Ecological Impact of Genetically Modified Organisms

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Impact of Genetically Modified Organisms IOBC/WPRS Working Group “GMOs in Integrated Plant Production” Proceedings of the meeting Ecological Impact of Genetically Modified Organisms at Lleida (Catalonia), Spain 1-3 June 2005 Editors: Jörg Romeis & Michael Meissle IOBC wprs Bulletin Bulletin OILB srop Vol. 29(5)2006 The IOBC/WPRS Bulletin is published by the International Organization for Biological and Integrated Control of Noxious Animals and Plants, West Palearctic Regional Section (IOBC/WPRS) Le Bulletin OILB/SROP est publié par l’organisation Internationale de Lutte Biologique et Intégrée contre les Animaux et les Plantes Nuisibles, section Régionale Ouest Paléarctique (OILB/SROP) Copyright: IOBC/WPRS 2006 The Publication Commission: Dr. Horst Bathon Prof. Dr. Luc Tirry Federal Biological Research Center University of Gent for Agriculture and Forestry (BBA) Laboratory of Agrozoology Institute for Biological Control Department of Crop Protection Heinrichstrasse 243 Coupure Links 653 D-64287 Darmstadt (Germany) B-9000 Gent (Belgium) Tel +49 6151 407-225 Fax +49-6151-407-290 Tel. +32 9 2646152, Fax +32 9 2646239 e-mail: [email protected] e-mail: [email protected] Address General Secretariat IOBC/WPRS: INRA – Centre de Recherches de Dijon Laboratoire de Recherches sur la Flore Pathogène dans le Sol 17, Rue Sully, BV 1540 F-21034 Dijon Cedex France ISBN 92-9067-188-0 web: http://www.iobc-wprs ii Preface In June 2005, the IOBC/WPRS working group ‘GMOs in Integrated Plant Production’ had hold its second full working group meeting. The first meeting had taken place in Prague, Czech Republic, in November 2003 [see IOBC/WPRS Bulletin 27(3), 2004]. Similar to the first meeting in Prague, there was a vast interest in this event with more than 80 participants from 20 countries attending. Besides colleagues from public research institutes, about 20 percent of the participants were retrieved from private industry and regulatory agencies. This is an indication that the meeting provides a good platform for scientific communication among the different stakeholders dealing with GM crops. I would also like to point to the strong (7 colleagues) participation of colleagues from North America which has added value to the event since they were able to bring in the expertise from commercial growing of GM crops since many years. During the meeting, three keynotes, 31 oral contributions and 25 posters were presented. According to the talks and posters that were submitted, the meeting had a strong focus on non-target risk assessment and environmental monitoring of GM crops. These are two areas that are receiving a huge interest not only in the WPRS. On the day after the full working group meeting, a special activity workshop was held to discuss future activities on non-target risk assessment and regulation of GM crops. In total 28 contributions and the protocol from the workshop are published in this volume of the bulletin. This includes both full papers and extended abstracts. I would like to thank all the colleagues that had helped me to set up the scientific programme and those that had agreed to act as session organizers. On behalf of all participants, I would like to thank Ramon Albajes and his team from the Universitat de Lleida for their excellent job in organizing this meeting including an informative meeting website and enjoyable social activities. I think that I can speak for all when saying that we had a great time in Lleida. The next full working group meeting is planned for the first half of 2007. The exact dates and location will be announced in time. Jörg Romeis Convenor IOBC/wprs working group ‘GMOs in Integrated Plant Production’ iii iv Contents Preface......................................................................................................................................... i Contents.....................................................................................................................................iii List of Participants ................................................................................................................... vii I. Key notes Recent advances in transgenic insect pest control. Paul Christou ............................................................................................................................. 3 GMO’s in crop production and their effects on the environment: methodologies for monitoring Paul Jepson, Kakoli Ghosh, Peter Kenmore............................................................................ 13 II. Presentations Parasitization of Chromatomia horticola Goreau in experimental fields with genetically modified canola. Salvatore Arpaia, Grazia Maria Di Leo , Emilio Guerrieri, Maria Carola Fiore .................. 21 Monitoring of Roundup Ready soybean in Romania. Elena Badea, Ioan Roşca, Ioan Sabău, Ion Ciocăzanu ........................................................... 27 First experiments on unintended effects of Bt maize feed on non-target organisms in Poland. Zbigniew T. Dabrowski, Barbara Czajkowska, Beata Bocinska.............................................. 39 RISE - a tool for the management of large data sets collected during field studies. Uwe Drbal, Thomas Thieme..................................................................................................... 43 Transgenic Bt maize: main results of a six-year study on non-target effects. Matilde Eizaguirre, Ramon Albajes, Carmen López, Jordi Eras, Bàrbara Baraibar, Belén Lumbierres, Xavier Pons................................................................................................ 49 Environmental impact of Bt maize – three years of experience. Oxana Habuštová, Ferit Turanli, Petr Doležal, Vlastimil Růžička, Lukáš Spitzer, Hany Mohamed Hussein .......................................................................................................... 