J32 the Importance of the Burgess Shale < Soft Bodied Fauna >
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Species of Yunnanozoan with Implications for Deuterostome
R EPORTS istry, K. S. Birdi, Ed. (CRC Press Inc., Boca Raton, FL, 23. L. H. Sperling, Polymeric Multicomponent Materials (grant EA/TU¨ BA-GEBI˙P/2001-1-1) and the Koc¸ Uni- 1997), chap. 9. (Wiley-Interscience, New York, 1997), chap. 6. versity Fiat Fund. 18. , G. McHale, M. I. Newton, Langmuir 18, 2636 24. J. Varga, in Polypropylene Structure, Blends and Com- Supporting Online Material (2002). posites, J. Karger-Kocsis, Ed. (Chapman and Hall, Lon- www.sciencemag.org/cgi/content/full/299/5611/1377/ 19. Materials and methods are available as supporting don, 1995), vol. 1, chap. 3. DC1 material on Science Online. 25. We thank A. Altay, M. A. Gu¨lgu¨n of Sabancı Univer- Materials and Methods 20. R. N. Wenzel, Ind. Eng. Chem. 28, 988 (1936). sity, and A. Alkan of Brisa for their help with SEM Figs. S1 and S2 21. A. B. D. Cassie, S. Baxter, Trans. Faraday Soc. 3, 16 (1944). measurements. A.L.D. acknowledges the financial References 22. R. A. Veselovsky, V. N. Kestelman, Adhesion of Poly- support of the Turkish Academy of Sciences in the mers (McGraw-Hill, New York, 2002), chap. 2. framework of the Young Scientist Award Program 11 September 2002; accepted 22 January 2003 and ventral units are rarely touching (Fig. 1, A New Species of Yunnanozoan G and H), suggesting that the entire anterior region could expand and contract in height. with Implications for The expansion would occur by an accommo- dation along the median zone and about an axis of rotation near the posterior of the units. -
The Burgess Shale Paleocommunity with New Insights from Marble Canyon, British Columbia
Paleobiology, 46(1), 2020, pp. 58–81 DOI: 10.1017/pab.2019.42 Article The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia Karma Nanglu , Jean-Bernard Caron , and Robert R. Gaines Abstract.—The middle (Wuliuan Stage) Cambrian Burgess Shale is famous for its exceptional preservation of diverse and abundant soft-bodied animals through the “thick” Stephen Formation. However, with the exception of the Walcott Quarry (Fossil Ridge) and the stratigraphically older Tulip Beds (Mount Stephen), which are both in Yoho National Park (British Columbia), quantitative assessments of the Burgess Shale have remained limited. Here we first provide a detailed quantitative overview of the diversity and struc- ture of the Marble Canyon Burgess Shale locality based on 16,438 specimens. Located 40 km southeast of the Walcott Quarry in Kootenay National Park (British Columbia), Marble Canyon represents the youngest site of the “thick” Stephen Formation. We then combine paleoecological data sets from Marble Canyon, Walcott Quarry, Tulip Beds, and Raymond Quarry, which lies approximately 20 m directly above the Walcott Quarry, to yield a combined species abundance data set of 77,179 specimens encompassing 234 species-level taxa. Marble Canyon shows significant temporal changes in both taxonomic and ecological groups, suggesting periods of stasis followed by rapid turnover patterns at local and short temporal scales. At wider geographic and temporal scales, the different Burgess Shale sites occupy distinct areas in multi- variate space. Overall, this suggests that the Burgess Shale paleocommunity is far patchier than previously thought and varies at both local and regional scales through the “thick” Stephen Formation. -
The Burgess Shale Paleocommunity with New Insights from Marble Canyon, British Columbia
Paleobiology, 46(1), 2020, pp. 58–81 DOI: 10.1017/pab.2019.42 Article The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia Karma Nanglu , Jean-Bernard Caron , and Robert R. Gaines Abstract.—The middle (Wuliuan Stage) Cambrian Burgess Shale is famous for its exceptional preservation of diverse and abundant soft-bodied animals through the “thick” Stephen Formation. However, with the exception of the Walcott Quarry (Fossil Ridge) and the stratigraphically older Tulip Beds (Mount Stephen), which are both in Yoho National Park (British Columbia), quantitative assessments of the Burgess Shale have remained limited. Here we first provide a detailed quantitative overview of the diversity and struc- ture of the Marble Canyon Burgess Shale locality based on 16,438 specimens. Located 40 km southeast of the Walcott Quarry in Kootenay National Park (British Columbia), Marble Canyon represents the youngest site of the “thick” Stephen Formation. We then combine paleoecological data sets from Marble Canyon, Walcott Quarry, Tulip Beds, and Raymond Quarry, which lies approximately 20 m directly above the Walcott Quarry, to yield a combined species abundance data set of 77,179 specimens encompassing 234 species-level taxa. Marble Canyon shows significant temporal changes in both taxonomic and ecological groups, suggesting periods of stasis followed by rapid turnover patterns at local and short temporal scales. At wider geographic and temporal scales, the different Burgess Shale sites occupy distinct areas in multi- variate space. Overall, this suggests that the Burgess Shale paleocommunity is far patchier than previously thought and varies at both local and regional scales through the “thick” Stephen Formation. -
