Megachilidae

Total Page:16

File Type:pdf, Size:1020Kb

Megachilidae FAMILY MEGACHILIDAE Females of the non-parasitic groups in 6. Hind margin of scutellum produced to this family are most easily recognized by form a carinate and broadly truncate the location of the pollen-collecting scopa lip over-hanging posterior surface of on the venter of the abdomen. Also, the propodeum ...... Anthidiellum (p. 18) Hind margin of scutellum rounded ... front wings, without exception, have but 7 two submarginal cells, and the stigma is 7. Anterior margin of pronotal tubercle small. These are typical "long-tongued" broadly expanded, conspicuously cari- bees, having a greatly elongated and slen- nate, extending along anterior border of der glossa. Segments 1 and 2 of the labial notun1 ......Dianthidi~cw~ (p. 15) palpi also are much elongated and flattened, Pronotal tubercles not broadly expanded, not appreciably produced along anterior with the two apical segments very short. border of notum .............. 8 The galeae of the maxillae are similarly elongated, the maxillary palpi with a vari- 8. Second recurrent vein received within or able number of relatively short segments. very near apex of second submarginal Except for the primitive genus Lithurgus, cell; abdominal terga with entire or the pygidial area is absent, and without ex- nearly entire, transverse, apical or sub- apical, yellow or ivory bands; ocelli rela- ception there are no facial foveae. tively large Hetev-anlhidium (p. 23) KEY TO GENERA Second recurrent vein received consider- ably beyond apex of second submarginal 1. Pygideal area well developed in male, in cell; abdomii~alyellow bands submedian, female represented by a short terminal interrupted medially, not strongly nar- spine; scopa present in female, hind rowed toward mid-line; ocelli extremely tibiae beset with coarse spicules or short small Paranthidium (p. 13) spines ..............Lithurgus (p. 6) Pygideal area absent in both sexes; scopa 9(2). Scopa absent; scutellum with promi- present or absent; hind tibiae relatively nent axillary spines .............. smooth ......................... 2 ................CoeBoxys (p. 192) Scopa present; axillary spines absent 10 2. Body surface usually ornamented with pale integumental maculations; claws 10. Arolia absent; black, usually robust bees in female cleft or with subapical inner ..............Megachile (p. 108) teeth; stigma short, its inner margin Arolia present ................ 11 not much longer than its width . 3 Rody surface other than legs not macu- 11. Basal segment of abdomen with anterior lated; claws in female with at most face broadly concave 12 hasal angles or teeth; stigma elongate Rasal segment of abdomen at most nar- rowly concave or merely sulcate 13 3. Scopa absent; mandibles in male black, or 12. Basal concavity of abdomen with a sharp- if maculated, then clypeus black, at ly carinatc rim Heriqdes (p. 48) least in part ..................... 4 Bas41 concavity not carinate Scopa present; male mandibles yellow Ashmeaclielta (p. 63) maculated arid clypeus entirely yellow - 13(11). Tip of margii~alcell approximate to 4. Margin of scutellum somewhat protuber- costa; mandible of female narrow and ant, propodeum completely vertical, elongate; form slender; color black ... without a dorsal, pitted area ......... ............. prochelosto~na (p. 52) ................ Heterostelis (p. 33) Tip of marginal cell bent away from costa Scutellum not at all protuberant, propo- ................................. 14 deum with a narrow but distinct dorsal area ................ Stelis (p. 35) 14. Color black (in all eastern species) ; form usually slender; notaulices elongate li- 5 (3). Pulvilli (arolia) absent; mandible of ................ (p. female with five or more teeth ........ near Hoplitis 56) .................... Anthidium (p. 9) Color metallic blue or green; form usually Pulvilli present; mandible of female with short; notaulices punciform oval ..... at most four teeth .............. 