80 LAB 07: ANGIOSPERM SYNAPOMORPHIES Introduction

Total Page:16

File Type:pdf, Size:1020Kb

80 LAB 07: ANGIOSPERM SYNAPOMORPHIES Introduction LAB 07: ANGIOSPERM SYNAPOMORPHIES Introduction: Phylogenetic relationships in the flowering plants (Cronk 2009, Fig. 1.8) Diversity in flower morphology: A complete flower consists of sepals, petals, stamens and pistil (of the gynoecium, with one or more carpels). In many species, flowers are incomplete, lacking one or more of the four types of floral organs. Virtually all wind-pollinated flowers, for example, are unisexual and commonly lack perianth parts (petals and sepals). Incomplete flowers. A, Pistillate flower of Salix (willow) containing only a pistil subtended by a bract, staminate flower consists only of stamens; B, Saururus cernuus (lizard’s tail) lacking both petals and sepals; C, Caltha palustris (marsh marigold) lacking petals. The diversity of floral form often correlates tightly with pollination vectors. The suite of characters that constitute adaptations to a particular pollinator are known as pollination syndromes. 80 Examples of diversity in flower form and pollinating vectors. A, Salvia, pollinated by bumblebees; B, Lilium with hawkmoth pollinator; C, Arum, an inflorescence pollinated by carrion flies; D, trumpet-vine with hummingbird; E, Kigelia with bat; F, Vallisneria, a rare case of water pollination in which water conveys the entire male flowers to the female flowers. 81 Laboratory Exercise: Angiosperm synapomorphies I. The flower as a synapomorphy and a key innovation: Dissect at least 4 flowers, one from each lineage listed. Work on damp paper towel, using the dissecting scope and making cross/long sections of pistils. Fill in the Table below. Lineage Basal Monocot Basal Eudicot Core Eudicot (ANITA clade) (Caryophyllid Name of Flower Or Magnolid Asterid or Rosid) Are all flower parts present? (complete or incomplete) Symmetry: bilateral or radial . Calyx: color, number of sepals, fused or not? Corolla: color, number of petals, fused or not? Stamens: color, number, fusion of filaments or anthers? fusion to petals? Pistils: simple or compound. If compound, number of carpels (by externally visible compartmentalization of ovary; number of styles or stigmas; number of internal compartments seen in cross-section) Ovary position inferior or superior Ovules: approximate number per pistil *In ovary long section/prepared slides. Nectaries: absent or present, location and shape. (Eudicots: often a yellow disk at base of ovary; Monocots: within ovary, with surface exit pores) 82 II. The flower in evolutionary context: Observe the flowers provided, the material is organized evolutionarily, following the current understanding of angiosperm relationships as depicted in the phylogenetic tree below. Write in an example and summarize floral features on the phylogeny below for each lineage or grade. 83 1.) Summarize 3-4 floral characteristics that you have observed in your dissections and in lab demos that are ancestral, as observed in the ANITA grade or Magnolid dicots. 2.) Summarize 3-4 floral characteristics that you have observed in your dissections and in lab demos that are derived, as observed in the core eudicots. III. The flower as a reproductive unit: Pollination syndromes 1-Observe plants demonstrating different types of floral specializations to pollinators. Although most gymnosperms are wind-pollinated (some Gnetophytes and Cycads being exceptions), wind-pollination in angiosperms is a derived condition. The oldest known angiosperm pollen is of the insect type. But where ecological circumstances have favored wind-pollination, such as high wind velocity and a paucity of animal pollinators, a number of angiosperm taxa have shifted from animal to wind pollination. Animal pollination is by far the most common and clearly represents an enormous increase in efficiency over the wind pollination that predominates in gymnosperms. Angiosperms are pollinated by many kinds of animals (bees, butterflies, moths, flies, birds, bats, rodents, marsupials, etc.). The wide variety of shapes, colors and “rewards” (nectar, pollen, wax, oils, scents) are part of the “pollination syndrome”, a suite of adaptations to attract a particular kind of animal to transfer pollen among different flowers. Specialists in pollination biology can usually tell what kind of animal pollinates a particular flower from its morphology. For example, big sturdy red/orange flowers with little odor are often bird- pollinated; blue/yellow flowers with nectar guides (stripes or dots on the petals, often visible only in UV light) are usually bee pollinated; blue, yellow or red flowers massed in a flat- topped inflorescence (a “landing platform”) are often butterfly pollinated; nectaries at the base of a long corolla tube are often associated with long-tongued insects such as hawkmoths or butterflies, or if the flowers are red - by hummingbirds; night-blooming flowers of white/dull color with a strong odor may be moth or bat pollinated; flowers that have foul or spicy odors, often with mottled red colors are usually beetle or carrion fly-pollinated (they mimic rotten flesh). Analyze the Table below and fill in an