Non-Random Decay of Chordate Characters Causes Bias in Fossil Interpretation

Total Page:16

File Type:pdf, Size:1020Kb

Non-Random Decay of Chordate Characters Causes Bias in Fossil Interpretation Vol 463 | 11 February 2010 | doi:10.1038/nature08745 LETTERS Non-random decay of chordate characters causes bias in fossil interpretation Robert S. Sansom1, Sarah E. Gabbott1 & Mark A. Purnell1 Exceptional preservation of soft-bodied Cambrian chordates pro- anatomical interpretation and character coding in the fossils3,4. It is vides our only direct information on the origin of vertebrates1,2. also implicitly assumed that anatomical loss through decay is random Fossil chordates from this interval offer crucial insights into how with respect to the phylogenetic informativeness of a character and the distinctive body plan of vertebrates evolved, but reading this affects characters independently. We have lacked the data required to pre-biomineralization fossil record is fraught with difficulties, test the validity of this assumption, but deviation from random and leading to controversial and contradictory interpretations3,4. The independent loss will clearly bias and distort our interpretation and cause of these difficulties is taphonomic: we lack data on when and understanding of the fossil record. Furthermore, identification of how important characters change as they decompose, resulting in partially decayed remains requires knowledge not only of which a lack of constraint on anatomical interpretation and a failure to characters decay rapidly and which persist, but also of how they distinguish phylogenetic absence of characters from loss through decay. decay3. Here we show, from experimental decay of amphioxus and Current understanding of the early evolution of chordates and the ammocoetes, that loss of chordate characters during decay is origin of vertebrates provides one of the most notable examples of the non-random: the more phylogenetically informative are the most problems caused by taphonomic ambiguity. Fossil evidence from this labile, whereas plesiomorphic characters are decay resistant. The interval has the potential to transform our understanding of the taphonomic loss of synapomorphies and relatively higher pre- nature and timing of the fundamental episodes of initial body-plan servation potential of chordate plesiomorphies will thus result development, increasing complexity and genome duplications, as it in bias towards wrongly placing fossils on the chordate stem. has done for the jawed vertebrates2,5. Continuing disagreement over Application of these data to Cathaymyrus (Cambrian period of interpretations of the fossils, however, means that no clear patterns or China) and Metaspriggina (Cambrian period of Canada) high- processes are currently discernable. Only a few fossil taxa have been lights the difficulties: these fossils cannot be placed reliably in discussed in the context of early chordate evolution, largely because the chordate or vertebrate stem because they could represent the they pre-date the advent of biomineralized hard tissues; the early decayed remains of any non-biomineralized, total-group chordate. chordate fossil record is consequently limited to rare instances of soft- Preliminary data suggest that this decay filter also affects other tissue preservation. These soft-bodied fossils of purported chordates, groups of organisms and that ‘stem-ward slippage’ may be a wide- such as Metaspriggina, Pikaia, Cathaymyrus and yunnanozoans from spread but currently unrecognized bias in our understanding of the the Cambrian deposits of Canada and China (see, for example, early evolution of a number of phyla. refs 1, 6, 7), have proved to be highly contentious in terms of inter- The fossil record offers unique and crucial insight into many preting their anatomy. A broad range of phylogenetic affinities has important episodes in the evolution of life, and allows reconstruction been proposed for each taxon, and little consensus has been reached of the extinct relatives that comprise the stem lineages of major extant (Fig. 1a and Supplementary Fig. 1). clades and phyla (crown groups). Our view of the fossil record, To constrain interpretation of the anatomies and affinities of soft- however, is obscured by two persistent problems. First, most organisms bodied chordates, we undertook a series of decay experiments using are never preserved as fossils, and the patchy record provides only larval Lampetra (ammocoetes) and Branchiostoma (amphioxus). Of limited data from deep time. Second, even in cases in which exceptional the extant chordates, urochordates and jawed vertebrates have under- preservation provides a more complete picture, fossils themselves are gone considerable genetic and morphological specialization2,8 and the never anatomically complete or intact: they have been subject to the amphioxus (Cephalochordata) and the ammocoete (Vertebrata), with complex taphonomic processes and filters of decay and preservation. their relatively simple and comparable morphologies9, are widely This degradation creates difficulties when comparing the morphology thought to be the best anatomical proxies for early chordates8,10. of fossils with the anatomy of extant relatives to identify the shared Both organisms have been used to make direct comparisons with characters (synapomorphies) on which evolutionary analysis ulti- purported fossil chordates11,12. mately rests. Further complications arise because placement of fossils Previous work in the field of experimental taphonomy (see, for in the stems of extant clades reflects the absence of certain features; our example, refs 13–15), including some on Branchiostoma16, has generally failure to find a particular character in a fossil, however, may reflect focused on the transformation of organisms as a whole rather than on post-mortem degradation of the original anatomical signal (tapho- individual character change, but we have developed a new approach nomic loss) rather than true evolutionary absence (where the fossil based on analysis of the rate at which and sequence in which individual precedes the origin of the character). Failure to distinguish between anatomical characters are transformed and lost during decay. The the underlying causes of character absence will lead to erroneous evolu- apomorphies of Branchiostoma and larval Lampetra were identified tionary conclusions3. and categorised a priori in terms of the synapomorphies of the nested The main cause of these phylogenetic problems is not the patchi- clades to which each belongs (for example Chordata, Cephalochordata ness of the fossil record, but our lack of taphonomic data to constrain or Vertebrata, Fig. 1b). We recorded how, and when, each of the 1Department of Geology, University of Leicester, Leicester LE1 7RH, UK. 797 ©2010 Macmillan Publishers Limited. All rights reserved LETTERS NATURE | Vol 463 | 11 February 2010 a Figure 1 | Phylogeny and anatomy of chordates. a, Deuterostome 7,29,30 Echino- Hemi- phylogeny based on data from extant forms . Asterisks mark the extant dermata chordata Chordata proxies used in the experiments. Each fossil taxon (coloured) has been Cephalochordata Urochordata Vertebrata proposed to have a wide range of affinities, with little consensus existing. Myxinoidea Petromyzontida Gnathostomata References for each placement are available in Supplementary Information. b, Cephalochordate anatomy (top) and ammocoete anatomy (bottom). C, chordate synapomorphy; V, vertebrate synapomorphy. * * synapomorphies decayed, allowing recognition of partially decayed characters, distinction between phylogenetic absence and taphonomic loss, and identification of patterns of loss. For Branchiostoma, the general changes in pH, mass and state of organismal integrity through time (Supplementary Fig. 2), compare Stem vertebrates well with those documented in ref. 16, thus validating experimental Pikaia taphonomy as replicable. Our quantitative data show that the rate of Myllokunmingiids cumulative morphological character decay in both Branchiostoma and Metaspriggina Lampetra follows the same sigmoidal pattern (Fig. 2c). Figure 2a, b Nectocaris Stem chordates Cathaymyrus shows the chronological sequences of character decay. Analysis of these Yunnanozoans sequences reveals a striking pattern: in both taxa, the first characters to Stem deuterostomes decay are synapomorphies of relatively more derived clades (that is, cephalochordate synapomorphies for Branchiostoma and petromy- b Myomeres Dorsal nerve chord Notochord Anterior Dorsal storage organ C C zontid, cyclostome and [petromyzontid 1 gnathostome] synapomor- rostral extension bulb phies for Lampetra). The more plesiomorphic characters (for example chordate notochord and myomeres) are the last to decay. Although Buccal cirri there are some exceptions to this pattern, there is a very strong positive Anus C Caudal !n Velum/wheel organ Notochord