6 ...................... osmia (p. 69) BEES OF THE EASTERNUNITED STATES, 11 HETERANTHIDIUM LITHURGUS ANTHIDIELLUM PROCHELOSTOMA I I PARANTHIDIUM e9 OSMIA HERIADES - A COELIOXYS ASHMEADIELLA 7%= ANTHlDlUM - Figure 1-Venation of front wing in the Megachilidae. Lithurgus Latreille the total length of the head and thorax. In the North American species, which con- (Fig. 1) stitute the subgenus Lithurgopsis, the Lithurge Latreille, 1825. Fam. Nat. Regne males have aroliae between the claws, but Anim., p. 463. (vernacular). these are inevident in the female. The Type: Andrena cornuta Fabricius. Monob. males are further characterized by having Lithurgug perthold, 1821. In Latreille, Nat. a rather generalized abdomen, with six Fam. Thierr. p. 467. (valid emend.). sternal plates expoaed and only the 7th and Ikthurgopsis Fox, 1902. Ent. News 13, p. 138. 8th retracted. Type: fithurgus apicalis Cresson. Orig. It has been pointed out by Pate (1946, desig. Brooklyn Ent. Soc. Bul. 41, p. 13) that Lithurgus Mitchell, 1938. Psyche 45, p. 146- Berthold's emendation of Lithurge to Lith- 155. (revision). t~rgztsis valid. Lithurgus is a widely distributed group KEY TO SPECIES of rather primitive bees, at least with re- 1. Females ........................... 2 spect to the family Megachilidae. It is Males ............................. 3 unique in this family in having a well de- veloped pygidial area in the male, while in 2, Facial protuberance relatively narrow, projecting uniformly for the entire the female it is represented by a short, api- width .......... gibbosus Smith (p. 7) cal spine. The scopa is well developed, the Facial protuberance much wider, project- tibiae of both sexes are coarsely spiculate, ing much more strongly at each side almost spinose, on the outer surfaces, and than in the central area ............ the proboscis is much elongated, exceeding ................ bruesi Mitchell (p. 8) 3. Labrum with a robust, median, basal tub- laterally, those on the more apical terga be- ercle . gibbosus Smith (below) coming coarser and more sparse; terga 2-5 Labrum with a pair of erect, basal tuber- with white, apical fasciae, these widely inter- cles, median area excavated . rupted on 2 and 3, entire and very dense and . bruesi Mitchell (p. 8) conspicuous on 4 and 5, 6 with a dense cover- Lithurgus (Lithurgopsis) gibhosus ing of coarse, blackish pubescence which near- Smith ly hides the pygidial spine, ventral scopa pale (Frontispiece & fig. 2) ochraceous, sterna with thin, entire, white, apical fasciae, but that on sternum 5 quite Lithurgus gibboszcs Smith, 1853. Cat. Hym. dense and conspicuous. Brit. Mus. 1. p. 147. 9. Lithurgus compressus Smith, 1853. Cat. Hym. MALE-Length 15-16 mm. ; black; face Brit. Mus. 1. p. 147. 8. considerably longer than distance between I/ithurgopsis gibbnsvn Fox, 1902. Ent. News eyes above; eyes rather strongly convergent 13, p. 140. below; face below antennae somewhat swollen Lithurgus gibbnsus Mitchell, 1938. Psyche 45, but not protuberant, quite densely punctate; p. 151. clypeus slightly convex, densely rugoso-punc- tate, median portion of apical margin quite FEMALE-Length 17-18 inin.; black; straight; labrum with a quite robust, median, length of face about equal to distance between elongate spine at base just below margin of eyes above; eyes slightly convergent below; clypeus; cheeks subequal to eyes in width; facial protuberance below antennae promi- face above antennae very closely but rather nant, projecting at right angles from surface finely punctate, punctures quite deep and of face, slightly bowed in facial view; clypeus distinct, quite dense on cheeks throughout; quite flat, shining and sparsely punctate, api- pubescence of head entirely whitish, quite cal margin straight, with a prominant silvery dense around antennae, along inner orbits and fringe; cheeks somewhat broader than eyes; across apical margin of clypeus, rather thin mandibles $-dentate, median tooth more prom- above, quite elongate and copious on cheeks inant than the others; labrum densely ochrace- below; dorsum of thorax densely rugoso- ous pubescent beyond the basal, transverse punctate, finely so on scutellum and over ridge which is emarginate medially; pube- most of scutum, but this becoming somewhat scence of head entirely pale, quite dense around more distinctly punctate anteriorly; pleura antennae and along inner orbits, thin else- quite closely and finely punctate beneath where, rather elongate on cheeks below; punc- rather dense pubescence; propodeum rather tures fine and close on vertex medially, be- smooth, punctures fine and rather shallow coming somewhat more widely separated lat- except in dorsal area; pubescence of thorax erally, somewhat coarser and more distant on entirely whitish, except that there is some the shining cheeks below; dorsum of thorax faint yellowing