example for each syndrome in the last column, among the flowers available in the lab. 84 FLORAL CHARACTERISTICS Time of Pollinator Color Scent Corolla Reward Example Flowering Blue, yellow, Bilateral landing Nectar and /or Bee Fresh, strong Day purple platform pollen Landing platform; Bright; Butterfly Fresh, weak Day sometimes nectar Nectar only often red spurs Dissected; White or Night or Moth Sweet, strong sometimes nectar Nectar only pale dusk spurs Nectar and /or Fly (reward) Light Faint Day Radial, shallow pollen Brownish, Fly (carrion) Rotten, strong Day or night Enclosed or open None purplish Often green Nectar and /or Beetle Various, strong Day or night Enclosed or open or white pollen Bright; Tubular or pendant; Birds None Day Nectar only often red ovary often inferior Showy flower or Nectar and /or Bat Whitish Musky, strong Night inflorescence pollen Non-flying Unscented to Robust ,exerted Copius nectar Dull-colored Night mammals variously strong styles and stamens and/or pollen Modified from Judd et al 2002 2-Match flower scents in the scent demonstration cups to pollination syndromes in the table. Not all scents will be obvious (nor pleasant!), have fun! 85 ANGIOSPERM REPRODUCTION Background In the majority of angiosperm species, the ovule has two integuments. In certain derived families where only one integument is present (e.g. Asteraceae, Orchidaceae), the single integument is interpreted as a loss of one integument or fusion of two integuments. Within the ovule, the nucellus (megasporangium) of angiosperms may be considerably reduced in comparison to gymnosperms. In many taxa it consists of little more than a cell layer over the megaspore mother cell. In other taxa, there is a more substantial nucellus, but even in that case it is largely destroyed as the female gametophyte develops. Female gametophyte. In most angiosperms and gymnosperms, meiosis produces a linear array of potential megaspores. The megaspore wall of angiosperms is unique among seed plants in being thin and lacking sporopollenin. The sequence of nuclear divisions, abortions and migrations that produce the mature female gametophyte can follow over ten different developmental pathways. About 80% of the angiosperm female gametophytes follow a particular sequence of events known as the Polygonum type (a derived type, see lecture notes for ancestral gametophyte development, e.g. in basal angiosperms). The megaspore nucleus undergoes mitosis and the two nuclei migrate to opposite ends of the cell. Two subsequent mitoses produce a total of four nuclei at each end of the cell. Two nuclei, one from each group of four move toward the center of the cell and are not involved in subsequent cellularization. The other six nuclei, three at each end of the cell, develop walls. The trio of cells at the micropylar end consists of an egg flanked by two synergids. There is no hint of archegonia. The three cells at the chalazal end (near the ovule stalk) are known as antipodals and have no known function. The two nuclei that are not walled off are called polar nuclei. They lie near each other in the original megaspore cytoplasm forming the central cell. Thus, the mature female gametophyte, or embryo sac, consists of 7 cells and 8 nuclei. The female gametophyte develops very quickly and is complete before pollination occurs. Development of a Polygonum type angiosperm ovule beginning with the formation of the integuments and single megasporocyte (A,B), continuing through the formation of megaspores (C-E), and concluding with the successive stages in development of the embryo sac (F-J). (From Gifford and Foster, 1998) chalazal end 86 Male gametophyte. In 70% of angiosperm species, when pollen is released from the anther it consists of just 2 cells, the generative cell and the tube cell. When the generative cell divides, the products differentiate directly as sperm. In 30% of angiosperm species, the sperm are already present when the pollen is released, 3-celled pollen represents the most derived condition. The pollen wall of angiosperms has unique structural features that make it recognizable in the fossil record. In almost all species the outermost wall (exine) consists of columns of fused sporopollenin granules. Many gymnosperms are monosulcate. A sulcus is a slit or furrow in the exine at the distal pole of the pollen grain (the one furthest from the point of contact between microspores in a tetrad). The oldest angiosperm pollen is monosulcate also. In more derived angiosperms, pollen grains are characterized by multiple apertures (e.g. three in Eudicots) with a variety of shapes and positions. Pollen is in a dessicated condition when shed from anthers. It hydrates after being deposited on a compatible stigma. About 75% of angiosperm species are self-incompatible, due to interactions between proteins in the pollen wall and in the stigmatic cells. In self-incompatible species pollen grains fail to germinate or stop growing shortly after germination. Self-incompatibility may have evolved in angiosperms following the evolution of bisexual flowers. Bisexuality involves the risk of self-pollination leading to low genetic variability and sometimes to inbreeding depression.