correlation between the rank of a character in the decay sequence and C C Gonads Midgut Atriopore Pharynx Endostyle caecum the phylogenetic rank at which a character is synapomorphic (RS 5 0.75 (Spearman’s rank correlation coefficient) and P 5 0.0014 Nasohypo- 5 5 physial Sensory Myomeres Dorsal nerve chord for Branchiostoma (15 d.f.); RS 0.71 and P 0.000019 for Lampetra complex organs Brain C Median !ns C (28 d.f.)). Skull V V V Branchial cartilage V Our results reveal two important patterns. First, homologous Buccal cirri Oral hood chordate characters in different taxa have comparable decay resis- Lower lip Anus Caudal !n tances, despite some fundamental structural differences (for example V V Gut C Velum C C Heart Liver Notochord cephalochordate and vertebrate notochord and pharyngeal-arch Pharynx Endostyle
Recommended publications
  • Brains of Primitive Chordates 439
    Brains of Primitive Chordates 439 Brains of Primitive Chordates J C Glover, University of Oslo, Oslo, Norway although providing a more direct link to the evolu- B Fritzsch, Creighton University, Omaha, NE, USA tionary clock, is nevertheless hampered by differing ã 2009 Elsevier Ltd. All rights reserved. rates of evolution, both among species and among genes, and a still largely deficient fossil record. Until recently, it was widely accepted, both on morpholog- ical and molecular grounds, that cephalochordates Introduction and craniates were sister taxons, with urochordates Craniates (which include the sister taxa vertebrata being more distant craniate relatives and with hemi- and hyperotreti, or hagfishes) represent the most chordates being more closely related to echinoderms complex organisms in the chordate phylum, particu- (Figure 1(a)). The molecular data only weakly sup- larly with respect to the organization and function of ported a coherent chordate taxon, however, indicat- the central nervous system. How brain complexity ing that apparent morphological similarities among has arisen during evolution is one of the most chordates are imposed on deep divisions among the fascinating questions facing modern science, and it extant deuterostome taxa. Recent analysis of a sub- speaks directly to the more philosophical question stantially larger number of genes has reversed the of what makes us human. Considerable interest has positions of cephalochordates and urochordates, pro- therefore been directed toward understanding the moting the latter to the most closely related craniate genetic and developmental underpinnings of nervous relatives (Figure 1(b)). system organization in our more ‘primitive’ chordate relatives, in the search for the origins of the vertebrate Comparative Appearance of Brains, brain in a common chordate ancestor.
    [Show full text]
  • The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
    lopmen ve ta e l B Williamson, Cell Dev Biol 2012, 1:1 D io & l l o l g DOI: 10.4172/2168-9296.1000101 e y C Cell & Developmental Biology ISSN: 2168-9296 Research Article Open Access The Origins of Chordate Larvae Donald I Williamson* Marine Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom Abstract The larval transfer hypothesis states that larvae originated as adults in other taxa and their genomes were transferred by hybridization. It contests the view that larvae and corresponding adults evolved from common ancestors. The present paper reviews the life histories of chordates, and it interprets them in terms of the larval transfer hypothesis. It is the first paper to apply the hypothesis to craniates. I claim that the larvae of tunicates were acquired from adult larvaceans, the larvae of lampreys from adult cephalochordates, the larvae of lungfishes from adult craniate tadpoles, and the larvae of ray-finned fishes from other ray-finned fishes in different families. The occurrence of larvae in some fishes and their absence in others is correlated with reproductive behavior. Adult amphibians evolved from adult fishes, but larval amphibians did not evolve from either adult or larval fishes. I submit that [1] early amphibians had no larvae and that several families of urodeles and one subfamily of anurans have retained direct development, [2] the tadpole larvae of anurans and urodeles were acquired separately from different Mesozoic adult tadpoles, and [3] the post-tadpole larvae of salamanders were acquired from adults of other urodeles. Reptiles, birds and mammals probably evolved from amphibians that never acquired larvae.