on scutum and scutellum, dull, densely rugose, finely so on scutellum quite dense and elongate laterally and on and on scutum posteriorly, becoming rather propodeum, largely whitish on legs, quite coarsely aciculate anteriorly; pleura distinctly dense on anterior femora and on the apical punctate, closely and quite deeply so above, segments, as also on mid tibiae; femora and becoming more coarsely and more widely tibiae rather closely but quite distinctly punc- separated but not sparse below; propodeum tate, not to any marked degree aciculate; spurs relatively smooth but rather dull, punctures testaceous; tegulae piceous, rather densely very shallow and obscure; tegulae piceous, pubescent anteriorly and along inner margin, quite smooth but rather dull, not noticeably not noticeably
Recommended publications
  • Studies of North American Bees
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers from the University Studies series (The University of Nebraska) University Studies of the University of Nebraska January 1914 Studies of North American Bees Myron Harmon Swenk University of Nebraska - Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/univstudiespapers Part of the Life Sciences Commons Swenk, Myron Harmon, "Studies of North American Bees" (1914). Papers from the University Studies series (The University of Nebraska). 9. https://digitalcommons.unl.edu/univstudiespapers/9 This Article is brought to you for free and open access by the University Studies of the University of Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers from the University Studies series (The University of Nebraska) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. VOL. XIV JANUAR Y 1914 No. I I.-STUDIES OF NORTH AMERICAN BEES BY MYRON HARMON SWENK &+ The present paper is the second of the series proposed in a previous contribution on the famil.\- Nomadidae (arztea, XII, pp. I-II~),and aims to tabulate and list the bees of the family Stelididae occurring in Nebraska, together wilth annotations con- cerning their distribution, comparative abundance and season of flight. As in the previous study, records and descriptions of specimens from outside Nebraska before the writer are included where these seem to add anything to our knowledge of the species concerned. MATERIAL In the studies upon which this paper is based over four hundred specimens have been examined and determined. From the state of Nebraska fifteen species and subspecies are recorded, and of these three species are apparently new.
    [Show full text]
  • Clear Plastic Bags of Bark Mulch Trap and Kill Female Megachile (Hymenoptera: Megachilidae) Searching for Nesting Sites
    JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 92(4), 2019, pp. 649-654 SHORT COMMUNICATION Clear Plastic Bags of Bark Mulch Trap and Kill Female Megachile (Hymenoptera: Megachilidae) Searching for Nesting Sites Casey M. Delphia1*, Justin B. Runyon2, and Kevin M. O’Neill3 ABSTRACT: In 2017, we found 17 dead females of Megachile frigida Smith in clear plastic bags of com- posted bark mulch in a residential yard in Bozeman, Montana, USA. Females apparently entered bags via small ventilation holes, then became trapped and died. To investigate whether this is a common source of mortality, we deployed unmodified bags of mulch and those fitted with cardboard tubes (as potential nest sites) at three nearby sites in 2018. We found two dead M. frigida females and five completed leaf cells in one of these bags of mulch fitted with cardboard tubes; two male M. frigida emerged from these leaf cells. In 2018, we also discovered three dead female M. frigida and three dead females of a second leafcutter bee species, Megachile gemula Cresson, in clear bags of another type of bark mulch. Both mulches emitted nearly identical blends of volatile organic compounds, suggesting their odors could attract females searching for nesting sites. These findings suggest that more research is needed to determine how common and wide- spread this is for Megachile species that nest in rotting wood and if there are simple solutions to this problem. KEYWORDS: Leafcutter bees, solitary bees, cavity-nesting bees, Apoidea, wild bees, pollinators, Megachile frigida, Megachile gemula The leafcutter bees Megachile frigida Smith, 1853 and Megachile gemula Cresson, 1878 (Megachilidae) are widespread in North America (Mitchell 1960; Michener, 2007; Sheffield et al., 2011).