Recommended publications
  • Redalyc.Géneros De Lamiaceae De México, Diversidad Y Endemismo
    Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Martínez-Gordillo, Martha; Fragoso-Martínez, Itzi; García-Peña, María del Rosario; Montiel, Oscar Géneros de Lamiaceae de México, diversidad y endemismo Revista Mexicana de Biodiversidad, vol. 84, núm. 1, marzo, 2013, pp. 30-86 Universidad Nacional Autónoma de México Distrito Federal, México Disponible en: http://www.redalyc.org/articulo.oa?id=42526150034 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Mexicana de Biodiversidad 84: 30-86, 2013 DOI: 10.7550/rmb.30158 Géneros de Lamiaceae de México, diversidad y endemismo Genera of Lamiaceae from Mexico, diversity and endemism Martha Martínez-Gordillo1, Itzi Fragoso-Martínez1, María del Rosario García-Peña2 y Oscar Montiel1 1Herbario de la Facultad de Ciencias, Facultad de Ciencias, Universidad Nacional Autónoma de México. partado postal 70-399, 04510 México, D.F., México. 2Herbario Nacional de México, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70-367, 04510 México, D.F., México. [email protected] Resumen. La familia Lamiaceae es muy diversa en México y se distribuye con preferencia en las zonas templadas, aunque es posible encontrar géneros como Hyptis y Asterohyptis, que habitan en zonas secas y calientes; es una de las familias más diversas en el país, de la cual no se tenían datos actualizados sobre su diversidad y endemismo.
    [Show full text]
  • Field Identification of the 50 Most Common Plant Families in Temperate Regions
    Field identification of the 50 most common plant families in temperate regions (including agricultural, horticultural, and wild species) by Lena Struwe [email protected] © 2016, All rights reserved. Note: Listed characteristics are the most common characteristics; there might be exceptions in rare or tropical species. This compendium is available for free download without cost for non- commercial uses at http://www.rci.rutgers.edu/~struwe/. The author welcomes updates and corrections. 1 Overall phylogeny – living land plants Bryophytes Mosses, liverworts, hornworts Lycophytes Clubmosses, etc. Ferns and Fern Allies Ferns, horsetails, moonworts, etc. Gymnosperms Conifers, pines, cycads and cedars, etc. Magnoliids Monocots Fabids Ranunculales Rosids Malvids Caryophyllales Ericales Lamiids The treatment for flowering plants follows the APG IV (2016) Campanulids classification. Not all branches are shown. © Lena Struwe 2016, All rights reserved. 2 Included families (alphabetical list): Amaranthaceae Geraniaceae Amaryllidaceae Iridaceae Anacardiaceae Juglandaceae Apiaceae Juncaceae Apocynaceae Lamiaceae Araceae Lauraceae Araliaceae Liliaceae Asphodelaceae Magnoliaceae Asteraceae Malvaceae Betulaceae Moraceae Boraginaceae Myrtaceae Brassicaceae Oleaceae Bromeliaceae Orchidaceae Cactaceae Orobanchaceae Campanulaceae Pinaceae Caprifoliaceae Plantaginaceae Caryophyllaceae Poaceae Convolvulaceae Polygonaceae Cucurbitaceae Ranunculaceae Cupressaceae Rosaceae Cyperaceae Rubiaceae Equisetaceae Rutaceae Ericaceae Salicaceae Euphorbiaceae Scrophulariaceae
    [Show full text]
  • Systematics of Buddleja (Scrophulariaceae): Phylogenetic Relationships, Historical Biogeography, and Phylogenomics
