Final Report Grant No. 15SCBGPWI0054 Specialty Crops
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nest Architecture, Life Cycle, and Natural
Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis) maculata (Hymenoptera: Megachilidae) in a montane forest William de O. Sabino, Yasmine Antonini To cite this version: William de O. Sabino, Yasmine Antonini. Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis) maculata (Hymenoptera: Megachilidae) in a mon- tane forest. Apidologie, Springer Verlag, 2017, 48 (4), pp.450-460. 10.1007/s13592-016-0488-9. hal- 01681897 HAL Id: hal-01681897 https://hal.archives-ouvertes.fr/hal-01681897 Submitted on 11 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2017) 48:450–460 Original article * INRA, DIB and Springer-Verlag France, 2017 DOI: 10.1007/s13592-016-0488-9 Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis ) maculata (Hymenoptera: Megachilidae) in a montane forest 1,2 1 William De O. SABINO , Yasmine A NTONINI 1Laboratório de Biodiversidade—Instituto de Ciências Exatas -
NATIVE POLLINATORS Who Are They and Are They Important?
NATIVE POLLINATORS Who are they and are they important? Compiled by Jim Revell, Bedford Extension Master Gardener Reproduction – the goal One goal of all living organisms, including plants, is to create offspring for the next generation. One method for plants to accomplish this is by producing seed. Pollen – a fine-to-coarse yellow dust or powder – “bears a plant’s male sex cells and is a vital link in the reproductive cycle.” USDA Forest Service • Pollination is usually an unplanned event due to an animal’s activity on a flower Pollination • It is calculated that one out of every three or four mouthfuls of food or drink “The act of transferring consumed is provided by pollinators pollen grains from the • male anther of a flower to More than 150 food crops in the U.S. depend on pollinators; this includes almost all fruit the female stigma.” and grain crops (see Handout, “List of USDA Forest Service Pollinated Foods” by Pollinator Partnership) • 80% or more of all plants worldwide Pollinator Methods: (including food crops) are pollinated by animals (biotic pollination) ABIOTIC: Without • Of the ≤20% abiotic method involvement of • organisms 98% are pollinated by wind • 2% are pollinated by water BIOTIC: Mediated by • ±200,000 species of animals around the animals world act as pollinators • Of the ±200,000 about 1,000 species are vertebrates (birds, bats, small mammals) Abiotic Pollinators: Wind | Water Left: Diagram of how Wind Pollination works; picture of windblown pollen from male cone of a Lodgepole Pine. Right: Diagram of how Water Pollination works; Seagrasses (marine angiosperms / flowering plants) have adapted to aquatic environments allowing for pollination, seed formation and germination in water. -
Supplemental Information For: Biotic and Abiotic Drivers of Plant
Supplemental Information for: Biotic and abiotic drivers of plant-pollinator community assembly across wildfire gradients Joseph A. LaManna1,2*, Laura A. Burkle3, R. Travis Belote4, and Jonathan A. Myers5 1 Department of Biological Sciences, Marquette University, PO Box 1881, Milwaukee, Wisconsin 53201 USA, [email protected] * Corresponding author 2 Departments of Botany & Zoology, Milwaukee Public Museum, Milwaukee, Wisconsin 53233 USA 3 Department of Ecology, Montana State University, Bozeman, Montana 59717 USA, [email protected] 4 The Wilderness Society, Bozeman, Montana 59717 USA, [email protected] 5 Department of Biology & Tyson Research Center, Washington University in St. Louis, St. Louis, Missouri 63130 USA, [email protected] 1 Supplemental Methods Study site Our study took place in three sites (named Helena, Paradise, and Whitefish) within the Northern Rocky Mountains, which encompasses the Crown of the Continent and the Greater Yellowstone Ecosystem in western Montana, USA (Fig. 