orbit.dtu.dk on: Oct 09, 2021 Heterogeneous network architectures a layered approach for modeling key building blocks for continuing network evolution Christiansen, Henrik Lehrmann Publication date: 2006 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Christiansen, H. L. (2006). Heterogeneous network architectures: a layered approach for modeling key building blocks for continuing network evolution. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Heterogeneous network architectures - a layered approach for modeling key building blocks for con- tinuing network evolution Ph.D. thesis Submitted to Research Center COM at the Technical University of Denmark in partial fulfillment of the requirements for the Ph.D. degree. Henrik Christiansen August 2004 Research Center COM Technical University of Denmark Kgs. Lyngby Denmark i Abstract Future networks will be heterogeneous! Due to the sheer size of networks (e.g., the Internet) upgrades cannot be instantaneous and thus heterogeneity appears. -
Vertical Handover in Wireless Heterogeneous Networks
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universiti Teknikal Malaysia Melaka: UTeM Open Journal System Vertical Handover in Wireless Heterogeneous Networks Feras Zenalden, Suhaidi Hassan, Adib Habbal InterNetworks Research Laboratory, School of Computing, Universiti Utara Malaysia, 06010 UUM, Sintok, Kedah, Malaysia. [email protected] Abstract—Handover is one of the enhancement mechanisms offers a variety of choices when roaming across different that plays a central role in heterogeneous wireless networks. networks showing the cost, user preferences and all QoS Designing a handover algorithm for heterogeneous networks provided by each mechanism. This can be achieved by becomes an essential issue since it is responsible for providing evaluating and comparing the performances of the available better Quality of Service (QoS) and higher level of Quality of networks in terms of network type and frequency used. Experience (QoE) to users. Similarly, the proposed algorithms must fulfill the user’s QoS requirements and must also provide The rest of this paper is organized as follows. The seamless roaming across different networks. This paper motivation of this study is explained in section 2. The type of presents an overview of some key issues pertaining to the design network in section 3 and frequency used mechanisms in of Vertical Handover (VH) in 4G and 5G wireless networks. The section4. Section 5 presents the conclusion and draws the VH measurements and decision mechanisms are studied in challenging issues of the future wireless networks. relation to network types and frequency used mechanisms. Over the past decade, the mobile wireless traffic has Moreover, the advantages and drawbacks of the existing works experienced an unprecedented upsurge as a result of vast are investigated in detail and the challenging issues of the next applications of mobile devices coupled with the recent generation of wireless networks are presented as well. -
Mobility Management Vertical and Horizontal Handover Decisions in Heterogeneous Wireless Networks Using Omnet
International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016 ISSN 2229-5518 557 MOBILITY MANAGEMENT VERTICAL AND HORIZONTAL HANDOVER DECISIONS IN HETEROGENEOUS WIRELESS NETWORKS USING OMNET Author Ms Sonal D Agrawal 1, Co-Author Prof C.M Mankar 2. PG Student 1, Guide 2 SSGMCE College of Engineering Shegaon Abstract— wireless and mobile computing a new technology and fastest growing area with regularly increased data rates and coverage areas. Future challenge is to make the best possible use of the are connected to the best available networks that available different networks vertical or Horizontal. In this paper suit their services requirements and switch in used Wi-Fi and Wi-MAX heterogeneous networks. In this between different networks based on their service proposed paper analyse handover procedures by using OMNET. Using this simulator, we assessed performance such as delay, needs. Efficient mobility management protocols are packet loss and throughput of GSM,Wi-Fi and Wi-MAX during required to manage and support mobility across handover. Recent focus on handover decisions for customized heterogeneous Handover management, one of the mobility management in heterogeneous wireless networks. Our algorithm supports the best access point horizontal handover mobility management components, controls and decisions and vertical as well as the best access network vertical change of the MT point of attachment during active handover decisions to user based on the current set of user communication Mobility management contains two preference, application requirements, and context information. In this paper our main contributions are: First A novel decision components such as location management and making algorithm for personalized handover, Second an handover management. -
Automatic Handover Control for Distributed Load Balancing In
Automatic Handover Control for Distributed Load Balancing in Mobile Communication Network 1 1, 1 Dina Farouk ALtayeb Ali , Fatima abdelgani Mustafa Mohamed Osman Mustafa Fdolelsid 1Future University, Faculty of Engineering, Department of Computer Engineering ABSTRACT: Due to technology and its daily continuous advancing and enhancement the users dealing with it are hungry for the best and better quality of service and this demand never stops, from this point came the idea of my research which aims to enhance the mobile network using the LOAD BALANCE and its algorithm to make it better ,in my research am requiring a HANDOVER process to be involved to get the best results , the simulation was implemented by MATLAP software to implement the two systems the normal system and the system with the load balance, result and graphs also came from the MATLAP software, one of the load balance methods was used and it’s the round robin method with all the needed variables based on the quantum or time slice. It’s the round robin method that helped to get better results first reducing the execution timing by (722626 MS) and improvement in the blocking probability and reduce it by 20% Introduction: Due to rapid change in technology the demand for better and faster cellular communication also increases. This growth in field of cellular communication has led to increase intensive research toward and development toward cellular system. The main reason of this growth is newly concept of mobile terminal and user mobility. The main characteristics of cellular communication system offer user maximum freedom of movement while using cell phones (mobiles). -
Multi-Criteria Vertical Handover Comparison Between Wimax and Wifi
Information 2015, 6, 399-410; doi:10.3390/info6030399 OPEN ACCESS information ISSN 2078-2489 www.mdpi.com/journal/information Article Multi-Criteria Vertical Handover Comparison between Wimax and Wifi Maroua Drissi 1;* and Mohammed Oumsis 1;2 1 GSCM-LRIT Associated Unit to CNRST - URAC n’29, Faculty of Science, Mohammed V University, Rabat 10 000, Morocco; E-Mail: [email protected] 2 High School of Technology, Mohammed V University, Sale 11 000, Morocco * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +212-65-3254865. Academic Editor: Ahmed El Oualkadi Received: 8 June 2015 / Accepted: 14 July 2015 / Published: 21 July 2015 Abstract: In next generation wireless networks, the most tempting feature is the ability of the user to move smoothly over different access networks regardless of the network access technology. In this paper we study the benefit of Multiple Attribute Decision Making (MADM) strategies for network selection. We compare three of these methods naming Simple Additive Weighting (SAW), Multiplicative Exponential Weighting (MEW) and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) in a realtime ns-3 simulation. Analytic Hierarchy Process (AHP) provides the weights of attributes which allow the comparison in different types of applications. Therefore, we propose a performance evaluation model with a reconfiguration of AHP parameters used in the literature. Simulation results show that the proposed parameters provide an improvement of Delay and offer allowable Packet loss in different types of applications. Keywords: 4G; Multiple Attribute Decision Making (MADM); Analytic Hierarchy Process (AHP); heterogeneous network; network selection; vertical handover; WIMAX; WLAN; NS-3 Information 2015, 6 400 1.