    Systematics of Buddleja (Scrophulariaceae): phylogenetic relationships, historical biogeography, and phylogenomics John H. Chau A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: Richard G. Olmstead, Chair Verónica S. Di Stilio Adam D. Leaché Program Authorized to Offer Degree: Department of Biology ©Copyright 2017 John H. Chau University of Washington Abstract Systematics of Buddleja (Scrophulariaceae): phylogenetic relationships, historical biogeography, and phylogenomics John H. Chau Chair of the Supervisory Committee: Professor Richard G. Olmstead Department of Biology Plants display incredible diversity, in morphology and spatial distribution, which can best be understood in an evolutionary context. The reconstruction of how this diversity has evolved can illuminate patterns and trends in the evolution of functionally and ecologically important traits and on how modern plant communities have formed around the globe. Case studies of individual taxa that encompass such diversity allow for thorough taxonomic sampling and detailed analysis of traits and distribution. The tribe Buddlejeae in Scrophulariaceae comprises 108 species of trees and shrubs in five genera: Buddleja, Chilianthus, Emorya, Gomphostigma, and Nicodemia. They are variable in flower color and shape, inflorescence architecture, fruit type, leaf shape and texture, and habitat preference, among other traits. They also have a wide distribution in tropical montane and subtropical regions of Africa, Madagascar, Asia, North America, and South America. Prior phylogenetic studies including the group have had limited taxonomic sampling, and evolutionary relationships between species and genera remained unknown. In Chapter 1, I infer a phylogeny for tribe Buddlejeae with extensive taxonomic sampling from all five genera and all major areas of distribution, using multiple nuclear and plastid markers.
    [Show full text]
  • Géneros De Lamiaceae De México, Diversidad Y Endemismo
    Revista Mexicana de Biodiversidad 84: 30-86, 2013 DOI: 10.7550/rmb.30158 Géneros de Lamiaceae de México, diversidad y endemismo Genera of Lamiaceae from Mexico, diversity and endemism Martha Martínez-Gordillo1, Itzi Fragoso-Martínez1, María del Rosario García-Peña2 y Oscar Montiel1 1Herbario de la Facultad de Ciencias, Facultad de Ciencias, Universidad Nacional Autónoma de México. partado postal 70-399, 04510 México, D.F., México. 2Herbario Nacional de México, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado postal 70-367, 04510 México, D.F., México. [email protected] Resumen. La familia Lamiaceae es muy diversa en México y se distribuye con preferencia en las zonas templadas, aunque es posible encontrar géneros como Hyptis y Asterohyptis, que habitan en zonas secas y calientes; es una de las familias más diversas en el país, de la cual no se tenían datos actualizados sobre su diversidad y endemismo. En este trabajo se presenta una clave para identificar los géneros de la familia, las descripciones de los mismos, con comentarios acerca de su riqueza y endemismo, un mapa de distribución de la familia y un listado de especies presentes en el país; todo lo anterior a partir de una revisión de la bibliografía, de varios herbarios mexicanos (CHAPA, CHIP, ENCB, FCME, IEB, MEXU, OAX, SERO y UAMIZ) y de las colecciones y listados disponibles en Internet (F, K, MO y US). En México se encuentran 32 géneros nativos o naturalizados por largo tiempo y 591 especies que representan el 8.11% de la familia, con un endemismo de 65.82%.