57 Predicting fitness changes in transgenic plants: testing a novel approach with pathogen resistant Brassicas. Rosie S. Hails, James M. Bullock, Kate Morley, Caroline Lamb , Pippa Bell, Richard Horsnell, Dave J. Hodgson, Jane Thomas ................................................................. 65 A framework for evaluating possible non-target effects of transgenic corn in the United States: Standardizing laboratory tests. Richard L. Hellmich, Jarrad R. Prasifka, Jeff D. Wolt, Mark K. Sears................................... 73 v Pair-wise combination of toxin genes in transgenic crops: the risk of cross-resistance development. Carmen Sara Hernández, Juan Ferré...................................................................................... 79 Ecological investigations on the effect of Bulgarian GM plants on the arthropod fauna. Plamen Kalushkov, Roza Tzankova, Pravda Stoeva, Rositca Batchvarova, Mariana Vlahova, Slavcho Slavov, Mariana Radkova ............................................................ 85 Barley cystatin variants against phytopathogenic fungi, pests and their impact on natural enemies. Manuel Martínez, Fernando Alvarez-Alfageme, Pedro Castañera, Pilar Carbonero, Felix Ortego, Isabel Diaz......................................................................................................... 91 Bt formulated products: should there be more concern about resistance development with the introduction of Bt transgenic plants? William J. Moar, Robert C. McCollum .................................................................................... 99 Spiders in Bt and non-Bt potato fields in Bulgaria. Oldřich Nedvěd, Plamen Kalushkov, Gerghin Blagoev......................................................... 103 Do environmental impacts differ for Bt, Ht and conventional corn with respect to pesticide use in Europe? An empirical assessment using the Environmental Impact Quotient. Eleonora Nillesen, Sara Scatasta, Justus Wesseler ............................................................... 111 Genetic structure of Sesamia nonagrioides populations: Implications for Bt-maize resistance management Marta de la Poza, Gema P. Farinós, Félix Ortego, Pedro Hernández-Crespo, Pedro Castañera ............................................................................................................................... 121 A microscopic approach to determine the impact of Bacillus thuringiensis Cry proteins on non-target organisms: Lack of Cry1Ac binding to Chrysoperla carnea (Stephens) midgut epithelial cells. Ana Rodrigo-Simón, Juan Ferré ............................................................................................ 125 Assessing the performance and non-target effects of wheat engineered with the kp4 gene to mediate smut resistance under semi-field conditions. Jörg Romeis, Mario Waldburger, Franz Bigler..................................................................... 129 Impact of genetically modified corn on arthropod communities. Ioan Roşca.............................................................................................................................. 137 Tier-based testing for effects of proteinaceous insecticidal plant-incorporated protectants on non-target arthropods in the context of regulatory risk assessments. Robyn I. Rose.......................................................................................................................... 143 Farm questionnaires for monitoring the cultivation of genetically modified maize. Joachim Schiemann, Ralf Wilhelm, Kerstin Schmidt ............................................................. 151 vi Toxigenic micromycetes and their mycotoxins in grains of transgenic Bt-maize
Recommended publications
  • PESTS of STORED PRODUCTS a 'Pest of Stored Products' Can Refer To
    PESTS OF STORED PRODUCTS A ‘pest of stored products’ can refer to any organism that infests and damages stored food, books and documents, fabrics, leather, carpets, and any other dried or preserved item that is not used shortly after it is delivered to a location, or moved regularly. Technically, these pests can include microorganisms such as fungi and bacteria, arthropods such as insects and mites, and vertebrates such as rodents and birds. Stored product pests are responsible for the loss of millions of dollars every year in contaminated products, as well as destruction of important documents and heritage artifacts in homes, offices and museums. Many of these pests are brought indoors in items that were infested when purchased. Others originate indoors when susceptible items are stored under poor storage conditions, or when stray individual pests gain access to them. Storage pests often go unnoticed because they infest items that are not regularly used and they may be very small in size. Infestations are noticed when the pests emerge from storage, to disperse or sometimes as a result of crowding or after having exhausted a particular food source, and search for new sources of food and harborage. Unexplained occurrences of minute moths and beetles flying in large numbers near stored items, or crawling over countertops, walls and ceilings, powdery residues below and surrounding stored items, and stale odors in pantries and closets can all indicate a possible storage pest infestation. Infestations in stored whole grains or beans can also be detected when these are soaked in water, and hollowed out seeds rise to the surface, along with the adult stages of the pests, and other debris.