1; Burkle, Myers, & Belote, 2015). Historically, this region has experienced mixed-severity fire regimes (Baker, 2009; Fischer & Bradley, 1987), which favor understory and early successional plant species and a mosaic of forest successional stages (Hessburg & Agee, 2003; Perry et al., 2011). Wildfires have largely been suppressed over the past century, however, leading to denser stands and more intense and extensive wildfires in the past few decades (e.g. Miller, Safford, Crimmins, & Thode, 2009). The Helena site is characterized by low primary productivity, Paradise by intermediate productivity, and Whitefish by high productivity (Burkle et al., 2015). These three site include a variety of forested ecosystems, including ponderosa-pine dominated forests and woodlands in Helena, lodgepole- pine and Douglas-fir forests in Paradise, and western-larch, lodgepole-pine and mixed-conifer forests in Whitefish (Burkle et al., 2015). -
The Type Material of Swedish Bees (Hymenoptera, Apoidea) III
Ent. Tidskr. 130 (2009) Type material of Swedish bees III The type material of Swedish bees (Hymenoptera, Apoidea) III L. ANDERS NILSSON Nilsson, L.A.: The type material of Swedish bees (Hymenoptera, Apoidea) III. [Typma- terial av svenska bin (Hymenoptera, Apoidea) III.] – Entomologisk Tidskrift 130 (1): 43-59. Uppsala, Sweden 2009. ISSN 0013-886x. This report presents the third part of the results of a taxonomic revision and examina- tion of the actual, reputed or potential type material of bees of Swedish origin. Focus is on the status, depository, type locality, condition and history of name-bearing specimens. Here, 21 taxa have been examined. Lectotypes are designated for the specific taxaAndrena cinerascens Nylander, 1848, A. nanula Nylander, 1848, Coelioxys hebescens Nylander, 1848 (now forma of C. rufescens Lepeletier & Serville, 1825), C. simplex Nylander, 1852, Osmia corticalis Gerstaecker, 1869, O. mitis Nylander, 1852 (now Hoplitis m.) and the in- fraspecific taxon Andrena marginata var. nigrescens Aurivillius, 1903 (now subspecies of A. marginata) (bold= valid epithet). An already labelled but unpublished lectotype of Co- elioxys mandibularis Nylander, 1848 is validated. Osmia laticeps Thomson, 1872 (spec. rev.) is found to be a senior synonym of Osmia hyperborea Tkalců, 1983 and a valid name. Re-evaluations are made of the reputedly enigmatic specific taxa Apis rybyensis Linné, 1771, A. cariosa Linné, 1758 and A. obscura Linné, 1764. According to a cabinet species label by Linné’s disciple Thunberg, A. rybyensis is identical to Apis albipes Fabricius, 1781 (now Lasioglossum a.). Apis rybyensis is here classified as a nomen oblitum. Apis cariosa and A. obscura are probably not bees. -
An Inventory of Native Bees (Hymenoptera: Apiformes)
An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming BY David J. Drons A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Plant Science South Dakota State University 2012 ii An Inventory of Native Bees (Hymenoptera: Apiformes) in the Black Hills of South Dakota and Wyoming This thesis is approved as a credible and independent investigation by a candidate for the Master of Plant Science degree and is acceptable for meeting the thesis requirements for this degree. Acceptance of this thesis does not imply that the conclusions reached by the candidate are necessarily the conclusions of the major department. __________________________________ Dr. Paul J. Johnson Thesis Advisor Date __________________________________ Dr. Doug Malo Assistant Plant Date Science Department Head iii Acknowledgements I (the author) would like to thank my advisor, Dr. Paul J. Johnson and my committee members Dr. Carter Johnson and Dr. Alyssa Gallant for their guidance. I would also like to thank the South Dakota Game Fish and Parks department for funding this important project through the State Wildlife Grants program (grant #T2-6-R-1, Study #2447), and Custer State Park assisting with housing during the field seasons. A special thank you to taxonomists who helped with bee identifications: Dr. Terry Griswold, Jonathan Koch, and others from the USDA Logan bee lab; Karen Witherhill of the Sivelletta lab at the University of New Mexico; Dr. Laurence Packer, Shelia Dumesh, and Nicholai de Silva from York University; Rita Velez from South Dakota State University, and Jelle Devalez a visiting scientist at the US Geological Survey. -
