Hallucigenia's Head and the Pharyngeal Armature Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supporting Information
Supporting Information Yang et al. 10.1073/pnas.1522434113 SI Text (2) three Character Coding. The dataset used for the phylogenetic analysis has (3) four been updated from that presented by Yang et al. (36), including the (4) six formulation of new neurological characters to resolve large-scale (5) seven relationships within Panarthropoda. The crown-group euarthropods (−) inapplicable: terminal claws (character 64) present. Limulus polyphemus (Chelicerata, Xiphosura) and Triops cancri- State 4 is introduced to reflect the presence of six toe-like formis (Mandibulata, Notostraca) were included as their neuro- claws in the heterotardigrade Batillipes pennaki (28). logical organization has been extensively studied (1–3, 37) and to Cardiovascular and neurological organization. appropriately polarize the characters in the analysis. Additional 81. Dorsal heart. extant taxa were included based on recent studies describing aspects of the brain and VNC organization; these include the eutardigrades (0) absent Macrobiotus cf harmsworthi and Hypsibius dujardini (16, 18), the (1) present heterotardigrades Echiniscus testudo, Actinarctus doryphorus,and Batillipes pennaki (28, 38), the peripatopsid Metaperipatus blainvillei, See character 86 in Yang et al. (36). and the peripatid Epiperipatus biolleyi (12, 13, 15). Fossil and extant 82. Dorsal condensed brain. taxa are scored according to a single model of head segmental (0) absent organization that is informed by developmental studies on extant (1) present Onychophora, Tardigrada, and Euarthropoda (36). Characters 1–80 largely follow those of Yang et al. (36); only See character 82 in Yang et al. (36). those with minor modifications are outlined here. Characters 83. Number of neuromeres integrated into the dorsal condensed brain. -
The Cambrian Explosion: a Big Bang in the Evolution of Animals
The Cambrian Explosion A Big Bang in the Evolution of Animals Very suddenly, and at about the same horizon the world over, life showed up in the rocks with a bang. For most of Earth’s early history, there simply was no fossil record. Only recently have we come to discover otherwise: Life is virtually as old as the planet itself, and even the most ancient sedimentary rocks have yielded fossilized remains of primitive forms of life. NILES ELDREDGE, LIFE PULSE, EPISODES FROM THE STORY OF THE FOSSIL RECORD The Cambrian Explosion: A Big Bang in the Evolution of Animals Our home planet coalesced into a sphere about four-and-a-half-billion years ago, acquired water and carbon about four billion years ago, and less than a billion years later, according to microscopic fossils, organic cells began to show up in that inert matter. Single-celled life had begun. Single cells dominated life on the planet for billions of years before multicellular animals appeared. Fossils from 635,000 million years ago reveal fats that today are only produced by sponges. These biomarkers may be the earliest evidence of multi-cellular animals. Soon after we can see the shadowy impressions of more complex fans and jellies and things with no names that show that animal life was in an experimental phase (called the Ediacran period). Then suddenly, in the relatively short span of about twenty million years (given the usual pace of geologic time), life exploded in a radiation of abundance and diversity that contained the body plans of almost all the animals we know today. -
The Palaeoscolecida and the Evolution of the Ecdysozoa Andrey Yu
The Palaeoscolecida and the evolution of the Ecdysozoa Andrey Yu. Zhuravlev1, José Antonio Gámez Vintaned2 and Eladio Liñán1 1Área y Museo de Paleontología, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, C/ Pedro Cerbuna, 12, E-50009 Zaragoza, Spain 2Área de Paleontología, Departamento de Geologica, Facultad de Ciencias Biológicas, Univeristat de València, C/ Doctor Moliner, 50, E-46100 Burjassot, Spain Email: [email protected] AbstrAct rÉsUMÉ Palaeoscolecidans are a key group for understanding the ear- Les Paléoscolécides sont un groupe clé pour la compréhen- ly evolution of the Ecdysozoa. The Palaeoscolecida possess sion des débuts de l’évolution des Ecdysozoa. Les Pal- a terminal mouth and an anus, an invertible proboscis with aeoscolecida possèdent une bouche terminale et un anus, pointed scalids, a thick integument of diverse plates, sensory un proboscis inversible aux scalides pointues, un tégument papillae and caudal hooks. These are features that draw a épais de plaques diverses, des papilles sensorielles et des secret out of these worms, indicating palaeoscolecidan af- crochets caudaux. Ceux-ci sont des traits qui tirent un secret finities with the phylum Cephalorhyncha, which embraces de ces vers, ce qui indique des affinités paléoscolecides avec priapulids, kinorhynchs, loriciferans and nematomorphs. At le phylum des Cephalorhyncha qui inclut les priapulides, les the same time, the Palaeoscolecida share a number of char- kinorhynches, les loricifères et les nématomorphes. Cepen- acters with the lobopod-bearing Cambrian ecdysozoans, the dant, les Palaeoscolecida ont aussi quelques-uns des mêmes Xenusia. Xenusians commonly possess a terminal mouth, caractères que les Xenusia, ces écdysozaires cambriens qui a proboscis (although not retractable), and a thick integu- portaient des lobopodes. -