Soft−Part Preservation in Two Species of the Arthropod Isoxys from the Middle Cambrian Burgess Shale of British Columbia, Canada
Soft−part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada DIEGO C. GARCÍA−BELLIDO, JEAN VANNIER, and DESMOND COLLINS García−Bellido, D.C., Vannier, J., and Collins, D. 2009. Soft−part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada. Acta Palaeontologica Polonica 54 (4): 699–712. doi:10.4202/app.2009.0024 More than forty specimens from the middle Cambrian Burgess Shale reveal the detailed anatomy of Isoxys, a worldwide distributed bivalved arthropod represented here by two species, namely Isoxys acutangulus and Isoxys longissimus. I. acutangulus had a non−mineralized headshield with lateral pleural folds (= “valves” of previous authors) that covered the animal’s body almost entirely, large frontal spherical eyes and a pair of uniramous prehensile appendages bearing stout spiny outgrowths along their anterior margins. The 13 following appendages had a uniform biramous design—i.e., a short endopod and a paddle−like exopod fringed with marginal setae with a probable natatory function. The trunk ended with a flap−like telson that protruded beyond the posterior margin of the headshield. The gut of I. acutangulus was tube−like, running from mouth to telson, and was flanked with numerous 3D−preserved bulbous, paired features inter− preted as digestive glands. The appendage design of I. acutangulus indicates that the animal was a swimmer and a visual predator living off−bottom. The general anatomy of Isoxys longissimus was similar to that of I. acutangulus although less information is available on the exact shape of its appendages and visual organs. -
The Cambrian Explosion: a Big Bang in the Evolution of Animals
The Cambrian Explosion A Big Bang in the Evolution of Animals Very suddenly, and at about the same horizon the world over, life showed up in the rocks with a bang. For most of Earth’s early history, there simply was no fossil record. Only recently have we come to discover otherwise: Life is virtually as old as the planet itself, and even the most ancient sedimentary rocks have yielded fossilized remains of primitive forms of life. NILES ELDREDGE, LIFE PULSE, EPISODES FROM THE STORY OF THE FOSSIL RECORD The Cambrian Explosion: A Big Bang in the Evolution of Animals Our home planet coalesced into a sphere about four-and-a-half-billion years ago, acquired water and carbon about four billion years ago, and less than a billion years later, according to microscopic fossils, organic cells began to show up in that inert matter. Single-celled life had begun. Single cells dominated life on the planet for billions of years before multicellular animals appeared. Fossils from 635,000 million years ago reveal fats that today are only produced by sponges. These biomarkers may be the earliest evidence of multi-cellular animals. Soon after we can see the shadowy impressions of more complex fans and jellies and things with no names that show that animal life was in an experimental phase (called the Ediacran period). Then suddenly, in the relatively short span of about twenty million years (given the usual pace of geologic time), life exploded in a radiation of abundance and diversity that contained the body plans of almost all the animals we know today. -
Fossils from South China Redefine the Ancestral Euarthropod Body Plan Cédric Aria1 , Fangchen Zhao1, Han Zeng1, Jin Guo2 and Maoyan Zhu1,3*
Aria et al. BMC Evolutionary Biology (2020) 20:4 https://doi.org/10.1186/s12862-019-1560-7 RESEARCH ARTICLE Open Access Fossils from South China redefine the ancestral euarthropod body plan Cédric Aria1 , Fangchen Zhao1, Han Zeng1, Jin Guo2 and Maoyan Zhu1,3* Abstract Background: Early Cambrian Lagerstätten from China have greatly enriched our perspective on the early evolution of animals, particularly arthropods. However, recent studies have shown that many of these early fossil arthropods were more derived than previously thought, casting uncertainty on the ancestral euarthropod body plan. In addition, evidence from fossilized neural tissues conflicts with external morphology, in particular regarding the homology of the frontalmost appendage. Results: Here we redescribe the multisegmented megacheirans Fortiforceps and Jianfengia and describe Sklerolibyon maomima gen. et sp. nov., which we place in Jianfengiidae, fam. nov. (in Megacheira, emended). We find that jianfengiids show high morphological diversity among megacheirans, both in trunk ornamentation and head anatomy, which encompasses from 2 to 4 post-frontal appendage pairs. These taxa are also characterized by elongate podomeres likely forming seven-segmented endopods, which were misinterpreted in their original descriptions. Plesiomorphic traits also clarify their connection with more ancestral taxa. The structure and position of the “great appendages” relative to likely sensory antero-medial protrusions, as well as the presence of optic peduncles and sclerites, point to an overall -