Soil-Water Transport of a Seed Coated Neonicotinoid Pesticide in Soybean/Maize Cultivation Systems
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2016 SOIL-WATER TRANSPORT OF A SEED COATED NEONICOTINOID PESTICIDE IN SOYBEAN/MAIZE CULTIVATION SYSTEMS Geoffrey Nathaniel Duesterbeck University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Apiculture Commons, and the Entomology Commons Recommended Citation Duesterbeck, Geoffrey Nathaniel, "SOIL-WATER TRANSPORT OF A SEED COATED NEONICOTINOID PESTICIDE IN SOYBEAN/MAIZE CULTIVATION SYSTEMS. " Master's Thesis, University of Tennessee, 2016. https://trace.tennessee.edu/utk_gradthes/4033 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Geoffrey Nathaniel Duesterbeck entitled "SOIL- WATER TRANSPORT OF A SEED COATED NEONICOTINOID PESTICIDE IN SOYBEAN/MAIZE CULTIVATION SYSTEMS." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. John A. Skinner, Major Professor We have read this thesis and recommend its acceptance: Scott D. Stewart, Andrea L. Ludwig Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) SOIL-WATER TRANSPORT OF A SEED COATED NEONICOTINOID PESTICIDE IN SOYBEAN/MAIZE CULTIVATION SYSTEMS A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Geoffrey Nathaniel Duesterbeck August 2016 Copyright © 2016 by Geoffrey Nathaniel Duesterbeck All rights reserved. -
Neonicotinoid Seed Coatings, Crop Yields and Pollinators
INSTITUTE FOR AGRICULTURE AND TRADE POLICY Unknown Benefits, Hidden Costs Neonicotinoid Seed Coatings, Crop Yields and Pollinators By Jim Kleinschmit and Ben Lilliston Institute for Agriculture and Trade Policy August 2015 Unknown Benefits, Hidden Costs: Neonicotinoid Seed Coatings, Crop Yields and Pollinators By Jim Kleinschmit and Ben Lilliston Published August 2015 The Institute for Agriculture and Trade Policy works locally and globally at the intersection of policy and practice to ensure fair and sustainable food, farm and trade systems. More at iatp.org There is a growing body of science directly implicating farmers at field days about the actual costs and benefits of neonicotinoid (neonic) pesticides in the significant decline neonicotinoids and other seed coatings related to both crop of bees and other pollinators.1 Neonicotinoids are applied production and the environment, including pollinators. Yet in multiple ways in many parts of agriculture and horticul- this isn’t happening with neonicotinoids or other seed coating ture, but are most prevalent as a seed coating material for ingredients today. With such a clear market failure, it appears agricultural commodity crops like corn and soybeans. Based farmers—together with research partners and farm organi- on convincing and mounting evidence and data, beekeepers, zations—need resources to take this matter into their own scientists and other individuals concerned about pollinators hands. We need credible, farmer-led field trials that compare are working together to spur regulatory -
Report on the National Stakeholders Conference on Honey Bee Health National Honey Bee Health Stakeholder Conference Steering Committee
