Where Is That Light Coming From?

Total Page:16

File Type:pdf, Size:1020Kb

Where Is That Light Coming From? 2004 Deep-Scope Expedition Where is That Light Coming From? FOCUS TEACHING TIME Bioluminescence One 45-minute class period, plus time for student research GRADE LEVEL 9-12 (Chemistry & Life Science) SEATING ARRANGEMENT Classroom style or groups of 3-4 students FOCUS QUESTION What is the basic chemistry responsible for bio- MAXIMUM NUMBER OF STUDENTS luminescence, and how does this process benefit 30 deep-sea organisms? KEY WORDS LEARNING OBJECTIVES Chemiluminescence Students will be able to explain the role of lucif- Bioluminescence erins, luciferases, and co-factors in biolumines- Fluorescence cence, and the general sequence of the light-emit- Phosphorescence ting process. Luciferin Luciferase Students will be able to discuss the major types of Photoprotein luciferins found in marine organisms. Counter-illumination Lux operon Students will be able to define the “lux operon?” BACKGROUND INFORMATION Students will be able to discuss at least three Deep-sea explorers face many challenges: ways that bioluminescence may benefit deep-sea extreme heat and cold, high pressures, and organisms, and give an example of at least one almost total darkness. The absence of light poses organism that actually receives each of the ben- particular challenges to scientists who want to efits discussed. study organisms that inhabit the deep ocean envi- ronment. Even though deep-diving submersibles MATERIALS carry bright lights, simply turning these lights on ❑ None creates another set of problems: at least some mobile organisms are likely to move away from AUDIO/VISUAL MATERIALS the light; organisms with light-sensitive organs ❑ (Optional) Images of deep-sea environments may be permanently blinded by intense illumina- and organisms that use bioluminescence (see tion; even sedentary organisms may shrink back, Learning Procedure) ceasing normal life activities and possibly becom- 1 2004 Deep-Scope Expedition – Grades 9-12 (Chemistry and Life Science) Focus: Bioluminescence oceanexplorer.noaa.gov ing less noticeable; and small cryptic organisms When the electrons return to their original lower- may simply be unnoticed. In addition, some energy orbitals, energy is released in the form of important aspects of deep-sea biology simply visible light. can’t be studied with ordinary visible light. Many marine species are known to be capable of pro- Chemiluminescence is distinctly different from ducing light, and it is reasonable to suppose that fluorescence and phosphorescence, which ability to produce and detect light might be par- occur when electrons in a molecule are driven ticularly important to organisms that live in near- to a higher-energy orbital by the absorption of total darkness. light energy (instead of chemical energy). Both processes may occur in living organisms. Atoms The primary purpose of the 2004 Ocean of a fluorescent material typically re-emit the Exploration Deep-Scope Expedition is to study absorbed radiation only as long as the atoms deep-sea biological communities using advanced are being irradiated (as in a fluorescent lamp). optical techniques that provide new ways of Phosphorescent materials, on the other hand, looking at organisms that make their home in the continue to emit light for a much longer time after blackness of the deep ocean. These techniques the incident radiation is removed (glowing hands are based on a number of basic concepts that on watches and clocks are familiar examples). can be summarized under the general heading of Chemiluminescent reactions, on the other hand, “bioluminescence.” produce light without any prior absorption of radiant energy. Another light-producing process Bioluminescence is a form of chemiluminescence, known as triboluminescence occurs in certain which is the production of visible light by a crystals when mechanical stress applied to the chemical reaction. When this kind of reaction crystal provides energy that raises electrons to a occurs in living organisms, the process is called higher-energy orbital. bioluminescence. It is familiar to most of us as the process that causes fireflies to glow. Some of us The production of light in bioluminescent organ- may also have seen “foxfire,” which is caused isms results from the conversion of chemical ener- by bioluminescence in fungi growing on wood. gy to light energy. The energy for bioluminescent Bioluminescence is relatively rare in terrestrial reactions is typically provided