J32 the Importance of the Burgess Shale < Soft Bodied Fauna >
580 Chapter j PALEOCONTINENTS The Present is the Key to the Past: HUGH RANCE j32 The importance of the Burgess shale < soft bodied fauna > Only about 33 animal body plans are presently [sic] being used on this planet (Margulis and Schwartz, 1988). —Scott F. Gilbert, Developmental Biology, 1991.1 Almost all animal phyla known today were already present by 505 million years ago— the age of the Burgess shale, Middle Cambrian marine sediments, discovered at the Kicking Horse rim, British Columbia, in 1909 by Charles Doolittle Walcott, that provide a unique window on life without hard parts that had continued to exist shortly after the time of the Cambrian explosion (see Topic j34).2 Legend has it that Walcott, then secretary of the Smithsonian Institution, vacationing near Field, British Columbia, was thrown from a horse carrying him, when it tripped on, and split open a stray fallen slab of shale. Walcott, with his face literally rubbed in it, saw strange, but not hallucinational, forms crisply etched in black against the blue-black bedding surface of the shale: a bonanza of fossils of sea creatures without mineralized shells or backbones. Many are preserved whole; including those with articulated organic (biodegradable) exoskeletons. Details of even their soft body parts can be seen (best using PTM)3 as silvery films (formed of phyllosilicates on a coating of kerogenized carbon) that commonly outline even the most delicate structures on the fossilized animal.4 The Burgess shale is part of the Stephen Formation of greenish shales and thin-bedded limestones, which is a marine-offlap deposit between the thick, massive, carbonates of the overlying Eldon formation, and the underlying Cathedral formation.6 As referenced in the Geological Atlas of the Western Canada Sedimentary Basin - Chapter 8, the Stephen Formation has been “informally divided into a normal, ‘thin Stephen’ on the platform areas and a ‘thick Stephen’ west of the Cathedral Escarpment. -
Hallucigenia
www.palaeontologyonline.com |Page 1 Title: Fossil Focus - Hallucigenia and the evolution of animal body plans Author(s): Martin Smith *1 Volume: 7 Article: 5 Page(s): 1-9 Published Date: 01/05/2017 PermaLink: http://www.palaeontologyonline.com/articles/2017/fossil_focus_hallucigenia/ IMPORTANT Your use of the P alaeontology [online] ar chive ind icates y our accep tance of P alaeontology [online]'s T erms and Conditions of Use, a vailable a t http://www.palaeontologyonline.com/site-information/terms-and-conditions/. COPYRIGHT Palaeontology [online] (w ww.palaeontologyonline.com) publishes all w ork, unless other wise s tated, under the Creative Commons A ttribution 3.0 Unport ed (CC BY 3.0) license. This license le ts other s dis tribute, r emix, tw eak, and build upon the published w ork, e ven commercially, as long as the y cr edit P alaeontology[online] f or the original cr eation. This is the mo st accommodating of licenses of fered b y Cr eative Commons and is r ecommended f or ma ximum dissemina tion of published ma terial. Further de tails ar e a vailable a t h ttp://www.palaeontologyonline.com/site-information/copyright/. CITATION OF ARTICLE Please cit e the f ollowing published w ork as: Smith, Martin. 2017. F ossil F ocus - Hallucigenia and the e volution of animal body plans. P alaeontology Online, Volume 5, Article 5, 1-9. Published by: Palaeontology [online] www.palaeontologyonline.com |Page 2 Fossil Focus: Hallucigenia and the evolution of animal body plans by Martin Smith *1 Introduction: Five hundred and fifty million years ago, few (if any) organisms on Earth were much more complex than seaweed. -
An Ordovician Lobopodian from the Soom Shale Lagerstätte, South Africa