United States Department of Agriculture Report on the National Stakeholders Conference on Honey Bee Health National Honey Bee Health Stakeholder Conference Steering Committee Sheraton Suites Old Town Alexandria Hotel Alexandria, Virginia October 15–17, 2012 National Honey Bee Health Stakeholder Conference Steering Committee USDA Office of Pest Management Policy (OPMP) David Epstein Pennsylvania State University, Department of Entomology James L. Frazier USDA National Institute of Food and Agriculture (NIFA) Mary Purcell-Miramontes USDA Agricultural Research Service (ARS) Kevin Hackett USDA Animal and Plant Health and Inspection Service (APHIS) Robyn Rose USDA Natural Resources Conservation Service (NRCS) Terrell Erickson U. S. Environmental Protection Agency (EPA) Office of Pesticide Programs (OPP) Thomas Moriarty Thomas Steeger Cover: Honey bee on a sunflower. Photo courtesy of Whitney Cranshaw, Colorado State University, Bugwood.org. Disclaimer: This is a report presenting the proceedings of a stakeholder conference organized and conducted by members of the National Honey Bee Health Stakeholder Conference Steering Committee on October 15-17, 2012 in Alexandria, VA. The views expressed in this report are those of the presenters and participants and do not necessarily represent the policies or positions of the Department of Agriculture (USDA), the Environmental Protection Agency (EPA), or the United States Government (USG). iii Executive Summary After news broke in November 2006 about Colony Collapse Disorder (CCD), a potentially new -
Insect Pollinators of Gates of the Arctic NPP a Preliminary Survey of Bees (Hymenoptera: Anthophila) and Flower Flies (Diptera: Syrphidae)
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Insect Pollinators of Gates of the Arctic NPP A Preliminary Survey of Bees (Hymenoptera: Anthophila) and Flower Flies (Diptera: Syrphidae) Natural Resource Report NPS/GAAR/NRR—2017/1541 ON THE COVER Left to right, TOP ROW: Bumble bee on Hedysarum, Al Smith collecting bees at Itkillik River; MIDDLE ROW: Al Smith and Just Jensen collecting pollinators on Krugrak River, Andrena barbilabris on Rosa; BOTTOM ROW: syrphid fly on Potentilla, bee bowl near Lake Isiak All photos by Jessica Rykken Insect Pollinators of Gates of the Arctic NPP A Preliminary Survey of Bees (Hymenoptera: Anthophila) and Flower Flies (Diptera: Syrphidae) Natural Resource Report NPS/GAAR/NRR—2017/1541 Jessica J. Rykken Museum of Comparative Zoology Harvard University 26 Oxford Street, Cambridge, MA 02138 October 2017 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. -
Historical Changes in Northeastern US Bee Pollinators Related to Shared Ecological Traits Ignasi Bartomeusa,B,1, John S
Historical changes in northeastern US bee pollinators related to shared ecological traits Ignasi Bartomeusa,b,1, John S. Ascherc,d, Jason Gibbse, Bryan N. Danforthe, David L. Wagnerf, Shannon M. Hedtkee, and Rachael Winfreea,g aDepartment of Entomology, Rutgers University, New Brunswick, NJ 08901; bDepartment of Ecology, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden; cDivision of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024-5192; dDepartment of Biological Sciences, Raffles Museum of Biodiversity Research, National University of Singapore, Singapore 117546; eDepartment of Entomology, Cornell University, Ithaca, NY 14853; fDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043; and gDepartment of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901 Edited by May R. Berenbaum, University of Illinois at Urbana–Champaign, Urbana, IL, and approved February 1, 2013 (received for review October 24, 2012) Pollinators such as bees are essential to the functioning of ter- characterized by particularly intensive land use and may not be restrial ecosystems. However, despite concerns about a global representative of changes in the status of bees in other parts of pollinator crisis, long-term data on the status of bee species are the world. Thus, the existence of a widespread crisis in pollinator limited. We present a long-term study of relative rates of change declines, as often portrayed in the media and elsewhere (4), rests for an entire regional bee fauna in the northeastern United States, on data of limited taxonomic or geographic scope. based on >30,000 museum records representing 438 species. Over Environmental change affects species differentially, creating a 140-y period, aggregate native species richness weakly de- “losers” that decline with increased human activity, but also creased, but richness declines were significant only for the genus “winners” that thrive in human-altered environments (14). -