    [Show full text]
  • (Coleoptera: Carabidae) and Habitat Fragmentation
    REVIEW Eur. J.Entomol. 98: 127-132, 2001 ISSN 1210-5759 Carabid beetles (Coleóptera: Carabidae) and habitat fragmentation: a review Ja r i NIEMELÁ Department ofEcology and Systematics, PO Box 17, FIN-00014 University ofHelsinki, Finland e-mail:[email protected] Key words. Carabids, conservation, dispersal, forests, habitat fragmentation, habitat heterogeneity, metapopulations, species richness, generalists, specialists Abstract. I review the effects of habitat fragmentation on carabid beetles (Coleoptera, Carabidae) and examine whether the taxon could be used as an indicator of fragmentation. Related to this, I study the conservation needs of carabids. The reviewed studies showed that habitat fragmentation affects carabid assemblages. Many species that require habitat types found in interiors of frag­ ments are threatened by fragmentation. On the other hand, the species composition of small fragments of habitat (up to a few hec­ tares) is often altered by species invading from the surroundings. Recommendations for mitigating these adverse effects include maintenance of large habitat patches and connections between them. Furthermore, landscape homogenisation should be avoided by maintaining heterogeneity ofhabitat types. It appears that at least in the Northern Hemisphere there is enough data about carabids for them to be fruitfully used to signal changes in land use practices. Many carabid species have been classified as threatened. Mainte­ nance of the red-listed carabids in the landscape requires species-specific or assemblage-specific measures. INTRODUCTION HABITAT FRAGMENTATION AND CARABID ASSEMBLAGES Destruction and fragmentation of habitats, overkill, introduction of alien species, and cascading effects of Effects of fragmentation on carabid assemblages species extinctions have been labelled the “evil quartet”, Habitat fragmentation is the partitioning of a con­ i.e.
    [Show full text]
  • Title of DPI&F Note
    Queensland the Smart State DP I&F note Grain storage – Mite pests Authors: Dr Manoj Nayak and Ken Bullen, DPI&F, Indooroopilly and Toowoomba Introduction Mites are common pests in grain storages and mostly occur in damp or moist grain, residues, oilseeds and animal feeds. They are not readily seen because they are the size of specks of dust. Mites are not insects (which have six legs) but are related to ticks and spiders and have eight legs. • When present in large numbers mites appear as a moving carpet of brown dust on the grain, silos and sheds or on stacks of commodities, sometimes emitting a damp or pungent smell. The mould mite Tyrophagus putrescentiae (Schrank) is the most common grain storage mite. • The grain or flour mite, Acarus siro L. is also widespread and sometimes the ‘straw-itch mite’, Pymotes tritici can cause problems in storages. • A predatory (and therefore, beneficial) species Chelyletus malaccensis Oudemans, is also encountered where the above species are present. Generally, 2-3 species are present in an infestation. Mould mite, or Lemon-scented mite (Tyrophagus putriscentiae). Approx. length: 0.5mm. Acknowledgement: This image from Systematic Entomology Laboratory, Agricultural Research Service, United States Department of Agriculture. (www.sel.barc.usda.gov/acari/frames/mites.html, accessed 07/07/2005.) Information contained in this publication is provided as general advice only. For application to specific circumstances, professional advice should be sought. The Note No: Department of Primary Industries and Fisheries has taken all reasonable steps to ensure ISSN 0155 – 3054 the information in this publication is accurate at the time of publication.