    [Show full text]
  • Abstract Introduction
    Marine and Freshwater Miscellanea III KEY TRAITS OF AMPHIOXUS SPECIES (CEPHALOCHORDATA) AND THE GOLT1 Daniel Pauly and Elaine Chu Sea Around Us, Institute for the Oceans and Fisheries University of British Columbia, Vancouver, B.C, Canada Email: [email protected] Abstract Major biological traits of amphioxus species (Cephalochordata) are presented with emphasis on the size reached by their 32 valid species in the genera Asymmetron (2 spp.), Branchiostoma (25 spp.), and Epigonichthys (5 spp.) and on related features, i.e., growth parameters and size at first maturity. Overall, these traits combined with features of their respiration, suggest that the cephalochordates conform to the Gill Oxygen Limitation Theory (GOLT), which relates the growth performance of water-breathing ectotherms to the surface area of their respiratory organ(s). Introduction The small fish-like animals know as ‘lancelet‘ or ‘amphioxius’ belong the subphylum Cephalochordata, which is either a sister group, or related to the ancestor of the vertebrate animals (see Garcia-Fernàndez and Benito-Gutierrez 2008). The cephalochordates consist of 3 families (the Asymmetronidae, Epigonichthyidae and Branchiostomidae), with one genus each, Asymmetron (2 spp.), Branchiostoma (24 spp.) and Epigonichthys (6 spp.), as detailed in Table 1 and SeaLifeBase (www.sealifebase.org). This contribution is to assemble some of the basic biological traits of lancelets (Figure 1), notably the maximum size each of their 34 species can reach, which is easily their most important attribute, though it is often ignored (Haldane 1926). Finally, reported lengths at first maturity of cephalochordates were related to the corresponding, population-specific maximum length, to test whether these animals mature as predicted by the Gill- Oxygen Limitation Theory (GOLT; see Pauly 2021a, 2021b).
    [Show full text]
  • Single Cell Chromatin Accessibility of the Developmental
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.17.994954; this version posted March 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Single cell chromatin accessibility of the developmental cephalochordate Dongsheng Chen1, Zhen Huang2,3, Xiangning Ding1,4, Zaoxu Xu1,4, Jixing Zhong1,4, Langchao Liang1,4, Luohao Xu5, Chaochao Cai1,4, Haoyu Wang1,4, Jiaying Qiu1,4, Jiacheng Zhu1,4, Xiaoling Wang1,4, Rong Xiang1,4, Weiying Wu1,4, Peiwen Ding1,4, Feiyue Wang1,4, Qikai Feng1,4, Si Zhou1, Yuting Yuan1, Wendi Wu1, Yanan Yan2,3, Yitao Zhou2,3, Duo Chen2,3, Guang Li6, Shida Zhu1, Fang Chen1,7, Qiujin Zhang2,3, Jihong Wu8,9,10,11 &Xun Xu1 1. BGI-shenzhen, Shenzhen 518083, China 2. Life Science College, Fujian Normal University 3. Key Laboratory of Special Marine Bio-resources Sustainable Utilization of Fujian Province, Fuzhou 350108, P. R. China 4. BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China 5. Department of Neuroscience and Developmental Biology, University of Vienna 6. State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiangan District, Xiamen, Fujian 361102, China 7. MGI, BGI-Shenzhen, Shenzhen 518083, China 8. Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China 9. Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China 10.
    [Show full text]
  • Hemichordate Phylogeny: a Molecular, and Genomic Approach By
    Hemichordate Phylogeny: A molecular, and genomic approach by Johanna Taylor Cannon A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama May 4, 2014 Keywords: phylogeny, evolution, Hemichordata, bioinformatics, invertebrates Copyright 2014 by Johanna Taylor Cannon Approved by Kenneth M. Halanych, Chair, Professor of Biological Sciences Jason Bond, Associate Professor of Biological Sciences Leslie Goertzen, Associate Professor of Biological Sciences Scott Santos, Associate Professor of Biological Sciences Abstract The phylogenetic relationships within Hemichordata are significant for understanding the evolution of the deuterostomes. Hemichordates possess several important morphological structures in common with chordates, and they have been fixtures in hypotheses on chordate origins for over 100 years. However, current evidence points to a sister relationship between echinoderms and hemichordates, indicating that these chordate-like features were likely present in the last common ancestor of these groups. Therefore, Hemichordata should be highly informative for studying deuterostome character evolution. Despite their importance for understanding the evolution of chordate-like morphological and developmental features, relationships within hemichordates have been poorly studied. At present, Hemichordata is divided into two classes, the solitary, free-living enteropneust worms, and the colonial, tube- dwelling Pterobranchia. The objective of this dissertation is to elucidate the evolutionary relationships of Hemichordata using multiple datasets. Chapter 1 provides an introduction to Hemichordata and outlines the objectives for the dissertation research. Chapter 2 presents a molecular phylogeny of hemichordates based on nuclear ribosomal 18S rDNA and two mitochondrial genes. In this chapter, we suggest that deep-sea family Saxipendiidae is nested within Harrimaniidae, and Torquaratoridae is affiliated with Ptychoderidae.