by an exothermic ecosystems, but is much more common in the chemical reaction. The light-emitting molecules in marine environment. Marine organisms producing bioluminescent reactions are known collectively bioluminescence include bacteria, algae, coelen- as luciferins. The light-emitting reactions typically terates, annelids, crustaceans, and fishes. involve a group of enzymes known as luciferases. Several different luciferins have been found in The fundamental chemiluminescent reaction marine organisms, suggesting that biolumines- occurs when an electron in a chemical molecule cence may have evolved many times in the sea receives sufficient energy from an external source among different taxonomic groups. Despite these to drive the electron into a higher-energy orbital. differences, almost all marine bioluminescence is This is typically an unstable condition, and when green to blue in color. These colors travel farther the electron returns to the original lower-energy through seawater than warmer colors. In fact, state, energy is emitted from the molecule as a most marine organisms are sensitive only to blue photon. Lightning is an example of gas-phase light. chemiluminescence: An electrical discharge in the atmosphere drives electrons in gas molecules (such as N2 and O2) to higher-energy orbitals. 2 2004 Deep-Scope Expedition – Grades 9-12 (Chemistry and Life Science) oceanexplorer.noaa.gov Focus: Bioluminescence LEARNING PROCEDURE has higher energy than light at the red end of 1. If you want to include demonstrations of chemi- the spectrum (including infrared). luminescence, bioluminescence, fluorescence, and phosphorescence, see the ‘Cool Lights” 3. Tell students that their assignment is to investigate lesson plan for suggestions. The following web the chemistry of bioluminescence, and prepare a sites are useful resources if you want to show report that answers the following questions: images of deep-sea environments and organ- • What is the role of luciferins, luciferases, isms that use bioluminescence: and co-factors in bioluminescence, and what http://www.biolum.org/ is the general sequence of the light-emitting http://oceanexplorer.noaa.gov/gallery/livingocean/livingocean_coral. process? html • What are the major types of luciferins found http://www.europa.com/edge.of.CyberSpace/deep.html in marine organisms? http://www.europa.com/edge.of.CyberSpace/deep2.html • Different groups of marine organisms have http://www.pbs.org/wgbh/nova.abyss/life.bestiary.html different luciferases and co-factors. http://biodidac.bio.uottawa.ca/ • How much light is emitted by biolumines- http://www.fishbase.org/search.cfm cence, and how long is a single burst of light emission? 2. Ask students to describe characteristics of deep- • What is the “lux operon?” sea environments (depth = 1,000 meters or • What are three ways that bioluminescence more). You may want to show images of vari- may benefit deep-sea organisms? ous deep-sea environments and organisms that use bioluminescence. 4. Have each student or student group present and discuss the results of their research. Points that Focus the discussion on light in the deep ocean. should emerge during these discussions include: Students should realize that light is almost com- • The role of luciferins, luciferases, and pletely absent. Ask whether plants and animals co-factors in bioluminescence, and the are ever able to produce their own light. Most general sequence of the light-emitting students will be familiar with fireflies, and may process: mention bioluminescence in other species. The generalized steps in a bioluminescent reaction are: Review the basic concept of chemilumines- – Release of a large quantum of energy cence, and contrast this process with fluores- involving oxide or hydroperoxide radicals; cence and phosphorescence. Students should – Transferance of this energy to a substrate understand that every light-producing process (known collectively as luciferins), causing requires a source of energy (chemical, electri- an electron to be driven to a higher-energy cal, mechanical, or light). Tell students that bio- orbital (a less stable state); and luminescence is a form of chemiluminescence – Return of the electron to its original orbital that occurs in living organisms, but do not (a more stable state), accompanied by explain the details of bioluminescence at this release of energy as a photon of light. point. Students may ask about incandescence, in which light is produced by combustion reac- These reactions are typically catalyzed by tions (thermal energy). Review the concept enzymes known as luciferases. In some spe- of the visible and near-visible light spectrum. cies, the luciferin and luciferase are bound Students should understand that light at the blue together in a “photoprotein” which is acti- end of the spectrum (including ultraviolet light) vated by a co-factor (such as calcium ions). 3 2004 Deep-Scope Expedition – Grades 9-12 (Chemistry and Life Science) Focus: Bioluminescence oceanexplorer.noaa.gov • The major types of luciferins found in Reports vary. Light emission from dinoflagel- marine organisms: lates