    [Show full text]
  • Christophe Praz Evolutionary Entomology University of Neuchatel 2000 Neuchâtel Born 20.08.1979 [email protected] 2010-Pr
    Christophe Praz Evolutionary Entomology University of Neuchatel 2000 Neuchâtel Born 20.08.1979 [email protected] 2010-present Lecturer at University of Neuchatel 2008-2010 Postdoctoral fellow ("prospective researcher"), Department of Entomology, Cornell University, USA (Supervision Bryan Danforth). 2004-2008 PhD at ETH Zurich (Supervision Andreas Müller). 1999-2003 Master in biologie, University of Bern. Scientific publications 28. Lucchetti, M., V Kilchenmann, G Glauser, CJ Praz and C Kast 2018. Nursing protects honeybee larvae from secondary metabolites of pollen. Proceedings of the Royal Society B: in press. 27. Dorchin A., M Lopez-Uribe, CJ Praz, TL Griswold and BN Danforth, 2018. Phylogeny, new generic-level classification, and historical biogeography of the Eucera complex (Hymenoptera: Apidae). Molecular Phylogenetics and Evolution 119: 81-92. 26. Amiet F, A Müller and CJ Praz, 2017. Apidae 1 – Allgemeiner Teil, Gattungen, Apis, Bombus / Partie générale, genres, Apis, Bombus. Fauna Helvetica 29, info fauna CSCF & SEG, Neuchâtel, 187 pp. 25. Packer L, JR Litman and CJ Praz, 2017. Phylogenetic position of a remarkable new fideliine bee from northern Chile (Hymenoptera: Megachilidae). Systematic Entomology 42: 473-488. 24. Praz, CJ, 2017. Subgeneric classification and biology of the leafcutter and dauber bees (genus Megachile Latreille) of the western Palearctic (Hymenoptera, Apoidea, Megachilidae). Journal of Hymenoptera Research 55: 1-54. 23. Soltani, GS, D Bénon, N Alvarez and CJ Praz, 2017. When different contact zones tell different stories: putative ring species in the Megachile concinna species complex (Hymenoptera: Megachilidae). Biological Journal of the Linnean Society 121: 815-832. 22. Lucchetti MA, G Glauser , V Kilchenmann, A Dubecke, G Beckh, CJ Praz and C Kast, 2016.
    [Show full text]
  • Notes on Megachile Centuncularis
    Utah State University DigitalCommons@USU Ga Bee Lab 1-1-1874 Notes on Megachile centuncularis Thos. G. Gentry Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_ga Part of the Entomology Commons Recommended Citation Gentry, Thos. G., "Notes on Megachile centuncularis" (1874). Ga. Paper 128. https://digitalcommons.usu.edu/bee_lab_ga/128 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Ga by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 170 'fHE CANADIAN ENTOMOLOGIST. 171 paler than the wings, but I can at once of dijfi11is. But the terminal segments in dijfinis are not " ferru-• Al. ex. -.¡\ inch. ginous" any more than in tmiformis, and so Kirby may have had a boreal The larva is white, without maculae, but with the anterior rnargin oí specieswe do not yet know before him. From his description there is. nomore correspondence with 1mifarmis than with tl1ysbe; rather <loes his. the first segrnent b;own. _ description agree with f11scica11disas to the abdomen terminally. A. l1ydranga:ella. N. sp. ' Cressonia juglandis, p. iv. To this species must be cited Sm. -pallens- The mine and larva only of this species is known, and o( Mr. Strecker, whose figure represents a ?ale ~ specimen of C. succeeded in rearing the imago. The mine, larva and case resernble those j,tgla11dis,without the median shade on thc forewings. Belfrage has sent of A. 11iticordifalie/la, but are perhaps a little srnaller. It mines the leavcs C.j11gla11dis from Texas.
