Bulletin of American Odona Ology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
STARR-DISSERTATION-2018.Pdf (6.554Mb)
The Effects of Land Use and Climate Change on Playa Wetlands and Their Invertebrate Communities. by Scott McKinley Starr, B.S., M.S. Dissertation In Biology Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Approved Dr. Nancy E. McIntyre Chair of Committee Dr. Llewellyn D. Densmore Dr. Kerry L. Griffis-Kyle Dr. Stephanie A. Lockwood Dr. Kevin R. Mulligan Dr. Mark A. Sheridan Dean of the Graduate School August, 2018 Copyright 2018, Scott Starr Texas Tech University, Scott Starr, August 2018 Acknowledgments The process of completing this dissertation has been a long road and many people and groups have helped me along the way. I first want to thank my dissertation advisor, Dr. Nancy McIntyre, for all her support and assistance through this degree. Without her guidance this process would have been unachievable. I also want to thank Dr. McIntyre for inviting me into her lab and for allowing me to be part of so many lab research projects that have helped to build my toolbox as a scientist. Second, I would like to thank my committee members Drs. Kerry Griffis-Kyle, Kevin Mulligan, Stephanie Lockwood, Lou Densmore, Richard Strauss, and Ximena Bernal for their guidance and suggestions that have helped to improve the research presented here. Third, I would like to thank my lab mates and undergraduate assistants: Steve Collins, Lucas Heintzman, Joe Drake, Ezra Auerbach, Devin Kilborn, Benjamin Breedlove, Shane Glidewell, Kimbree Knight, and Jennifer Long for their help in the field, lab, and for their support. -
Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle
Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle. Hydrology shapes taxonomic and functional structure of desert stream invertebrate communities. Freshwater Science Vol. 34, No. 2 Appendix S1. References for trait state determination. Order Family Taxon Body Voltinism Dispersal Respiration FFG Diapause Locomotion Source size Amphipoda Crustacea Hyalella 3 3 1 2 2 2 3 1, 2 Annelida Hirudinea Hirudinea 2 2 3 3 6 2 5 3 Anostraca Anostraca Anostraca 2 3 3 2 4 1 5 1, 3 Basommatophora Ancylidae Ferrissia 1 2 1 1 3 3 4 1 Ancylidae Ancylidae 1 2 1 1 3 3 4 3, 4 Class:Arachnida subclass:Acari Acari 1 2 3 1 5 1 3 5,6 Coleoptera Dryopidae Helichus lithophilus 1 2 4 3 3 3 4 1,7, 8 Helichus suturalis 1 2 4 3 3 3 4 1 ,7, 9, 8 Helichus triangularis 1 2 4 3 3 3 4 1 ,7, 9,8 Postelichus confluentus 1 2 4 3 3 3 4 7,9,10, 8 Postelichus immsi 1 2 4 3 3 3 4 7,9, 10,8 Dytiscidae Agabus 1 2 4 3 6 1 5 1,11 Desmopachria portmanni 1 3 4 3 6 3 5 1,7,10,11,12 Hydroporinae 1 3 4 3 6 3 5 1 ,7,9, 11 Hygrotus patruelis 1 3 4 3 6 3 5 1,11 Hygrotus wardi 1 3 4 3 6 3 5 1,11 Laccophilus fasciatus 1 2 4 3 6 3 5 1, 11,13 Laccophilus maculosus 1 3 4 3 6 3 5 1, 11,13 Laccophilus mexicanus 1 2 4 3 6 3 5 1, 11,13 Laccophilus oscillator 1 2 4 3 6 3 5 1, 11,13 Laccophilus pictus 1 2 4 3 6 3 5 1, 11,13 Liodessus obscurellus 1 3 4 3 6 3 5 1 ,7,11 Neoclypeodytes cinctellus 1 3 4 3 7 3 5 14,15,1,10,11 Neoclypeodytes fryi 1 3 4 3 7 3 5 14,15,1,10,11 Neoporus 1 3 4 3 7 3 5 14,15,1,10,11 Rhantus atricolor 2 2 4 3 6 3 5 1,16 Schriever, Bogan, Boersma, Cañedo-Argüelles, Jaeger, Olden, and Lytle. -
(Insecta: Odonata: Coenagrionidae) Including A
Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 89 (2018): 921 - 926 Conservation Estimating distribution area in six Argia damselflies (Insecta: Odonata: Coenagrionidae) including A. garrisoni, a threatened species Estimando el área de distribución de seis caballitos del diablo del género Argia (Insecta: Odonata: Coenagrionidae) incluyendo A. garrisoni, una especie amenazada Laura Rangel-Sánchez a, Angela Nava-Bolaños b, *, Fredy Palacino-Rodríguez a, c, Alex Córdoba-Aguilar b, a Grupo de Investigación en Odonatos de Colombia-Grupo de Investigación en Biología, Departamento de Biología, Universidad El Bosque, Av. Cra 9 No. 131A-02 Bogotá, Colombia b Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado postal 70-275, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, México City, Mexico c Centro de Investigación en Acarología, Calle 152B # 55-45, Bogotá, Colombia * Corresponding author: [email protected] (A. Nava-Bolaños) Received: 17 September 2017; accepted: 7 March 2018 Abstract Damselflies and dragonflies (Insecta: Odonata) are currently facing a number of threats. One tool to provide a straightforward assessment of risk is distribution area. Here we have used ecological niche modeling to estimate distribution range for 6 species of Argia damselflies distributed in North America: A. cuprea, A. funcki, A. garrisoni, A. harknessi, A. munda, and A. rhoadsi. These species are not included in the International Union for the Conservation of Nature (IUCN) Red List, except for A. garrisoni which has been categorized as Least Concern. Our results indicated large distribution areas for all species, except for A. garrisoni, (8,038 km2 after a refinement analysis looking for suitable habitat). -
ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central
ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central Texas with an Assessment of Fitness Costs in Erythemis simplicicollis Jason L. Locklin, Ph.D. Mentor: Darrell S. Vodopich, Ph.D. Dragonfly parasites are widespread and frequently include gregarines (Phylum Apicomplexa) in the gut of the host. Gregarines are ubiquitous protozoan parasites that infect arthropods worldwide. More than 1,600 gregarine species have been described, but only a small percentage of invertebrates have been surveyed for these apicomplexan parasites. Some consider gregarines rather harmless, but recent studies suggest otherwise. Odonate-gregarine studies have more commonly involved damselflies, and some have considered gregarines to rarely infect dragonflies. In this study, dragonfly populations were surveyed for gregarines and an assessment of fitness costs was made in a common and widespread host species, Erythemis simplicicollis. Adult dragonfly populations were surveyed weekly at two reservoirs in close proximity to one another and at a flow-through wetland system. Gregarine prevalences and intensities were compared within host populations between genders, among locations, among wing loads, and through time. Host fitness parameters measured included wing load, egg size, clutch size, and total egg count. Of the 37 dragonfly species surveyed, 14 species (38%) hosted gregarines. Thirteen of those species were previously unreported as hosts. Gregarine prevalences ranged from 2% – 52%. Intensities ranged from 1 – 201. Parasites were aggregated among their hosts. Gregarines were found only in individuals exceeding a minimum wing load, indicating that gregarines are likely not transferred from the naiad to adult during emergence. Prevalence and intensity exhibited strong seasonality during both years at one of the reservoirs, but no seasonal trend was detected at the wetland. -
LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS in a MONTANE DESERT STREAM Eric K
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Natural Resources Natural Resources, School of 2016 CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM Eric K. Moody Arizona State University Jessica R. Corman University of Nebraska - Lincoln, [email protected] Michael T. Bogan University of California - Berkeley Follow this and additional works at: http://digitalcommons.unl.edu/natrespapers Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, and the Other Environmental Sciences Commons Moody, Eric K.; Corman, Jessica R.; and Bogan, Michael T., "CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM" (2016). Papers in Natural Resources. 796. http://digitalcommons.unl.edu/natrespapers/796 This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Natural Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Western North American Naturalist 76(2), © 2016, pp. 172–179 CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM Eric K. Moody1, Jessica R. Corman1,2, and Michael T. Bogan3 ABSTRACT.—Aquatic ecosystems overlying regions of limestone bedrock can feature active deposition of calcium carbonate in the form of travertine or tufa. Although most travertine deposits form a cement-like layer on stream sub- strates, mineral deposits can also form on benthic invertebrates. -
Mxeuicanjuseum PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK 24, N.Y
1ovitatesMXeuicanJuseum PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2020 OCTOBER 14, 1960 The Odonata of the Bahama Islands, the West Indies BY MINTER J. WESTFALL, JR.' Through the courtesy of Dr. Mont A. Cazier of the American Museum of Natural History, I have had the privilege of studying a collection of 439 specimens of Odonata from the Bahama Islands. The number of species represented in this collection is not large, and no species new to science has been recognized, but relatively few records are found in the literature for these islands. Much collecting has been done in the Greater Antilles, and they were included in the range covered by the recent "Manual of the Dragonflies (Anisoptera) of North America" by James G. Needham and myself. Elsie B. Klots (1932) presented an excellent contribution on the Odonata of Puerto Rico, including records from the other Antilles, but no similar work has been done for the Bahamas. Klots had begun a preliminary investi- gation of the Bimini material but was unable to pursue the study, so that the entire lot was sent to me. A large number of specimens reported in the present paper were taken between December 31, 1952, and May 13, 1953, by the following members of the Van Voast-American Museum of Natural History Expedition to the Bahama Islands: G. B. Rabb, Ellis B. Hayden, Jr., and L. Giovannoli. The expedition took them to many of the islands from Grand Bahama Island and the Abaco Cays in the north to Great Inagua Island and the Turks Islands in the south. -