    [Show full text]
  • Resumen Abstract
    MARTHA MARTÍNEZ-GORDILLO1, BRENDA BEDOLLA-GARCÍA2, GUADALUPE CORNEJO- TENORIO3, ITZI FRAGOSO-MARTÍNEZ4*, MARÍA DEL ROSARIO GARCÍA-PEÑA4, JESÚS GUADALUPE GONZÁLEZ-GALLEGOS5, SABINA I. LARA-CABRERA6 Y SERGIO ZAMUDIO7 Botanical Sciences 95 (4): 780-806, 2017 Resumen Antecedentes: Lamiaceae es una de las familias con mayor riqueza de especies en México. Sin embargo, aún se carece de un estudio detallado sobre su diversidad en el país y de una revisión taxonómica global y actualizada. DOI: 10.17129/botsci.1871 Como resultado, el aprovechamiento y conservación de los integrantes de esta familia es limitado. Received: Preguntas: ¿Qué avances se han logrado en el estudio y entendimiento de la riqueza, endemismo y distribución 2 de octubre de 2017 de las Lamiaceae mexicanas? ¿Qué estrategias deben ejecutarse para consolidar el conocimiento de la familia Accepted: en el país? 10 de noviembre de 2017 Taxon: Lamiaceae Associate Editor: Guillermo Sitio de estudio: México Ibarra Manriquez Métodos: Se hizo una revisión exhaustiva de las Lamiaceae mexicanas en la literatura, bases de datos y her- barios. Se sintetizó el estado de su conocimiento. Se aplicaron análisis cuantitativos para evaluar su riqueza, endemismo y distribución geográfca. Resultados: México cuenta con 33 géneros y 598 especies, de las cuales el 66.2 % son endémicas. El género Copyright: © 2017 Martínez-Gor- dillo et al. This is an open access más diverso es Salvia, con 306 especies. El estado más diverso es Oaxaca, mientras que Jalisco alberga el mayor article distributed under the terms of número de especies endémicas. the Creative Commons Attribution Conclusiones: En México, Lamiaceae es la octava familia más diversa y el número de sus especies representa el License, which permits unrestricted 5.5 % de la familia a nivel mundial, por lo que el país puede considerarse uno de los centros de diversifcación use, distribution, and reproduction más importante.
    [Show full text]
  • Plant Systematics Laboratory Manual
    i Plant Systematics Laboratory Manual Dr. Michael G. Simpson San Diego State University Copyright © 2013 by Michael G. Simpson ii iii Plant Systematics Lab Manual Table of Contents Syllabus Plant Systematics: Biology 530 iv–vii Laboratory 1 Plant Systematics: An Overview 1 Laboratory 2 Phylogenetic Systematics 7 Laboratory 3 Evolution and Diversity of Green and Land Plants 19 Laboratory 4 Evolution and Diversity of Vascular Plants 21 Laboratory 5 Evolution and Diversity of Woody and Seed Plants 25 Laboratory 6 Evolution of Flowering Plants 29 Laboratory 7 Diversity and Classification of Flowering Plants: Amborellales-Monocots 31 Laboratory 8 Diversity and Classification of Flowering Plants: Eudicots 62 Laboratory 9 Plant Morphology 91 Laboratory 10 Plant Anatomy and Physiology 119 Laboratory 11 Plant Embryology 125 Laboratory 12 Palynology 127 Laboratory 13 Plant Reproductive Biology 129 Laboratory 14 Plant Molecular Systematics 133 Laboratory 15 Plant Identification 135 Laboratory 16 Plant Nomenclature 139 Laboratory 17 Plant Collecting and Documentation 143 Laboratory 18 Herbaria and Database Systems 157 Appendix 1 Plant Description 163 Appendix 2 Plant Morphology Review 167 Appendix 3 SDSU Plants 179 Laboratory 1 Plant Systematics: An Overview 1 Plant Systematics Laboratory #1 PLANT SYSTEMATICS: AN OVERVIEW OBJECTIVES FOR THIS LABORATORY: 1. Review the major groups of plants. 2. Review the major concepts and terms of phylogenetic systematics. 3. Understand the basics of taxonomy by performing exercises in its components. pLAnT SYSTEMATICS What is a plant? Observe and label the examples of each of the major plant groups on display: liverworts, hornworts, mosses, lycophytes, psilophytes, equisetophytes, ferns, conifers, cycads, Ginkgo, Gnetales, and angiosperms (monocots and eudicots).