    [Show full text]
  • Newsletter of the Biological Survey of Canada
    Newsletter of the Biological Survey of Canada Vol. 40(1) Summer 2021 The Newsletter of the BSC is published twice a year by the In this issue Biological Survey of Canada, an incorporated not-for-profit From the editor’s desk............2 group devoted to promoting biodiversity science in Canada. Membership..........................3 President’s report...................4 BSC Facebook & Twitter...........5 Reminder: 2021 AGM Contributing to the BSC The Annual General Meeting will be held on June 23, 2021 Newsletter............................5 Reminder: 2021 AGM..............6 Request for specimens: ........6 Feature Articles: Student Corner 1. City Nature Challenge Bioblitz Shawn Abraham: New Student 2021-The view from 53.5 °N, Liaison for the BSC..........................7 by Greg Pohl......................14 Mayflies (mainlyHexagenia sp., Ephemeroptera: Ephemeridae): an 2. Arthropod Survey at Fort Ellice, MB important food source for adult by Robert E. Wrigley & colleagues walleye in NW Ontario lakes, by A. ................................................18 Ricker-Held & D.Beresford................8 Project Updates New book on Staphylinids published Student Corner by J. Klimaszewski & colleagues......11 New Student Liaison: Assessment of Chironomidae (Dip- Shawn Abraham .............................7 tera) of Far Northern Ontario by A. Namayandeh & D. Beresford.......11 Mayflies (mainlyHexagenia sp., Ephemerop- New Project tera: Ephemeridae): an important food source Help GloWorm document the distribu- for adult walleye in NW Ontario lakes, tion & status of native earthworms in by A. Ricker-Held & D.Beresford................8 Canada, by H.Proctor & colleagues...12 Feature Articles 1. City Nature Challenge Bioblitz Tales from the Field: Take me to the River, by Todd Lawton ............................26 2021-The view from 53.5 °N, by Greg Pohl..............................14 2.
    [Show full text]
  • Flower Preferences and Pollen Transport Networks for Cavity‐Nesting Solitary Bees: Implications for the Design of Agri‐Envir
    Received: 14 February 2018 | Revised: 22 April 2018 | Accepted: 23 April 2018 DOI: 10.1002/ece3.4234 ORIGINAL RESEARCH Flower preferences and pollen transport networks for cavity- nesting solitary bees: Implications for the design of agri- environment schemes Catherine E. A. Gresty1 | Elizabeth Clare2 | Dion S. Devey3 | Robyn S. Cowan3 | Laszlo Csiba3 | Panagiota Malakasi3 | Owen T. Lewis1 | Katherine J. Willis1,3 1Department of Zoology, University of Oxford, Oxford, UK Abstract 2School of Biological and Chemical Floral foraging resources are valuable for pollinator conservation on farmland, and Sciences, Queen Mary University of London, their provision is encouraged by agri- environment schemes in many countries. Across London, UK Europe, wildflower seed mixtures are widely sown on farmland to encourage pollina- 3Royal Botanic Gardens, Kew, Richmond, UK tors, but the extent to which key pollinator groups such as solitary bees exploit and Correspondence benefit from these resources is unclear. We used high- throughput sequencing of 164 Catherine E. A. Gresty, Department of Zoology, New Radcliffe House, Radcliffe pollen samples extracted from the brood cells of six common cavity- nesting solitary Observatory Quarter, 6GG, Woodstock Rd, bee species (Osmia bicornis, Osmia caerulescens, Megachile versicolor, Megachile Oxford OX2, UK. Email: [email protected] ligniseca, Megachile centuncularis and Hylaeus confusus) which are widely distributed across the UK and Europe. We documented their pollen use across 19 farms in south- ern England, UK, revealing their forage plants and examining the structure of their pollen transport networks. Of the 32 plant species included currently in sown wild- flower mixes, 15 were recorded as present within close foraging range of the bees on the study farms, but only Ranunculus acris L.