Recommended publications
  • Integration of Nanomaterials and Bioluminescence Resonance Energy Transfer Techniques for Sensing Biomolecules
    Review Integration of Nanomaterials and Bioluminescence Resonance Energy Transfer Techniques for Sensing Biomolecules Eugene Hwang 1, Jisu Song 1 and Jin Zhang 1,2,* 1 School of Biomedical Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9, Canada; [email protected] (E.H.); [email protected] (J.S.) 2 Department of Chemical and Biochemical Engineering, University of Western Ontario, 1151 Richmond St., London, ON N6A 5B9, Canada * Correspondence: [email protected]; Tel.: +1-519-661-2111 (ext. 88322) Received: 3 February 2019; Accepted: 12 March 2019; Published: 16 March 2019 Abstract: Bioluminescence resonance energy transfer (BRET) techniques offer a high degree of sensitivity, reliability and ease of use for their application to sensing biomolecules. BRET is a distance dependent, non-radiative energy transfer, which uses a bioluminescent protein to excite an acceptor through the resonance energy transfer. A BRET sensor can quickly detect the change of a target biomolecule quantitatively without an external electromagnetic field, e.g., UV light, which normally can damage tissue. Having been developed quite recently, this technique has evolved rapidly. Here, different bioluminescent proteins have been reviewed. In addition to a multitude of bioluminescent proteins, this manuscript focuses on the recent development of BRET sensors by utilizing quantum dots. The special size-dependent properties of quantum dots have made the BRET sensing technique attractive for the real-time monitoring of the changes of target molecules and bioimaging in vivo. This review offers a look into the basis of the technique, donor/acceptor pairs, experimental applications and prospects. Keywords: bioluminescence resonance energy transfer; fluorescent nanomaterials; fluorescent nanobiosensors; quantum dots 1.
    [Show full text]
  • Dwaine F. Emerich Gorka Orive Editors Current Status and Future
    Molecular and Translational Medicine Series Editors: William B. Coleman · Gregory J. Tsongalis Dwaine F. Emerich Gorka Orive Editors Cell Therapy Current Status and Future Directions Molecular and Translational Medicine Series editors William B. Coleman Department of Pathology and Lab Medicine University of North Carolina School of Medicine Chapel Hill, North Carolina, USA Gregory J. Tsongalis Department of Pathology and Lab Medicine Dartmouth-Hitchcock Medical Center Lebanon, New Hampshire, USA As we enter into this new era of molecular medicine with an expanding body of knowledge related to the molecular pathogenesis of human disease and an increasing recognition of the practical implications for improved diagnostics and treatment, there is a need for new resources to inform basic scientists and clinical practitioners of the emerging concepts, useful applications, and continuing challenges related to molecular medicine and personalized treatment of complex human diseases. This series of resource/reference books entitled Molecular and Translational Medicine is primarily concerned with the molecular pathogenesis of major human diseases and disease processes, presented in the context of molecular pathology, with implications for translational molecular medicine and personalized patient care. More information about this series at http://www.springer.com/series/8176 Dwaine F. Emerich • Gorka Orive Editors Cell Therapy Current Status and Future Directions Editors Dwaine F. Emerich Gorka Orive NsGene, Inc. Paseo de la Universidad 7 Providence, RI, USA Vitoria-Gasteiz, Spain ISSN 2197-7852 ISSN 2197-7860 (electronic) Molecular and Translational Medicine ISBN 978-3-319-57152-2 ISBN 978-3-319-57153-9 (eBook) DOI 10.1007/978-3-319-57153-9 Library of Congress Control Number: 2017946620 © Springer International Publishing AG 2017 This work is subject to copyright.