Description of the Final Stadium Larva of Erythrodiplax Media (Odonata
International Journal of Odonatology, 2018 Vol. 21, No. 2, 93–104, https://doi.org/10.1080/13887890.2018.1462260 Description of the final stadium larva of Erythrodiplax media (Odonata: Libellulidae) with preliminary key to known South American larvae in the genus Marina Schmidt Dalzochio a∗, Eduardo Périco a, Samuel Renner a and Göran Sahlén b aLaboratório de Ecologia e Evolução, Universidade do Vale do Taquari – UNIVATES, Lajeado, RS, Brazil; bEcology and Environmental Science, The Rydberg Laboratory for Applied Sciences (RLAS), Halmstad University, Halmstad, Sweden (Received 25 July 2017; final version received 6 March 2018) The larva of Erythrodiplax media is described and illustrated based on two exuviae of reared larvae and one final stadium larva collected in Xangri-lá, State of Rio Grande do Sul, Brazil. The larva of E. media can be distinguished from other species of Erythrodiplax by the presence of lateral spines on S8 and S9, the number of premental setae (n = 22), palpal setae (n = 7) and by the mandibular formula. We also provide a preliminary key to known South American larvae in the genus. Keywords: Brazil; coastal wetlands; dragonfly; exuvia; Anisoptera Introduction Erythrodiplax Brauer, 1868 is an American genus that includes 60 species (Schorr & Paulson, 2017), of which 40 are known to occur in Brazil (Pinto, 2017) and 18 are hitherto reported from the state of Rio Grande do Sul (Consatti, Santos, Renner & Périco, 2014;Costa,1971; Hanauer, Renner & Périco, 2014; Kittel & Engels, 2016; Renner, Périco & Sahlén, 2013, 2016; Renner, Périco, Sahlén, Santos & Consatti, 2015; Teixeira, 1971). The genus consists of many rather similar species, which makes diagnosis difficult. -
OJIOS1990019004003.Pdf
Odonalologica 19(4): 359-3(6 December I, 1990 Odonata associated with water lettuce (Pistia stratiotes L.) in South Florida R.L. L.B. L.P. Lounibos, Escher, Dewald N. Nishimura and V.L. Larson Florida Medical Entomology Laboratory, University of Florida, 200 9th St SE, Vero Beach, Florida 32962, United States Received April 10, 1990 / Accepted May 7, 1990 lettuce Larval Odon. were identified from quantitative samples of water made from 3 of but less a single pond. spp. Zygoptera accounted for more individuals biomass than 4 spp. of Anisoptera.Numbers oflarvae werehighestin the winter when smallest size classes predominated, and lowest in the spring and summer when larger size classes were present. Size class data indicated a probable spring emergence for and and autumnal Telebasis byersi Pachydiplax longipennis an emergence for Coryphaeschna adnexa. Foregut dissections of freshly caught larvae revealed iden- tifiable remains ofcertain prey, the commonest being larvae ofMansonia mosquitoes which attach to roots of P. stratiotes. INTRODUCTION The cosmotropical macrophyte Pistia stratiotes L. is known to be an important for insect life nursery aquatic (DUNN, 1934; MACFIE & INGRAM, 1923). insect found in Among orders on P. stratiotes Volta Lake, Ghana, larval Odonata dominatedin biomass and were second to Diptera in absolute numbers of five (PETR, 1968). Representatives at least genera of Anisoptera and three genera of Zygoptera were recovered during Petr’s ten-month study. Larval accounted for times biomass Anisoptera approximately ten more thanZygoptera on Volta Lake, but DRAY et al. (1988) reported that dragonfly larvae were relatively uncommon on water lettuce in Florida. The of present paper represents a portion a two-year study undertaken to identify the aquatic insect fauna on water lettuce at one locality and to describe the relationship between mosquitoes of the genus Mansonia, other membersof the insect community, and growth of this host plant (LOUNIBOS & DEWALD, 360 L.P. -
MACROTHEMIS FALLAX, ANEW SPECIES of DRAGONFLY from CENTRAL AMERICA (ANISOPTERA: LIBELLULIDAE), with a KEY to MALE MACROTHEMIS Ab