    [Show full text]
  • Wild Bee Declines and Changes in Plant-Pollinator Networks Over 125 Years Revealed Through Museum Collections
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2018 WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS Minna Mathiasson University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Mathiasson, Minna, "WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS" (2018). Master's Theses and Capstones. 1192. https://scholars.unh.edu/thesis/1192 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. WILD BEE DECLINES AND CHANGES IN PLANT-POLLINATOR NETWORKS OVER 125 YEARS REVEALED THROUGH MUSEUM COLLECTIONS BY MINNA ELIZABETH MATHIASSON BS Botany, University of Maine, 2013 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Integrative and Organismal Biology May, 2018 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Biological Sciences: Integrative and Organismal Biology by: Dr. Sandra M. Rehan, Assistant Professor of Biology Dr. Carrie Hall, Assistant Professor of Biology Dr. Janet Sullivan, Adjunct Associate Professor of Biology On April 18, 2018 Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • Nest Architecture, Life Cycle, and Natural
    Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis) maculata (Hymenoptera: Megachilidae) in a montane forest William de O. Sabino, Yasmine Antonini To cite this version: William de O. Sabino, Yasmine Antonini. Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis) maculata (Hymenoptera: Megachilidae) in a mon- tane forest. Apidologie, Springer Verlag, 2017, 48 (4), pp.450-460. 10.1007/s13592-016-0488-9. hal- 01681897 HAL Id: hal-01681897 https://hal.archives-ouvertes.fr/hal-01681897 Submitted on 11 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2017) 48:450–460 Original article * INRA, DIB and Springer-Verlag France, 2017 DOI: 10.1007/s13592-016-0488-9 Nest architecture, life cycle, and natural enemies of the neotropical leafcutting bee Megachile (Moureapis ) maculata (Hymenoptera: Megachilidae) in a montane forest 1,2 1 William De O. SABINO , Yasmine A NTONINI 1Laboratório de Biodiversidade—Instituto de Ciências Exatas
    [Show full text]
  • Unique Bee Communities Within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity
    sustainability Article Unique Bee Communities within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity Frances S. Sivakoff ID , Scott P. Prajzner and Mary M. Gardiner * ID Department of Entomology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA; [email protected] (F.S.S.); [email protected] (S.P.P.) * Correspondence: [email protected]; Tel.: +1-330-601-6628 Received: 1 May 2018; Accepted: 5 June 2018; Published: 8 June 2018 Abstract: We investigated the relative importance of vacant lot and urban farm habitat features and their surrounding landscape context on bee community richness, abundance, composition, and resource use patterns. Three years of pan trap collections from 16 sites yielded a rich assemblage of bees from vacant lots and urban farms, with 98 species documented. We collected a greater bee abundance from vacant lots, and the two forms of greenspace supported significantly different bee communities. Plant–pollinator networks constructed from floral visitation observations revealed that, while the average number of bees utilizing available resources, niche breadth, and niche overlap were similar, the composition of floral resources and common foragers varied by habitat type. Finally, we found that the proportion of impervious surface and number of greenspace patches in the surrounding landscape strongly influenced bee assemblages. At a local scale (100 m radius), patch isolation appeared to limit colonization of vacant lots and urban farms. However, at a larger landscape scale (1000 m radius), increasing urbanization resulted in a greater concentration of bees utilizing vacant lots and urban farms, illustrating that maintaining greenspaces provides important habitat, even within highly developed landscapes.
    [Show full text]
  • Bees (Hymenoptera: Apoidea, Apiformes) of the Kujawy Lakeland (Central Poland)
    J. Banaszak and A. Sobieraj-Betlińska FRAGMENTA FAUNISTICA 59 (1): 7–27, 2016 PL ISSN 0015-9301 © MUSEUM AND INSTITUTE OF ZOOLOGY PAS DOI 10.3161/00159301FF2016.59.1.007 Bees (Hymenoptera: Apoidea, Apiformes) of the Kujawy Lakeland (central Poland) Józef BANASZAK and Anna SOBIERAJ-BETLIŃSKA Department of Ecology, Institute of Environmental Biology, Kazimierz Wielki University,12 Ossolińskich Av., 85-093 Bydgoszcz, Poland; e-mail: [email protected], [email protected] Abstract: Bee diversity was studied in 14 habitats in 7 localities in the Kujawy Lakeland (Pojezierze Kujawskie) in central Poland. Additionally, we investigated the species diversity and phenology of bumblebees on red clover (Trifolium pratense). In total, 146 bee species were recorded in the study area, accounting for 30.7% of bee species reported from Poland so far and 46.2% of bee species known from the Wielkopolska-Kujawy Lowland (Nizina Wielkopolsko-Kujawska). These include 14 red-listed species. Key words: wild bees, Pojezierze Kujawskie, Nadgoplański Park Tysiąclecia, dominance structure, species occurrence INTRODUCTION Kujawy Lakeland (Pojezierze Kujawskie) is located in central Poland and constitutes the south-eastern part of the Wielkopolska Lakeland (Pojezierze Wielkopolskie). We chose this study area because its bee fauna was not investigated before. Earlier publications included a lot of information on bees in the Wielkopolska-Kujawy Lowland (Nizina Wielkopolsko- Kujawska) (Alfken 1909, 1912, Torka 1913, 1933, Szulczewski 1948, Banaszak 1982, 1983, 1987, Pawlikowski 1989a, 1989b, 1992a, 1992b, 1993), but excluding this mesoregion. Additionally, we investigated the species diversity and phenology of bumblebees on red clover (Trifolium pratense). Many authors made observations on bumblebees visiting red clover fields in different parts of Poland (Błażejewska et al.