    [Show full text]
  • Molecular Investigation of the Cnidarian-Dinoflagellate Symbiosis
    AN ABSTRACT OF THE DISSERTATION OF Laura Lynn Hauck for the degree of Doctor of Philosophy in Zoology presented on March 20, 2007. Title: Molecular Investigation of the Cnidarian-dinoflagellate Symbiosis and the Identification of Genes Differentially Expressed during Bleaching in the Coral Montipora capitata. Abstract approved: _________________________________________ Virginia M. Weis Cnidarians, such as anemones and corals, engage in an intracellular symbiosis with photosynthetic dinoflagellates. Corals form both the trophic and structural foundation of reef ecosystems. Despite their environmental importance, little is known about the molecular basis of this symbiosis. In this dissertation we explored the cnidarian- dinoflagellate symbiosis from two perspectives: 1) by examining the gene, CnidEF, which was thought to be induced during symbiosis, and 2) by profiling the gene expression patterns of a coral during the break down of symbiosis, which is called bleaching. The first chapter characterizes a novel EF-hand cDNA, CnidEF, from the anemone Anthopleura elegantissima. CnidEF was found to contain two EF-hand motifs. A combination of bioinformatic and molecular phylogenetic analyses were used to compare CnidEF to EF-hand proteins in other organisms. The closest homologues identified from these analyses were a luciferin binding protein involved in the bioluminescence of the anthozoan Renilla reniformis, and a sarcoplasmic calcium- binding protein involved in fluorescence of the annelid worm Nereis diversicolor. Northern blot analysis refuted link of the regulation of this gene to the symbiotic state. The second and third chapters of this dissertation are devoted to identifying those genes that are induced or repressed as a function of coral bleaching. In the first of these two studies we created a 2,304 feature custom DNA microarray platform from a cDNA subtracted library made from experimentally bleached Montipora capitata, which was then used for high-throughput screening of the subtracted library.
    [Show full text]
  • An EST Screen from the Annelid Pomatoceros Lamarckii Reveals
    BMC Evolutionary Biology BioMed Central Research article Open Access An EST screen from the annelid Pomatoceros lamarckii reveals patterns of gene loss and gain in animals Tokiharu Takahashi*1,4, Carmel McDougall2,4,6, Jolyon Troscianko3, Wei- Chung Chen4, Ahamarshan Jayaraman-Nagarajan5, Sebastian M Shimeld4 and David EK Ferrier*2,4 Address: 1Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, UK, 2The Scottish Oceans Institute, University of St. Andrews, St. Andrews, Fife, UK, 3Centre for Ornithology, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK, 4Department of Zoology, University of Oxford, South Parks Road, Oxford, UK, 5Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK and 6School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia Email: Tokiharu Takahashi* - [email protected]; Carmel McDougall - [email protected]; Jolyon Troscianko - [email protected]; Wei-Chung Chen - [email protected]; Ahamarshan Jayaraman- Nagarajan - [email protected]; Sebastian M Shimeld - [email protected]; David EK Ferrier* - dekf@st- andrews.ac.uk * Corresponding authors Published: 25 September 2009 Received: 1 April 2009 Accepted: 25 September 2009 BMC Evolutionary Biology 2009, 9:240 doi:10.1186/1471-2148-9-240 This article is available from: http://www.biomedcentral.com/1471-2148/9/240 © 2009 Takahashi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • J32 the Importance of the Burgess Shale < Soft Bodied Fauna >