Megachilidae
FAMILY MEGACHILIDAE Females of the non-parasitic groups in 6. Hind margin of scutellum produced to this family are most easily recognized by form a carinate and broadly truncate the location of the pollen-collecting scopa lip over-hanging posterior surface of on the venter of the abdomen. Also, the propodeum ...... Anthidiellum (p. 18) Hind margin of scutellum rounded ... front wings, without exception, have but 7 two submarginal cells, and the stigma is 7. Anterior margin of pronotal tubercle small. These are typical "long-tongued" broadly expanded, conspicuously cari- bees, having a greatly elongated and slen- nate, extending along anterior border of der glossa. Segments 1 and 2 of the labial notun1 ......Dianthidi~cw~ (p. 15) palpi also are much elongated and flattened, Pronotal tubercles not broadly expanded, not appreciably produced along anterior with the two apical segments very short. border of notum .............. 8 The galeae of the maxillae are similarly elongated, the maxillary palpi with a vari- 8. Second recurrent vein received within or able number of relatively short segments. very near apex of second submarginal Except for the primitive genus Lithurgus, cell; abdominal terga with entire or the pygidial area is absent, and without ex- nearly entire, transverse, apical or sub- apical, yellow or ivory bands; ocelli rela- ception there are no facial foveae. tively large Hetev-anlhidium (p. 23) KEY TO GENERA Second recurrent vein received consider- ably beyond apex of second submarginal 1. Pygideal area well developed in male, in cell; abdomii~alyellow bands submedian, female represented by a short terminal interrupted medially, not strongly nar- spine; scopa present in female, hind rowed toward mid-line; ocelli extremely tibiae beset with coarse spicules or short small Paranthidium (p. -
Nomina Insecta Nearctica Liopteridae Megachilidae
262 NOMINA INSECTA NEARCTICA Anthidium cockerelli Schwarz 1928 (Anthidium) LIOPTERIDAE Anthidium collectum Huard 1896 (Anthidium) Anthidium compactum Provancher 1896 Homo. Anthidium angelarum Titus 1906 Syn. Anthidium transversum Swenk 1914 Syn. Kiefferiella Ashmead 1903 Anthidium puncticaudum Cockerell 1925 Syn. Anthidium bilderbacki Cockerell 1938 Syn. Kiefferiella acmaeodera Weld 1956 (Kiefferiella) Anthidium catalinense Cockerell 1939 Syn. Kiefferiella rugosa Ashmead 1903 (Kiefferiella) Anthidium clementinum Cockerell 1939 Syn. Anthidium dammersi Cockerell 1937 (Anthidium) Paramblynotus Cameron 1908 Anthidium edwardsii Cresson 1878 (Anthidium) Kiefferia Ashmead 1903 Homo. Anthidium tricuspidum Provancher 1896 Syn. Allocynips Kieffer 1914 Syn. Anthidium hesperium Swenk 1914 Syn. Mayrella Hedicke 1922 Syn. Anthidium depressum Schwarz 1927 Syn. Baviana Barbotin 1954 Syn. Anthidium ehrhorni Cockerell 1900 (Anthidium) Decellea Benoit 1956 Syn. Anthidium emarginata Say 1824 (Megachile) Anthidium atrifrons Cresson 1868 Syn. Paramblynotus zonatus Weld 1944 (Paramblynotus) Anthidium atriventre Cresson 1878 Syn. Anthidium saxorum Cockerell 1904 Syn. Anthidium ultrapictum Cockerell 1904 Syn. Anthidium titusi Cockerell 1904 Syn. MEGACHILIDAE Anthidium aridum Cockerell 1904 Syn. Anthidium astragali Swenk 1914 Syn. Anthidium fresnoense Cockerell 1925 Syn. Anthidium angulatum Cockerell 1925 Syn. Anthidium hamatum Cockerell 1925 Syn. Anthidium Fabricius 1804 Anthidium spinosum Cockerell 1925 Syn. Paraanthidium Friese 1898 Syn. Anthidium lucidum Cockerell