    [Show full text]
  • Some Biological Observations on Hoplitis Pilosifrons and Stelis Lateralis (Hymenoptera, Megachilidae)
    Utah State University DigitalCommons@USU Mc Bee Lab 7-1-1955 Some Biological Observations on Hoplitis pilosifrons and Stelis lateralis (Hymenoptera, Megachilidae) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mc Part of the Entomology Commons Recommended Citation Michener, Charles D., "Some Biological Observations on Hoplitis pilosifrons and Stelis lateralis (Hymenoptera, Megachilidae)" (1955). Mc. Paper 115. https://digitalcommons.usu.edu/bee_lab_mc/115 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mc by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. lNSECTSURVEY SECTION Kansas Entomological Society Vol. 28 July, 1955 Number 3 SOME BIOLOGICAL OBSERVATIONS ON HOPLITIS PILOSIFRONS and STELIS LATERALIS (HYMENOPTERA, MEGACHILIDAE) 1 By CHARLESD. MICHENER Although the observations here described concern only fragments of the life histories of the bees concerned , th ey seem worth recording as part of a study of comparative behavio r of bees. The observations were made southeast of Lawrence, Kansas, in 1951 except as otherwise indicated. ExcAVATIONoF NEST. Females of Hopliti s (A lcidamea) pilosifrons (Cres­ son) ·were seen collecting pollen from flowers of Am orpha frutico sa on June 1, and a nest was found in a nearly upright dead broken stem of H elianthu s tuberosus. The fema le Hoplitis was excavating pith from the stalk. She would enter her burrow at the break in the stern , rema in inside from one half to two minutes , then back out, carrying bits of pith in her jaws, fly away, and drop the pith.
    [Show full text]
  • Diversified Floral Resource Plantings Support Bee Communities After
    www.nature.com/scientificreports Corrected: Publisher Correction OPEN Diversifed Floral Resource Plantings Support Bee Communities after Apple Bloom in Commercial Orchards Sarah Heller1,2,5,6, Neelendra K. Joshi1,2,3,6*, Timothy Leslie4, Edwin G. Rajotte2 & David J. Biddinger1,2* Natural habitats, comprised of various fowering plant species, provide food and nesting resources for pollinator species and other benefcial arthropods. Loss of such habitats in agricultural regions and in other human-modifed landscapes could be a factor in recent bee declines. Artifcially established foral plantings may ofset these losses. A multi-year, season-long feld study was conducted to examine how wildfower plantings near commercial apple orchards infuenced bee communities. We examined bee abundance, species richness, diversity, and species assemblages in both the foral plantings and adjoining apple orchards. We also examined bee community subsets, such as known tree fruit pollinators, rare pollinator species, and bees collected during apple bloom. During this study, a total of 138 species of bees were collected, which included 100 species in the foral plantings and 116 species in the apple orchards. Abundance of rare bee species was not signifcantly diferent between apple orchards and the foral plantings. During apple bloom, the known tree fruit pollinators were more frequently captured in the orchards than the foral plantings. However, after apple bloom, the abundance of known tree fruit pollinating bees increased signifcantly in the foral plantings, indicating potential for foral plantings to provide additional food and nesting resources when apple fowers are not available. Insect pollinators are essential in nearly all terrestrial ecosystems, and the ecosystem services they provide are vital to both wild plant communities and agricultural crop production.
    [Show full text]