    580 Chapter j PALEOCONTINENTS The Present is the Key to the Past: HUGH RANCE j32 The importance of the Burgess shale < soft bodied fauna > Only about 33 animal body plans are presently [sic] being used on this planet (Margulis and Schwartz, 1988). —Scott F. Gilbert, Developmental Biology, 1991.1 Almost all animal phyla known today were already present by 505 million years ago— the age of the Burgess shale, Middle Cambrian marine sediments, discovered at the Kicking Horse rim, British Columbia, in 1909 by Charles Doolittle Walcott, that provide a unique window on life without hard parts that had continued to exist shortly after the time of the Cambrian explosion (see Topic j34).2 Legend has it that Walcott, then secretary of the Smithsonian Institution, vacationing near Field, British Columbia, was thrown from a horse carrying him, when it tripped on, and split open a stray fallen slab of shale. Walcott, with his face literally rubbed in it, saw strange, but not hallucinational, forms crisply etched in black against the blue-black bedding surface of the shale: a bonanza of fossils of sea creatures without mineralized shells or backbones. Many are preserved whole; including those with articulated organic (biodegradable) exoskeletons. Details of even their soft body parts can be seen (best using PTM)3 as silvery films (formed of phyllosilicates on a coating of kerogenized carbon) that commonly outline even the most delicate structures on the fossilized animal.4 The Burgess shale is part of the Stephen Formation of greenish shales and thin-bedded limestones, which is a marine-offlap deposit between the thick, massive, carbonates of the overlying Eldon formation, and the underlying Cathedral formation.6 As referenced in the Geological Atlas of the Western Canada Sedimentary Basin - Chapter 8, the Stephen Formation has been “informally divided into a normal, ‘thin Stephen’ on the platform areas and a ‘thick Stephen’ west of the Cathedral Escarpment.
    [Show full text]
  • A Paleontological Perspective of Vertebrate Origin
    http://www.paper.edu.cn Chinese Science Bulletin 2003 Vol. 48 No. 8 725-735 Cover: The earliest-known and most primitive vertebrates on the A paleontological perspective Earth---Myllokunmingia fengjiaoa , (upper) Zhongjianichthys rostratus of vertebrate origin ( middle ), Haikouichthys ercaicunensis (lower left and lower right). They were SHU Degan Early Life Institute & Department of Geology, Northwest products of the early Cambrian Explosion, University, Xi’an, 710069, China; School of Earth excavated from the famous Chengjiang Sciences and Resources, China University of Geosciences, Beijing, 100083, China Lagersttat, which was formed in the (e-mail:[email protected]) eastern Yunnan about 530 millions of years ago. These ancestral vertebrates not only Abstract The Early Cambrian Haikouichthys and Haikouella have been claimed to be related to contribute in an important developed primitive separate vertebral way to our understanding of vertebrate origin, but there have elements, but also possessed principal been heated debates about how exactly they are to be interpreted. New discoveries of numerous specimens of sensory organs, including a pair of large Haikouichthys not only confirm the identity of previously lateral eyes, nostril with nasal sacs, then described structures such as the dorsal and the ventral fins, and chevron-shaped myomeres, but also reveal many new had led to the transition from acraniates to important characteristics, including sensory organs of the head craniates (true vertebrates). The (e.g. large eyes), and a prominent notochord with differentiated vertebral elements. This “first fish” appears, discoveries of these “naked” agnathans however, to retain primitive reproductive features of have pushed the earliest record of acraniates, suggesting that it is a stem-group craniates.