    [Show full text]
  • Coleoptera: Carabidae) by Laboulbenialean Fungi in Different Habitats
    Eur. J. Entomol. 107: 73–79, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1511 ISSN 1210-5759 (print), 1802-8829 (online) Incidence of infection of carabid beetles (Coleoptera: Carabidae) by laboulbenialean fungi in different habitats SHINJI SUGIURA1, KAZUO YAMAZAKI 2 and HAYATO MASUYA1 1Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan; e-mail: [email protected] 2Osaka City Institute of Public Health and Environmental Sciences, Osaka 543-0026, Japan Key words. Coleoptera, Carabidae, ectoparasitic fungi, Ascomycetes, Laboulbenia, microhabitat, overwintering sites Abstract. The prevalence of obligate parasitic fungi may depend partly on the environmental conditions prevailing in the habitats of their hosts. Ectoparasitic fungi of the order Laboulbeniales (Ascomycetes) infect arthropods and form thalli on the host’s body sur- face. Although several studies report the incidence of infection of certain host species by these fungi, quantitative data on laboulbe- nialean fungus-host arthropod interactions at the host assemblage level are rarely reported. To clarify the effects of host habitats on infection by ectoparasitic fungi, the incidence of infection by fungi of the genus Laboulbenia (Laboulbeniales) of overwintering carabid beetles (Coleoptera: Carabidae) in three habitats, a riverside (reeds and vines), a secondary forest and farmland (rice and vegetable fields), were compared in central Japan. Of the 531 adults of 53 carabid species (nine subfamilies) collected in the three habitats, a Laboulbenia infection of one, five and one species of the carabid subfamilies Pterostichinae, Harpalinae and Callistinae, respectively, was detected. Three species of fungus were identified: L. coneglanensis, L. pseudomasei and L. fasciculate. The inci- dence of infection by Laboulbenia was higher in the riverside habitat (8.97% of individuals; 14/156) than in the forest (0.93%; 2/214) and farmland (0%; 0/161) habitats.
    [Show full text]
  • Mixed Species Forests Risks, Resilience and Managementt Program and Book of Abstracts
    Mixed species forests risks, resilience and managementt Program and book of abstracts Lund, Sweden Conference cancelled25 - 27 march 2020 due to the corona crisis Report 54, Southern Swedish Forest Research Centre Mixed Species Forests: Risks, Resilience and Management 25-27 March 2020, Lund, Sweden Organizing committee Magnus Löf, Swedish University of Agricultural Sciences (SLU), Sweden Jorge Aldea, Swedish University of Agricultural Sciences (SLU), Sweden Ignacio Barbeito, Swedish University of Agricultural Sciences (SLU), Sweden Emma Holmström, Swedish University of Agricultural Sciences (SLU), Sweden Science committee Assoc. Prof Anna Barbati, University of Tuscia, Italy Prof Felipe Bravo, ETS Ingenierías Agrarias Universidad de Valladolid, Spain Senior researcher Andres Bravo-Oviedo, National Museum of Natural Sciences, Spain Senior researcher Hervé Jactel, Biodiversité, Gènes et Communautés, INRA Paris, France Prof Magnus Löf, Swedish University of Agricultural Sciences (SLU), Sweden Prof Hans Pretzsch, Technical University of Munich, Germany Senior researcher Miren del Rio, Spanish Institute for Agriculture and Food Research and Technology (INIA)-CIFOR, Spain Involved IUFRO units and other networks SUMFOREST ERA-Net research project Mixed species forest management: Lowering risk, increasing resilience IUFRO research groups 1.09.00 Ecology and silviculture of mixed forests and 7.03.00 Entomology IUFRO working parties 1.01.06 Ecology and silviculture of oak, 1.01.10 Ecology and silviculture of pine and 8.02.01 Key factors and ecological functions for forest biodiversity Acknowledgements The conference was supported from the organizing- and scientific committees, Swedish University of Agricultural Sciences and Southern Swedish Forest Research Centre and Akademikonferens. Several research networks have greatly supported the the conference. The IUFRO secretariat helped with information and financial support was grated from SUMFOREST ERA-Net.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    Downloaded from orbit.dtu.dk on: Dec 20, 2017 Identification and nomenclature of the genus Penicillium Visagie, C.M.; Houbraken, J.; Frisvad, Jens Christian; Hong, S. B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2014.09.001 Publication date: 2014 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Visagie, C. M., Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., ... Samson, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78, 343-371. DOI: 10.1016/j.simyco.2014.09.001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M.