The Extent of the Sirius Passet Lagerstätte (Early Cambrian) of North Greenland
The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland JOHN S. PEEL & JON R. INESON Ancillary localities for the Sirius Passet biota (early Cambrian; Cambrian Series 2, Stage 3) are described from the im- mediate vicinity of the main locality on the southern side of Sirius Passet, north-western Peary Land, central North Greenland, where slope mudstones of the Transitional Buen Formation abut against the margin of the Portfjeld Forma- tion carbonate platform. Whilst this geological relationship may extend over more than 500 km east–west across North Greenland, known exposures of the sediments yielding the lagerstätte are restricted to a 1 km long window at the south-western end of Sirius Passet. • Keywords: Early Cambrian, Greenland, lagerstätte. PEEL, J.S. & INESON, J.R. The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland. Bulletin of Geosciences 86(3), 535–543 (4 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received March 24, 2011; accepted in revised form July 8, 2011; published online July 28, 2011; issued September 30, 2011. John S. Peel, Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE-75 236 Uppsala, Sweden; [email protected] • Jon R. Ineson, Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark; [email protected] Almost all of the fossils described from the early Cambrian The first fragmentary fossils from the Sirius Passet Sirius Passet Lagerstätte of northern Peary Land, North Lagerstätte (GGU collection 313035) were collected by Greenland, were collected from a single, west-facing talus A.K. -
29 | Vertebrates 791 29 | VERTEBRATES
Chapter 29 | Vertebrates 791 29 | VERTEBRATES Figure 29.1 Examples of critically endangered vertebrate species include (a) the Siberian tiger (Panthera tigris), (b) the mountain gorilla (Gorilla beringei), and (c) the Philippine eagle (Pithecophega jefferyi). (credit a: modification of work by Dave Pape; credit b: modification of work by Dave Proffer; credit c: modification of work by "cuatrok77"/Flickr) Chapter Outline 29.1: Chordates 29.2: Fishes 29.3: AmphiBians 29.4: Reptiles 29.5: Birds 29.6: Mammals 29.7: The Evolution of Primates Introduction Vertebrates are among the most recognizable organisms of the animal kingdom. More than 62,000 vertebrate species have been identified. The vertebrate species now living represent only a small portion of the vertebrates that have existed. The best-known extinct vertebrates are the dinosaurs, a unique group of reptiles, which reached sizes not seen before or after in terrestrial animals. They were the dominant terrestrial animals for 150 million years, until they died out in a mass extinction near the end of the Cretaceous period. Although it is not known with certainty what caused their extinction, a great deal is known about the anatomy of the dinosaurs, given the preservation of skeletal elements in the fossil record. Currently, a number of vertebrate species face extinction primarily due to habitat loss and pollution. According to the International Union for the Conservation of Nature, more than 6,000 vertebrate species are classified as threatened. Amphibians and mammals are the classes with the greatest percentage of threatened species, with 29 percent of all amphibians and 21 percent of all mammals classified as threatened. -
Can Molecular Clocks and the Fossil Record Be Reconciled?
Prospects & Overviews Review essays The origin of animals: Can molecular clocks and the fossil record be reconciled? John A. Cunningham1)2)Ã, Alexander G. Liu1)†, Stefan Bengtson2) and Philip C. J. Donoghue1) The evolutionary emergence of animals is one of the most Introduction significant episodes in the history of life, but its timing remains poorly constrained. Molecular clocks estimate that The apparent absence of a fossil record prior to the appearance of trilobites in the Cambrian famously troubled Darwin. He animals originated and began diversifying over 100 million wrote in On the origin of species that if his theory of evolution years before the first definitive metazoan fossil evidence in were true “it is indisputable that before the lowest [Cambrian] the Cambrian. However, closer inspection reveals that clock stratum was deposited ... the world swarmed with living estimates and the fossil record are less divergent than is creatures.” Furthermore, he could give “no satisfactory answer” often claimed. Modern clock analyses do not predict the as to why older fossiliferous deposits had not been found [1]. In the intervening century and a half, a record of Precambrian presence of the crown-representatives of most animal phyla fossils has been discovered extending back over three billion in the Neoproterozoic. Furthermore, despite challenges years (popularly summarized in [2]). Nevertheless, “Darwin’s provided by incomplete preservation, a paucity of phylo- dilemma” regarding the origin and early evolution of Metazoa genetically informative characters, and uncertain expecta- arguably persists, because incontrovertible fossil evidence for tions of the anatomy of early animals, a number of animals remains largely, or some might say completely, absent Neoproterozoic fossils can reasonably be interpreted as from Neoproterozoic rocks [3]. -