    [Show full text]
  • “Filogenia De Salvia Secc. Polystachyae (Lamiaceae)"
    UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE BIOLOGÍA DIVISIÓN DE ESTUDIOS DE POSGRADO PROGRAMA INSTITUCIONAL DE DOCTORADO EN CIENCIAS BIOLÓGICAS ³)LORJHQLDGHSalvia secc. Polystachyae (Lamiaceae)" TESIS Como requisito para obtener el grado de Doctor en Ciencias Biológicas en Conservación y Manejo de Recursos Naturales presenta Brenda Yudith Bedolla García Director de Tesis: Dra. Sabina Irene Lara Cabrera Morelia, Michoacán, agosto de 2012 Tabla de contenido Lista de cuadros ............................................................................................................................ iii Lista de figuras ............................................................................................................................. iv Dedicatoria .................................................................................................................................... vi Agradecimientos .......................................................................................................................... vii Resumen ........................................................................................................................................ ix Abstract .......................................................................................................................................... x Introducción general ..................................................................................................................... 1 Literatura citada ..........................................................................................................................
    [Show full text]
  • Salvia Hispanica) Gene Expression Atlas Elucidates Dynamic SpatioTemporal Changes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.09.333419; this version posted October 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Chia (Salvia hispanica) gene expression atlas elucidates dynamic spatiotemporal changes associated with plant growth and development 1 Parul Gupta1*, Matthew Geniza1,2*, Sushma Naithani1, Jeremy Phillips1, Ebaad Haq1, Pankaj 2 Jaiswal1# 3 *Equal contribution and Co-First Authors 4 5 Affiliations: 6 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA 7 2Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, Oregon, 8 USA 9 10 # Correspondence: 11 Pankaj Jaiswal 12 Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA 13 Phone: +1-541-737-8471 14 Fax: +1-541-737-3573 15 Email: [email protected] 16 17 Running title: Reference transcriptome atlas of Chia 18 19 Abbreviations 20 DAF: Days after flowering; DAS: Days after sowing. 21 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.09.333419; this version posted October 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 Chia (Salvia hispanica L.), now a popular superfood, is one of the richest sources of dietary 24 nutrients such as protein, fiber, and polyunsaturated fatty acids. At present, the genomic and 25 genetic information available in the public domain for this crop is scanty, which hinders 26 understanding its growth and developmental processes and impedes genetic improvement 27 through genomics-assisted methods.
    [Show full text]
  • Field Identification of the 50 Most Common Plant Families in Temperate Regions
    Field identification of the 50 most common plant families in temperate regions (including agricultural, horticultural, and wild species) by Lena Struwe [email protected] © 2014, All rights reserved. Note: Listed characteristics are the most common characteristics; there might be exceptions in rare or tropical species. This compendium is available for free download without cost for non- commercial uses at http://www.rci.rutgers.edu/~struwe/. The author welcomes updates and corrections. Included families: Amaranthaceae Iridaceae Amaryllidaceae Juglandaceae Anacardiaceae Juncaceae Apiaceae Lamiacceae Araceae Lauraceae Araliaceae Liliaceae Asphodelaceae Magnoliaceae Asteraceae Malvaceae Betulaceae Moraceae Boraginaceae Myrtaceae Brassicaceae Oleaceae Bromeliaceae Orchidaceae Cactaceae Orobanchaceae Campanulaceae Pinaceae Caryophyllaceae Plantaginaceae Curcurbitaceae Poaceae Cupressaceae Polygonaceae Cyperaceae Ranunculaceae Equisetaceae Rosaceae Ericaceae Rubiaceae Euphorbiaceae Rutaceae Fabaceae Salicaceae Fagaceae Scrophulariaceae Geraniaceae Solanaceae Overall phylogeny – living land plants Bryophytes Mosses, liverworts, etc. Lycophytes Clubmosses, etc. Ferns and Fern Allies Conifers Pines, cycads and cedars, etc. Basal angiosperms Monocots Basal eudicots Eudicots Fabids Rosids Malvids Caryophyllales Lamiids Asterids Campanulids Amaranthaceae s. lat. (incl. Chenopodiaceae) B AMARANTH FAMILY Herbs or shrubs (rarely trees or vines), often reddish, many salt-loving plants (halophytes) Stems often succulent, and/or jointed Leaves
    [Show full text]