    [Show full text]
  • Booklice (<I>Liposcelis</I> Spp.), Grain Mites (<I>Acarus Siro</I>)
    Journal of the American Association for Laboratory Animal Science Vol 55, No 6 Copyright 2016 November 2016 by the American Association for Laboratory Animal Science Pages 737–743 Booklice (Liposcelis spp.), Grain Mites (Acarus siro), and Flour Beetles (Tribolium spp.): ‘Other Pests’ Occasionally Found in Laboratory Animal Facilities Elizabeth A Clemmons* and Douglas K Taylor Pests that infest stored food products are an important problem worldwide. In addition to causing loss and consumer rejection of products, these pests can elicit allergic reactions and perhaps spread disease-causing microorganisms. Booklice (Liposcelis spp.), grain mites (Acarus siro), and flour beetles Tribolium( spp.) are common stored-product pests that have pre- viously been identified in our laboratory animal facility. These pests traditionally are described as harmless to our animals, but their presence can be cause for concern in some cases. Here we discuss the biology of these species and their potential effects on human and animal health. Occupational health risks are covered, and common monitoring and control methods are summarized. Several insect and mite species are termed ‘stored-product Furthermore, the presence of these pests in storage and hous- pests,’ reflecting the fact that they routinely infest items such ing areas can lead to food wastage and negative human health as foodstuffs stored for any noteworthy period of time. Some consequences such as allergic hypersensitivity.11,52,53 In light of of the most economically important insect pests include beetles these attributes, these species should perhaps not be summarily of the order Coleoptera and moths and butterflies of the order disregarded if found in laboratory animal facilities.
    [Show full text]
  • Identification and Nomenclature of the Genus Penicillium
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 343–371. Identification and nomenclature of the genus Penicillium C.M. Visagie1, J. Houbraken1*, J.C. Frisvad2*, S.-B. Hong3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, J. Varga7, T. Yaguchi8, and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 3Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, Korea; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; 6Biodiversity (Mycology), Agriculture and Agri-Food Canada, Ottawa, ON K1A0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közep fasor 52, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan *Correspondence: J. Houbraken, [email protected]; J.C. Frisvad, [email protected] Abstract: Penicillium is a diverse genus occurring worldwide and its species play important roles as decomposers of organic materials and cause destructive rots in the food industry where they produce a wide range of mycotoxins. Other species are considered enzyme factories or are common indoor air allergens. Although DNA sequences are essential for robust identification of Penicillium species, there is currently no comprehensive, verified reference database for the genus. To coincide with the move to one fungus one name in the International Code of Nomenclature for algae, fungi and plants, the generic concept of Penicillium was re-defined to accommodate species from other genera, such as Chromocleista, Eladia, Eupenicillium, Torulomyces and Thysanophora, which together comprise a large monophyletic clade.
    [Show full text]
  • A Faunistic Approach to Assess Potential Side-Effects of Genetically Modified Bt-Corn on Non-Target Arthropods Under Field Conditions
    Biocontrol Science and Technology (March 2004), Vol. 14, No. 2, 129Á/170 A Faunistic Approach to Assess Potential Side-Effects of Genetically Modified Bt-Corn on Non-Target Arthropods Under Field Conditions 1 2 1 1 M. P. CANDOLFI ,K.BROWN, C. GRIMM , B. REBER AND H. SCHMIDLI1 1Syngenta Crop Protection AG, CH-4002 Basel, Switzerland; 2Ecotox Limited, Tavistock, Devon, UK (Received 31 October 2001; accepted 13 May 2003) A faunistic study investigating the potential side-effects of corn (Zea mays) genetically modified to express a truncated Cry1Ab protein derived from Bacillus thuringiensis subsp. kurstaki, on non-target arthropods was carried out under field conditions. The communities of non-target arthropods in the soil, on the leaves and flying in the crop area were monitored throughout the growing season. Water-treated, untransformed corn served as a control, and a spray application of a bacterial Bt insecticide (Delfin WG) and a synthetic insecticide (Karate Xpress) used to control the European corn borer (Ostrinia nubilalis; Lepidoptera: Pyralidae) acted as positive reference treatments. Results were analyzed using a principal response curve. Significantly lower infestations by the lepidopteran target species O. nubilalis were observed in the Bt-corn plots compared to the control. No effects of Bt-corn on the communities of soil dwelling and non-target plant dwelling arthropods were observed. A trend towards a community effect on flying arthropods was observed with lower abundance of adult Lepidoptera, flies in the families Lonchopteridae, Mycetophilidae and Syrphidae, and the hymenopteran parasitoids Ceraphronidae. Effects were weak and restricted to two sampling dates corresponding to anthesis.