    [Show full text]
  • Plasmids 101
    Plasmids 101 A Desktop Resource Created and Compiled by Addgene www.addgene.org March 2017 (3rd Edition) Plasmids 101: A Desktop Resource (3rd Edition) INTRODUCTION TO PLASMIDS 101 By The Addgene Team | March, 2017 Any newcomer who joins a molecular biology lab will undoubtedly be asked to design, modify, or construct a plasmid. Although the newcomer likely knows that a plasmid is a small circular piece of DNA often found in bacterial cells, additional guidance may be required to understand the specific components that make up a plasmid and why each is important. Our mission with this eBook, Plasmids 101: A Desktop Resource, is to curate a onestop reference guide for plasmids. This resource is designed to educate all levels of scientists and plasmid lovers. It serves as an introduction to plasmids, allowing you to spend less time researching basic plasmid features and more time developing the clever experiments and innovative solutions necessary for advancing your field. ~ The Addgene Team addgene.org blog.addgene.org facebook.com/addgene twitter.com/addgene linkedin.com/company/addgene youtube.com/addgene blog.addgene.org/topic/podcast 2 | Page Table of Contents Plasmids 101: A Desktop Resource (3rd Edition) TABLE OF CONTENTS Page Section 2 Introduction to Plasmids 101 7 Chapter 1: What is a Plasmid? 8 A Brief History of Plasmids 10 What is a Plasmid? 12 Antibiotic Resistance Genes 14 Common Antibiotics Table 15 Origin of Replication 18 The Promoter Region 25 Terminators and PolyA Signals 28 Methylation and Restriction Enzymes 31 Blue-White Screening 34 Common Lab E. coli Strains 39 E.
    [Show full text]
  • Selection, Drift, and Constraint in Cypridinid Luciferases and the Diversification of Bioluminescent Signals in Sea Fireflies
    Received: 19 May 2020 | Revised: 9 September 2020 | Accepted: 18 September 2020 DOI: 10.1111/mec.15673 ORIGINAL ARTICLE Selection, drift, and constraint in cypridinid luciferases and the diversification of bioluminescent signals in sea fireflies Nicholai M. Hensley1 | Emily A. Ellis1 | Nicole Y. Leung2,3 | John Coupart1 | Alexander Mikhailovsky4 | Daryl A. Taketa3 | Michael Tessler5,6 | David F. Gruber7 | Anthony W. De Tomaso3 | Yasuo Mitani8 | Trevor J. Rivers9 | Gretchen A. Gerrish10 | Elizabeth Torres11 | Todd H. Oakley1 1Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 2Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA 3Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA 4Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA 5American Museum of Natural History and New York University, New York, NY, USA 6Department of Biology, St. Francis College, Brooklyn, NY, USA 7Department of Biology and Environmental Science, City University of New York Baruch College, New York, NY, USA 8Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan 9Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA 10Department of Biology, University of Wisconsin – La Crosse, La Crosse, WI, USA 11Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, USA Correspondence Todd H. Oakley, Department of Ecology, Evolution, & Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA. Email: [email protected] Present address Emily A. Ellis, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA Nicole Y.
    [Show full text]
  • Multi-Level Convergence of Complex Traits and the Evolution of Bioluminescence Emily S
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 December 2020 Multi-level convergence of complex traits and the evolution of bioluminescence Emily S. Lau* and Todd H. Oakley* Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara CA 93106 Corresponding authors information: Emily S. Lau: [email protected]; Todd H. Oakley: [email protected] Keywords multi‐level convergence | evolution | bioluminescence | biological organization | complex trait ABSTRACT Evolutionary convergence provides natural opportunities to investigate how, when, and why novel traits evolve. Many convergent traits are complex, highlighting the importance of explicitly considering convergence at different levels of biological organization, or ‘multi‐level convergent evolution’. To investigate multi‐level convergent evolution, we propose a holistic and hierarchical framework that emphasizes breaking down traits into several functional modules. We begin by identifying long‐standing questions on the origins of complexity and the diverse evolutionary processes underlying phenotypic convergence to discuss how they can be addressed by examining convergent systems. We argue that bioluminescence, a complex trait that evolved dozens of times through either novel mechanisms or conserved toolkits, is particularly well suited for these studies. We present an updated estimate of at least 94 independent origins of bioluminescence across the tree of life, which we calculated by reviewing and summarizing all estimates of independent origins. Then, we use our framework to review the biology, chemistry, and evolution of bioluminescence, and for each biological level identify questions that arise from our systematic review. We focus on luminous organisms that use the shared luciferin substrates coelenterazine or vargulin to produce light because these organisms convergently evolved bioluminescent proteins that use the same luciferins to produce bioluminescence.