The Leanchoilia-Ottoia Fauna from the Middle Cambrian Burgess Shale of British Columbia
77 THE LEANCHOILIA-OTTOIA FAUNA FROM THE MIDDLE CAMBRIAN BURGESS SHALE OF BRITISH COLUMBIA. COLLINS, Desmond, Royal ontario Museum, 100 Queen's Park, Toronto, ontario M5S 2C6, CANADA The Leanchoilia-ottoia fauna from the Raymond quarry level of the Burgess Shale is different in both content and average size to the classic Marrel1a-Burgessia fauna excavated by Walcott from the Phyllopod bed just 20 m below. The animals most common in the fauna, Leanchoilia, Ottoia, Sidneyia and Vauxia, are typically 5 to 10 cm in length, whereas Phyllopod bed animals such as Marrella and Burgessia which make up half of this fauna are only 1 to 2 cm in length. This distinct difference also applies to the major predators, where large Anomalocaris and Hurdia dominate the Leanchoilia-ottoia fauna compared to the smaller Laggania in the Phyllopod bed fauna. Along with the different forms, there are elements common to both faunas, such as Choia, Helmetia, Olenoides, Ottoia, Sidneyia, Tuzoia, Vauxia and Waptia. New discoveries include a large jellyfish, a ctenophore, a "sea moth", a benthic sea-cucumber, Isoxys with eyes and appendages, tubular burrows containing commensal worms and the barnacle, Priscansermarinus, previously found in talus. The environment of burial of the two faunas also differs. Most of the Phyllopod bed animals occur within 3 to 6 cm thick bands, indicating transport from elsewhere. In contrast, many of the Leanchoilia-ottoia animals were buried in life position on the bedding planes, inclUding sessile forms such as the sponge, Chancelloria, rooted in the bedding surface and bent over in parallel.. -
Hallucigenia
www.palaeontologyonline.com |Page 1 Title: Fossil Focus - Hallucigenia and the evolution of animal body plans Author(s): Martin Smith *1 Volume: 7 Article: 5 Page(s): 1-9 Published Date: 01/05/2017 PermaLink: http://www.palaeontologyonline.com/articles/2017/fossil_focus_hallucigenia/ IMPORTANT Your use of the P alaeontology [online] ar chive ind icates y our accep tance of P alaeontology [online]'s T erms and Conditions of Use, a vailable a t http://www.palaeontologyonline.com/site-information/terms-and-conditions/. COPYRIGHT Palaeontology [online] (w ww.palaeontologyonline.com) publishes all w ork, unless other wise s tated, under the Creative Commons A ttribution 3.0 Unport ed (CC BY 3.0) license. This license le ts other s dis tribute, r emix, tw eak, and build upon the published w ork, e ven commercially, as long as the y cr edit P alaeontology[online] f or the original cr eation. This is the mo st accommodating of licenses of fered b y Cr eative Commons and is r ecommended f or ma ximum dissemina tion of published ma terial. Further de tails ar e a vailable a t h ttp://www.palaeontologyonline.com/site-information/copyright/. CITATION OF ARTICLE Please cit e the f ollowing published w ork as: Smith, Martin. 2017. F ossil F ocus - Hallucigenia and the e volution of animal body plans. P alaeontology Online, Volume 5, Article 5, 1-9. Published by: Palaeontology [online] www.palaeontologyonline.com |Page 2 Fossil Focus: Hallucigenia and the evolution of animal body plans by Martin Smith *1 Introduction: Five hundred and fifty million years ago, few (if any) organisms on Earth were much more complex than seaweed. -
Recent Advances and Unanswered Questions in Deep Molluscan Phylogenetics Author(S): Kevin M
Recent Advances and Unanswered Questions in Deep Molluscan Phylogenetics Author(s): Kevin M. Kocot Source: American Malacological Bulletin, 31(1):195-208. 2013. Published By: American Malacological Society DOI: http://dx.doi.org/10.4003/006.031.0112 URL: http://www.bioone.org/doi/full/10.4003/006.031.0112 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Amer. Malac. Bull. 31(1): 195–208 (2013) Recent advances and unanswered questions in deep molluscan phylogenetics* Kevin M. Kocot Auburn University, Department of Biological Sciences, 101 Rouse Life Sciences, Auburn University, Auburn, Alabama 36849, U.S.A. Correspondence, Kevin M. Kocot: [email protected] Abstract. Despite the diversity and importance of Mollusca, evolutionary relationships among the eight major lineages have been a longstanding unanswered question in Malacology. Early molecular studies of deep molluscan phylogeny, largely based on nuclear ribosomal gene data, as well as morphological cladistic analyses largely failed to provide robust hypotheses of relationships among major lineages.