    [Show full text]
  • © 2016 David Paul Moskowitz ALL RIGHTS RESERVED
    © 2016 David Paul Moskowitz ALL RIGHTS RESERVED THE LIFE HISTORY, BEHAVIOR AND CONSERVATION OF THE TIGER SPIKETAIL DRAGONFLY (CORDULEGASTER ERRONEA HAGEN) IN NEW JERSEY By DAVID P. MOSKOWITZ A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Entomology Written under the direction of Dr. Michael L. May And approved by _____________________________________ _____________________________________ _____________________________________ _____________________________________ New Brunswick, New Jersey January, 2016 ABSTRACT OF THE DISSERTATION THE LIFE HISTORY, BEHAVIOR AND CONSERVATION OF THE TIGER SPIKETAIL DRAGONFLY (CORDULEGASTER ERRONEA HAGEN) IN NEW JERSEY by DAVID PAUL MOSKOWITZ Dissertation Director: Dr. Michael L. May This dissertation explores the life history and behavior of the Tiger Spiketail dragonfly (Cordulegaster erronea Hagen) and provides recommendations for the conservation of the species. Like most species in the genus Cordulegaster and the family Cordulegastridae, the Tiger Spiketail is geographically restricted, patchily distributed with its range, and a habitat specialist in habitats susceptible to disturbance. Most Cordulegastridae species are also of conservation concern and the Tiger Spiketail is no exception. However, many aspects of the life history of the Tiger Spiketail and many other Cordulegastridae are poorly understood, complicating conservation strategies. In this dissertation, I report the results of my research on the Tiger Spiketail in New Jersey. The research to investigate life history and behavior included: larval and exuvial sampling; radio- telemetry studies; marking-resighting studies; habitat analyses; observations of ovipositing females and patrolling males, and the presentation of models and insects to patrolling males.
    [Show full text]
  • Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises
    Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises Michael J. Raupach1*, Lars Hendrich2*, Stefan M. Ku¨ chler3, Fabian Deister1,Je´rome Morinie`re4, Martin M. Gossner5 1 Molecular Taxonomy of Marine Organisms, German Center of Marine Biodiversity (DZMB), Senckenberg am Meer, Wilhelmshaven, Germany, 2 Sektion Insecta varia, Bavarian State Collection of Zoology (SNSB – ZSM), Mu¨nchen, Germany, 3 Department of Animal Ecology II, University of Bayreuth, Bayreuth, Germany, 4 Taxonomic coordinator – Barcoding Fauna Bavarica, Bavarian State Collection of Zoology (SNSB – ZSM), Mu¨nchen, Germany, 5 Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, Technische Universita¨tMu¨nchen, Freising-Weihenstephan, Germany Abstract During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance ,2.2% within 21 species pairs (39 species). For ten of these species pairs (18 species), minimum pairwise distances were zero. In contrast to this, deep intraspecific sequence divergences with maximum pairwise distances .2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well.
    [Show full text]
  • Potential Impact of Diabrotica Resistant Bt-Maize Expressing Cry3bb1 on Ground Beetles (Coleoptera: Carabidae)
    Potential impact of Diabrotica resistant Bt-maize expressing Cry3Bb1 on ground beetles (Coleoptera: Carabidae) Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologe Kai Uwe Priesnitz aus Iserlohn Berichter: Universitätsprofessor Dr. Alan Slusarenko Universitätsprofessor Dr. Ingolf Schuphan Tag der mündlichen Prüfung: 17.12.2010 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Contents 1 Introduction ....................................................................................1 2 General background ......................................................................4 2.1 Ecology and biology of maize and its role in agriculture .......................... 4 2.1.1 Botanical characteristics and systematics of Zea mays ......................................4 2.1.2 Domestication of Maize .......................................................................................5 2.1.3 Maize as genetically modified crop......................................................................8 2.1.4 Event MON 88017: A herbicide tolerant Bt-maize protected against Diabrotica virgifera virgifera..................................................................................................9 2.2 Diabrotica virgifera virgifera: A major pest in maize............................... 11 2.3 Ground beetles: Widespread epigeal arthropods on arable
    [Show full text]