    [Show full text]
  • Molecular Evolution of Luciferase Diversified Bioluminescent Signals in Sea Fireflies (Crustacea:Ostracoda:Cypridinidae)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.23.917187; this version posted January 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Molecular evolution of luciferase diversified bioluminescent signals in sea fireflies (Crustacea:Ostracoda:Cypridinidae) Nicholai M. Hensley*, Emily A. Ellis, Nicole Y. Leung, John Coupart, Alexander Mikhailovsky, Daryl A. Taketa, Michael Tessler, David F. Gruber, Anthony W. De Tomaso, Yasuo Mitani, Trevor J. Rivers, Gretchen A. Gerrish, Elizabeth Torres, Todd H. Oakley*,** * Equal contributors Corresponding author: **[email protected] ​ Abstract Integrative studies of courtship signals provide rich opportunities to understand how biological diversity originates, but understanding the underlying genetics is challenging. Here we show molecular evolution of a single gene - luciferase - influenced diversification of bioluminescent signals in cypridinid ostracods, including their radiation into dozens of Caribbean species with distinctive courtship displays. We report emission spectra from twenty-one species, thirteen luciferases from transcriptomes, and in vitro assays that confirm function from four exemplar ​ ​ species. We found most sites in luciferase evolved neutrally or under purifying selection, including multiple sites that affect the color of bioluminescence in mutagenesis studies. Twelve sites in cypridinid luciferase evolved under episodic diversifying selection, including five that correlate with changes in kinetics and/or color of bioluminescence, phenotypes that manifest at the organismal level. These results demonstrate how neutral, pleiotropic, and/or selective forces may act on even a single gene and contribute to diversification of phenotypes.
    [Show full text]
  • United States Patent (10) Patent No.: US 8,859,256 B2 Szalay Et Al
    US008859256B2 (12) United States Patent (10) Patent No.: US 8,859,256 B2 Szalay et al. (45) Date of Patent: Oct. 14, 2014 (54) METHOD FOR DETECTING REPLICATION 6,759,038 B2 7/2004 Tan et al. ................... 424.93.21 OR COLONIZATION OF A BIOLOGICAL 6,863,894 B2 3/2005 Bermudes et al. ... 424,335.1 6,897,045 B2 5/2005 Engelhardt et al. 435/69.6 THERAPEUTC 6,916,462 B2 7/2005 Contag et al. ..... ... 424/9.6 6,923,972 B2 8, 2005 Bermudes et al. ... 424,235.1 (71) Applicants: Aladar A. Szalay, Highland, CA (US); 6,962,696 B1 1 1/2005 Bermudes et al. ... 424/93.4 Jochen Stritzker, La Jolla, CA (US); 7,001,765 B2 2/2006 Maass ............... ... 435/320.1 Michael Hess, Wuerzburg (DE) 7,033,826 B2 4/2006 Perricaudet et al. ... 435/320.1 7,153,510 B1 12/2006 Rose .................... ... 424,199.1 7,172,893 B2 2/2007 Rabinowitz et al. 435/235.1 (72) Inventors: Aladar A. Szalay, Highland, CA (US); 7,238,526 B2 7/2007 Wilson et al. ..... ... 435/.382 Jochen Stritzker, La Jolla, CA (US); 7,241,447 B1 7/2007 Engelhardt et al. 424, 1931 Michael Hess, Wuerzburg (DE) 7,255,851 B2 8/2007 Contaget al. .................. 4249.1 7,354,592 B2 4/2008 Bermudes et al. 424,235.1 Assignee: Genelux Corporation, San Diego, CA 7,452,531 B2 11/2008 Bermudes et al. ........... 424/93.2 (73) 7,514,089 B2 4/2009 Bermudes et al. ......... 424/258.1 (US) 7,537,924 B2 5/2009 Coffin et al.