[Palaeontology, Vol. 52, Part 3, 2009, pp. 561–567] AN ORDOVICIAN LOBOPODIAN FROM THE SOOM SHALE LAGERSTA¨ TTE, SOUTH AFRICA by ROWAN J. WHITTLE*,à, SARAH E. GABBOTT*, RICHARD J. ALDRIDGE* and JOHANNES THERON *Department of Geology, University of Leicester, Leicester LE1 7RH, UK; e-mails: [email protected]; [email protected] Department of Geology, University of Stellenbosch, Private Bag XI, Stellenbosch 7602, South Africa; e-mail: [email protected] àPresent address: British Antarctic Survey, Madingley Road, Cambridge, CB3 0ET, UK; e-mail: [email protected] Typescript received 18 July 2008; accepted in revised form 27 January 2009 Abstract: The first lobopodian known from the Ordovician and Carboniferous. The new fossil preserves an annulated is described from the Soom Shale Lagersta¨tte, South Africa. trunk, lobopods with clear annulations, and curved claws. It The organism shows features homologous to Palaeozoic mar- represents a rare record of a benthic organism from the ine lobopodians described from the Middle Cambrian Bur- Soom Shale, and demonstrates intermittent water oxygena- gess Shale, the Lower Cambrian Chengjiang biota, the Lower tion during the deposition of the unit. Cambrian Sirius Passet Lagersta¨tte and the Lower Cambrian of the Baltic. The discovery provides a link between marine Key words: Lagersta¨tte, lobopodian, Ordovician, Soom Cambrian lobopodians and younger forms from the Silurian Shale. Cambrian lobopodians are a diverse group showing a in an intracratonic basin with water depths of approxi- great variety of body shape, size and ornamentation. mately 100 m (Gabbott 1999). Dominantly quiet water However, they share a segmented onychophoran-like conditions are indicated by a lack of flow-induced sedi- body, paired soft-skinned annulated lobopods, and in mentary structures and the taphonomy of the fossils. -
Lobopodian Phylogeny Reanalysed
BRIEF COMMUNICATIONS ARISING Phylogenetic position of Diania challenged ARISING FROM J. Liu et al. Nature 470, 526–530 (2011) Liu et al.1 describe a new and remarkable fossil, Diania cactiformis. absent. For example, character 6 (position of frontal appendage) can This animal apparently combined the soft trunk of lobopodians (a only be coded in taxa that possess a frontal appendage (character 5) in group including the extant velvet worms in addition to many the first instance (such that a ‘‘0’’ for character 5 necessitates a ‘‘-’’ for Palaeozoic genera) with the jointed limbs that typify arthropods. character 6). In morphological analyses such as this, inapplicable They go on to promote Diania as the immediate sister group to the states are usually assumed to have no bearing on the analysis, being arthropods, and conjecture that sclerotized and jointed limbs may reconstructed passively in the light of known states. In analyses of therefore have evolved before articulated trunk tergites in the imme- nucleotide data, by contrast, gaps may alternatively be construed as a diate arthropod stem. The data published by Liu et al.1 do not un- fifth and novel state, because shared deletions from some ancestral ambiguously support these conclusions; rather, we believe that Diania sequence may actually be informative. If this assumption is made with probably belongs within an unresolved clade or paraphyletic grade of morphological data, however, all the logically uncodable states in a lobopodians. character are initially assumed to be homologous, and a legitimate Without taking issue with the interpretation of Diania offered by basis for recognizing clades. -
Hallucigenia's Onychophoran-Like Claws
LETTER doi:10.1038/nature13576 Hallucigenia’s onychophoran-like claws and the case for Tactopoda Martin R. Smith1 & Javier Ortega-Herna´ndez1 The Palaeozoic form-taxon Lobopodia encompasses a diverse range of Onychophorans lack armature sclerites, but possess two types of ap- soft-bodied‘leggedworms’ known from exceptionalfossil deposits1–9. pendicular sclerite: paired terminal claws in the walking legs, and den- Although lobopodians occupy a deep phylogenetic position within ticulate jaws within the mouth cavity9,23.AsinH. sparsa, claws in E. Panarthropoda, a shortage of derived characters obscures their evo- kanangrensis exhibit a broad base that narrows to a smooth conical point lutionary relationships with extant phyla (Onychophora, Tardigrada (Fig. 1e–h). Each terminal clawsubtends anangle of130u and comprises and Euarthropoda)2,3,5,10–15. Here we describe a complex feature in two to three constituent elements (Fig. 1e–h). Each smaller element pre- the terminal claws of the mid-Cambrian lobopodian Hallucigenia cisely fills the basal fossa of its container, from which it can be extracted sparsa—their construction from a stack of constituent elements— with careful manipulation (Fig. 1e, g, h and Extended Data Fig. 3a–g). and demonstrate that equivalent elements make up the jaws and claws Each constituent element has a similar morphology and surface orna- of extant Onychophora. A cladistic analysis, informed by develop- ment (Extended Data Fig. 3a–d), even in an abnormal claw where mental data on panarthropod head segmentation, indicates that the element tips are flat instead of pointed (Extended Data Fig. 3h). The stacked sclerite components in these two taxa are homologous— proximal bases of the innermost constituent elements are associated with resolving hallucigeniid lobopodians as stem-group onychophorans. -