International Journal of Odonatology 1 (2): 137-153, 1998. © 1998 Backhuys Publishers. 137 MACROTHEMIS FALLAX, ANEW SPECIES OF DRAGONFLY FROM CENTRAL AMERICA (ANISOPTERA: LIBELLULIDAE), WITH A KEY TO MALE MACROTHEMIS Michael L. May Department of Entomology, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, NJ 08901-8524, U.S. A Received 24 February 1998; revised 8 July 1998; accepted 10 July 1998 Key words: Odonata, Abstract Macrothemis fa/lax spec. nov is described and figured from males collected in Belize and central Panama. It is apparently closely related to the widespread species, M. pseudimitans Calvert, 1898, with which it has hitherto been confused. These two species differ in shape of the cerci and epiproct, metafemoral armature, and thoracic and tibial coloration. A key to males of the genus, based largely on literature sources, is also provided. Introduction The genus Macrothemis is almost exclusively Neotropical, although a few species range northward into northern Mexico and the southwestern United States (Needham & Westfall, 1955). It comprises 39 or 40 species (Bridges, 1994, following Garrison, 1991, placed M. valida Navas, 1916, in Brechmorhoga, a plausible but so far unsubstantiated transfer), including the one described here. The latter is typical of the genus in that the inferior tooth of each tarsal claw is enlarged and its tip extends beyond that of the superior tooth. Thus the placement in Macrothemis rather than Brechmorhoga is clearly warranted, although the trigonal interspace of one forewing of the holotype is widened distally more than is usual in Macrothemis (Donnelly, 1984). The last comprehensive treatment of the genus was that of Ris (1913); although still very useful, this work is seriously outdated owing to the subsequent description of 15 species (Belle, 1983, 1987; Costa 1990, 1991; Donnelly, 1984; Gonzalez, 1992; Navas, 1916, 1918; Racenis, 1957; Ris, 1919; Santos, 1967). -
Ecography ECOG-02578 Pinkert, S., Brandl, R
Ecography ECOG-02578 Pinkert, S., Brandl, R. and Zeuss, D. 2016. Colour lightness of dragonfly assemblages across North America and Europe. – Ecography doi: 10.1111/ecog.02578 Supplementary material Appendix 1 Figures A1–A12, Table A1 and A2 1 Figure A1. Scatterplots between female and male colour lightness of 44 North American (Needham et al. 2000) and 19 European (Askew 1988) dragonfly species. Note that colour lightness of females and males is highly correlated. 2 Figure A2. Correlation of the average colour lightness of European dragonfly species illustrated in both Askew (1988) and Dijkstra and Lewington (2006). Average colour lightness ranges from 0 (absolute black) to 255 (pure white). Note that the extracted colour values of dorsal dragonfly drawings from both sources are highly correlated. 3 Figure A3. Frequency distribution of the average colour lightness of 152 North American and 74 European dragonfly species. Average colour lightness ranges from 0 (absolute black) to 255 (pure white). Rugs at the abscissa indicate the value of each species. Note that colour values are from different sources (North America: Needham et al. 2000, Europe: Askew 1988), and hence absolute values are not directly comparable. 4 Figure A4. Scatterplots of single ordinary least-squares regressions between average colour lightness of 8,127 North American dragonfly assemblages and mean temperature of the warmest quarter. Red dots represent assemblages that were excluded from the analysis because they contained less than five species. Note that those assemblages that were excluded scatter more than those with more than five species (c.f. the coefficients of determination) due to the inherent effect of very low sampling sizes. -
Table of Contents 2
Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures. -
A Checklist of North American Odonata
A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution Dennis R. Paulson and Sidney W. Dunkle 2009 Edition (updated 14 April 2009) A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution 2009 Edition (updated 14 April 2009) Dennis R. Paulson1 and Sidney W. Dunkle2 Originally published as Occasional Paper No. 56, Slater Museum of Natural History, University of Puget Sound, June 1999; completely revised March 2009. Copyright © 2009 Dennis R. Paulson and Sidney W. Dunkle 2009 edition published by Jim Johnson Cover photo: Tramea carolina (Carolina Saddlebags), Cabin Lake, Aiken Co., South Carolina, 13 May 2008, Dennis Paulson. 1 1724 NE 98 Street, Seattle, WA 98115 2 8030 Lakeside Parkway, Apt. 8208, Tucson, AZ 85730 ABSTRACT The checklist includes all 457 species of North American Odonata considered valid at this time. For each species the original citation, English name, type locality, etymology of both scientific and English names, and approxi- mate distribution are given. Literature citations for original descriptions of all species are given in the appended list of references. INTRODUCTION Before the first edition of this checklist there was no re- Table 1. The families of North American Odonata, cent checklist of North American Odonata. Muttkows- with number of species. ki (1910) and Needham and Heywood (1929) are long out of date. The Zygoptera and Anisoptera were cov- Family Genera Species ered by Westfall and May (2006) and Needham, West- fall, and May (2000), respectively, but some changes Calopterygidae 2 8 in nomenclature have been made subsequently. Davies Lestidae 2 19 and Tobin (1984, 1985) listed the world odonate fauna Coenagrionidae 15 103 but did not include type localities or details of distri- Platystictidae 1 1 bution.