    [Show full text]
  • Kleptoprotein Bioluminescence: Parapriacanthus Fish Obtain
    SCIENCE ADVANCES | RESEARCH ARTICLE EVOLUTIONARY BIOLOGY Copyright © 2020 The Authors, some rights reserved; Kleptoprotein bioluminescence: Parapriacanthus fish exclusive licensee American Association obtain luciferase from ostracod prey for the Advancement Manabu Bessho-Uehara1,2,3, Naoyuki Yamamoto2, Shuji Shigenobu4, of Science. No claim to 2 5 2,3 original U.S. Government Hitoshi Mori , Keiko Kuwata , Yuichi Oba * Works. Distributed under a Creative Through their diet, animals can obtain substances essential for imparting special characteristics, such as toxins in Commons Attribution monarch butterflies and luminescent substances in jellyfishes. These substances are typically small molecules NonCommercial because they are less likely to be digested and may be hard for the consumer to biosynthesize. Here, we report License 4.0 (CC BY-NC). that Parapriacanthus ransonneti, a bioluminescent fish, obtains not only its luciferin but also its luciferase enzyme from bioluminescent ostracod prey. The enzyme purified from the fish’s light organs was identical to the luciferase of Cypridina noctiluca, a bioluminescent ostracod that they feed upon. Experiments where fish were fed with a related ostracod, Vargula hilgendorfii, demonstrated the specific uptake of the luciferase to the fish’s light organs. This “kleptoprotein” system allows an organism to use novel functional proteins that are not encoded in its genome and provides an evolutionary alternative to DNA-based molecular evolution. Downloaded from INTRODUCTION fishes in the orders Myctophiformes and Stomiiformes (3–5, 13). It is The evolutionary acquisition of novelties is not always achieved expected that these animals acquire the coelenterazine from their diets through genetic mutations. At times, novelty can be achieved by (3–6), for example, directly through the consumption of coelenterazine- “stealing” components that have evolved elsewhere.
    [Show full text]
  • Derived Mesenchymal Stem Cells (Mscs) Have a Superior Neuroprotective Capacity Over Fetal Mscs in the Hypoxic-Ischemic Mouse Brain a Maternal and Fetal a a a a KATE E
    TISSUE ENGINEERING AND REGENERATIVE MEDICINE Embryonic Stem Cell-Derived Mesenchymal Stem Cells (MSCs) Have a Superior Neuroprotective Capacity Over Fetal MSCs in the Hypoxic-Ischemic Mouse Brain a Maternal and Fetal a a a a KATE E. HAWKINS, MICHELANGELO CORCELLI, KATE DOWDING, ANNA M. RANZONI, Medicine Department, a a,b a a c Institute for Women’s Health, FILIPA VLAHOVA, KWAN-LEONG HAU, AVINA HUNJAN, DONALD PEEBLES, PIERRE GRESSENS, c d a a University College London, HENRIK HAGBERG, PAOLO DE COPPI, MARIYA HRISTOVA, PASCALE V. GUILLOT London, United Kingdom; bFaculty of Medicine, Key Words. Pluripotent stem cells • Mesenchymal stem cells • Fetal stem cells • Cell transplantation • Embryonic stem cells • Induced pluripotent stem cells National Heart and Lung Institute, Imperial College London, London, United ABSTRACT Kingdom; cDepartment of Perinatal Imaging and Health, Human mesenchymal stem cells (MSCs) have huge potential for regenerative medicine. In particu- lar, the use of pluripotent stem cell-derived mesenchymal stem cells (PSC-MSCs) overcomes the St. Thomas’ Hospital, King’s hurdle of replicative senescence associated with the in vitro expansion of primary cells and has College London, London, d increased therapeutic benefits in comparison to the use of various adult sources of MSCs in a wide United Kingdom; Stem Cells range of animal disease models. On the other hand, fetal MSCs exhibit faster growth kinetics and and Regenerative Medicine possess longer telomeres and a wider differentiation potential than adult MSCs. Here, for the first Department, Great Ormond time, we compare the therapeutic potential of PSC-MSCs (ES-MSCs from embryonic stem cells) to Street Institute for Child fetal MSCs (AF-MSCs from the amniotic fluid), demonstrating that ES-MSCs have a superior neuro- Health, University College protective potential over AF-MSCs in the mouse brain following hypoxia-ischemia.