    [Show full text]
  • The Cambrian ''Explosion'
    Perspective The Cambrian ‘‘explosion’’: Slow-fuse or megatonnage? Simon Conway Morris* Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom Clearly, the fossil record from the Cambrian period is an invaluable tool for deciphering animal evolution. Less clear, however, is how to integrate the paleontological information with molecular phylogeny and developmental biology data. Equally challenging is answering why the Cambrian period provided such a rich interval for the redeployment of genes that led to more complex bodyplans. illiam Buckland knew about it, The First Metazoans. Ediacaran assem- 1). The overall framework of early meta- WCharles Darwin characteristically blages (2, 5) are presumably integral to zoan evolution comes from molecular agonized over it, and still we do not fully understanding the roots of the Cambrian data, but they cannot provide insights into understand it. ‘‘It,’’ of course, is the seem- ‘‘explosion,’’ and this approach assumes the anatomical changes and associated ingly abrupt appearance of animals in the that the fossil record is historically valid. It changes in ecology that accompanied the Cambrian ‘‘explosion.’’ The crux of this is markedly at odds, however, with an emergence of bodyplans during the Cam- evolutionary problem can be posed as a alternative view, based on molecular data. brian explosion. The fossil record series of interrelated questions. Is it a real These posit metazoan divergences hun- provides, therefore, a unique historical event or simply an artifact of changing dreds of millions of years earlier (6, 7). As perspective. fossilization potential? If the former, how such, the origination of animals would be Only those aspects of the Ediacaran rapidly did it happen and what are its more or less coincident with the postu- record relevant to the Cambrian diversi- consequences for understanding evolu- lated ‘‘Big Bang’’ of eukaryote diversifi- fication are noted here.
    [Show full text]
  • Fossils Provide Better Estimates of Ancestral Body Size Than Do Extant
    Acta Zoologica (Stockholm) 90 (Suppl. 1): 357–384 (January 2009) doi: 10.1111/j.1463-6395.2008.00364.x FossilsBlackwell Publishing Ltd provide better estimates of ancestral body size than do extant taxa in fishes James S. Albert,1 Derek M. Johnson1 and Jason H. Knouft2 Abstract 1Department of Biology, University of Albert, J.S., Johnson, D.M. and Knouft, J.H. 2009. Fossils provide better Louisiana at Lafayette, Lafayette, LA estimates of ancestral body size than do extant taxa in fishes. — Acta Zoologica 2 70504-2451, USA; Department of (Stockholm) 90 (Suppl. 1): 357–384 Biology, Saint Louis University, St. Louis, MO, USA The use of fossils in studies of character evolution is an active area of research. Characters from fossils have been viewed as less informative or more subjective Keywords: than comparable information from extant taxa. However, fossils are often the continuous trait evolution, character state only known representatives of many higher taxa, including some of the earliest optimization, morphological diversification, forms, and have been important in determining character polarity and filling vertebrate taphonomy morphological gaps. Here we evaluate the influence of fossils on the interpretation of character evolution by comparing estimates of ancestral body Accepted for publication: 22 July 2008 size in fishes (non-tetrapod craniates) from two large and previously unpublished datasets; a palaeontological dataset representing all principal clades from throughout the Phanerozoic, and a macroecological dataset for all 515 families of living (Recent) fishes. Ancestral size was estimated from phylogenetically based (i.e. parsimony) optimization methods. Ancestral size estimates obtained from analysis of extant fish families are five to eight times larger than estimates using fossil members of the same higher taxa.
    [Show full text]
  • Common Genetic Denominators for Ca -Based Skeleton in Metazoa
    Common Genetic Denominators for Ca++-Based Skeleton in Metazoa: Role of Osteoclast-Stimulating Factor and of Carbonic Anhydrase in a Calcareous Sponge Werner E. G. Mu¨ ller1*, Xiaohong Wang1,2, Vlad A. Grebenjuk1, Michael Korzhev1, Matthias Wiens1, Ute Schloßmacher1, Heinz C. Schro¨ der1 1 ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, 2 National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, CHN-Beijing, China Abstract Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC). Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl) results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/ enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative) enzyme carbonic anhydrase and the (putative) osteoclast-stimulating factor (OSTF), that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl2) show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had 2+ been cultivated under Ca -depletion condition (1 mM CaCl2).
    [Show full text]