    [Show full text]
  • Insights Into the Evolution of Luciferases
    fmars-08-673620 June 24, 2021 Time: 18:12 # 1 REVIEW published: 30 June 2021 doi: 10.3389/fmars.2021.673620 Leaving the Dark Side? Insights Into the Evolution of Luciferases Jérôme Delroisse1*, Laurent Duchatelet2, Patrick Flammang1 and Jérôme Mallefet2* 1 Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons, Belgium, 2 Marine Biology Laboratory, Earth and Life Institute, University of Louvain, Louvain-la-Neuve, Belgium Bioluminescence—i.e., the emission of visible light by living organisms—is defined as a biochemical reaction involving, at least, a luciferin substrate, an oxygen derivative, and a specialised luciferase enzyme. In some cases, the enzyme and the substrate are durably associated and form a photoprotein. While this terminology is educatively useful to explain bioluminescence, it gives a false idea that all luminous organisms are using identical or homologous molecular tools to achieve light emission. As usually observed in biology, reality is more complex. To date, at least 11 different luciferins have indeed been discovered, and several non-homologous luciferases lato sensu have been identified which, all together, confirms that bioluminescence emerged independently Edited by: multiple times during the evolution of living organisms. While some phylogenetically Cassius Vinicius Stevani, University of São Paulo, Brazil related organisms may use non-homologous luciferases (e.g., at least four convergent Reviewed by: luciferases are found in Pancrustacea), it has also been observed that phylogenetically Anderson Garbuglio Oliveira, distant organisms may use homologous luciferases (e.g., parallel evolution observed in University of São Paulo, Brazil Ilia Yampolsky, some cnidarians, tunicates and echinoderms that are sharing a homologous luciferase- Institute of Bioorganic Chemistry based system).
    [Show full text]
  • Bioluminescence Imaging 5
    UNIVERSITY OF CALIFORNIA, IRVINE Expanding the bioluminescent toolbox for in vivo imaging DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry by Miranda Amelia Paley Dissertation Committee: Assistant Professor Jennifer A Prescher, Chair Associate Professor Andrej Luptak Professor Sheryl Tsai 2014 Chapter 1 © 2014 Royal Society of Chemistry Select figures and text from Chapter 2 © 2012 American Chemical Society Select figures and text from Chapter 2 © 2014 Nature Publishing Group All other materials © 2014 Miranda Paley DEDICATION To: Elaine Calzolari Beneath the leaves of a plant, that’s named for milk that bleeds milk, we search for chrysalides, things that I’ve never seen, but whose name I like. And I think as I look of all the things you’ve taught me to name-larkspur, loose- strife, sea lavender, plants called hens and chickens, butter and eggs, your eyes bright with such knowledge and solid as nouns. Just so, you tell me now of creatures who choose the underbelly of these leaves to make wombs of, studded with gold, from which emerge Monarchs that range the length of the Atlantic in hordes-one more fact I must have missed by skipping the fourth grade. And when, today, we find no trace of anything resembling this miracle you mention, and I’m about to say you made it up, you bend down, break a pod, and blow unlikely butterflies in the sky’s face- not black and orange like Monarchs, but cloud- thought white, or like the way I mark my place when I read your eyes, which witnessing claim: This is the world.
    [Show full text]
  • Molecular Evolution of Luciferase Diversified Bioluminescent Signals in Sea Fireflies (Crustacea:Ostracoda:Cypridinidae)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.23.917187; this version posted January 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Molecular evolution of luciferase diversified bioluminescent signals in sea fireflies (Crustacea:Ostracoda:Cypridinidae) Nicholai M. Hensley*, Emily A. Ellis, Nicole Y. Leung, John Coupart, Alexander Mikhailovsky, Daryl A. Taketa, Michael Tessler, David F. Gruber, Anthony W. De Tomaso, Yasuo Mitani, Trevor J. Rivers, Gretchen A. Gerrish, Elizabeth Torres, Todd H. Oakley*,** * Equal contributors Corresponding author: **[email protected] ​ Abstract Integrative studies of courtship signals provide rich opportunities to understand how biological diversity originates, but understanding the underlying genetics is challenging. Here we show molecular evolution of a single gene - luciferase - influenced diversification of bioluminescent signals in cypridinid ostracods, including their radiation into dozens of Caribbean species with distinctive courtship displays. We report emission spectra from twenty-one species, thirteen luciferases from transcriptomes, and in vitro assays that confirm function from four exemplar ​ ​ species. We found most sites in luciferase evolved neutrally or under purifying selection, including multiple sites that affect the color of bioluminescence in mutagenesis studies. Twelve sites in cypridinid luciferase evolved under episodic diversifying selection, including five that correlate with changes in kinetics and/or color of bioluminescence, phenotypes that manifest at the organismal level. These results demonstrate how neutral, pleiotropic, and/or selective forces may act on even a single gene and contribute to diversification of phenotypes.
    [Show full text]