The Early History of the Metazoa—A Paleontologist's Viewpoint
ISSN 20790864, Biology Bulletin Reviews, 2015, Vol. 5, No. 5, pp. 415–461. © Pleiades Publishing, Ltd., 2015. Original Russian Text © A.Yu. Zhuravlev, 2014, published in Zhurnal Obshchei Biologii, 2014, Vol. 75, No. 6, pp. 411–465. The Early History of the Metazoa—a Paleontologist’s Viewpoint A. Yu. Zhuravlev Geological Institute, Russian Academy of Sciences, per. Pyzhevsky 7, Moscow, 7119017 Russia email: [email protected] Received January 21, 2014 Abstract—Successful molecular biology, which led to the revision of fundamental views on the relationships and evolutionary pathways of major groups (“phyla”) of multicellular animals, has been much more appre ciated by paleontologists than by zoologists. This is not surprising, because it is the fossil record that provides evidence for the hypotheses of molecular biology. The fossil record suggests that the different “phyla” now united in the Ecdysozoa, which comprises arthropods, onychophorans, tardigrades, priapulids, and nemato morphs, include a number of transitional forms that became extinct in the early Palaeozoic. The morphology of these organisms agrees entirely with that of the hypothetical ancestral forms reconstructed based on onto genetic studies. No intermediates, even tentative ones, between arthropods and annelids are found in the fos sil record. The study of the earliest Deuterostomia, the only branch of the Bilateria agreed on by all biological disciplines, gives insight into their early evolutionary history, suggesting the existence of motile bilaterally symmetrical forms at the dawn of chordates, hemichordates, and echinoderms. Interpretation of the early history of the Lophotrochozoa is even more difficult because, in contrast to other bilaterians, their oldest fos sils are preserved only as mineralized skeletons. -
Phylogeny of Hallucigenia
Phylogeny of Hallucigenia By Annette Hilton December 4th, 2014 Invertebrate Paleontology Cover artwork from: http://people.ds.cam.ac.uk/ms609/ 2 Abstract Hallucigenia is an extinct genus from the lower-middle Cambrian. A small worm-like organism with dorsal spines, Hallucigenia is rare in fossil history, and its identity and morphology have often been confounded. Since its original discovery in the Burgess Shale by Walcott, Hallucigenia has since become an iconic fossil. Its greater systematics and place in the phylogenetic tree is controversial and not completely understood. New evidence and the discovery of additional species of Hallucigenia have contributed much to the understanding of this genus and its broader relations in classification and evolutionary history. Introduction Hallucigenia is a genus that encompasses three known species that lived during the Cambrian period—Hallucigenia sparsa, Hallucigenia fortis, and Hallucigenia hongmeia (Ma et al., 2012). Hallucigenia’s taxonomy in figure 1. Kingdom Animalia Phylum Onychophora (Lobopodia) Class Xenusia Order Scleronychophora Genus Hallucigenia Figure 1. Taxonomy of Hallucigenia species. Collectively, all Hallucigenia specimens are rare, with a portion of specimens incomplete. The understanding of Hallucigenia and its life mode has been confounded since the 3 original discovery of H. sparsa, but subsequent species discoveries has shed light on some of its mysteries (Conway Morris, 1998). Even more information concerning Hallucigenia is currently being unearthed—its classification into the phylum Onychophora and wider relations to other invertebrate groups like Arthropoda and the poorly understood Lobopodian group (Campbell et al., 2011). Hallucigenia, an iconic fossil of the Burgess Shale, demonstrates the well-known diversity of the Cambrian period, its morphology providing increasing numbers of clues to its connection into the greater systematic system. -
The Xenusian-To-Anomalocaridid Transition Within the Lobopodians
Bollettino della Società Paleontologica Italiana, 50 (1), 2011, 65-74. Modena, 1 luglio 201165 The xenusian-to-anomalocaridid transition within the lobopodians Jerzy DZIK J. Dzik, Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warszawa, and Instytut Zoologii Uniwersytetu Warszawskiego, Banacha 2, 02-079 Warszawa, Poland; [email protected] KEY WORDS - Lobopods, Arthropods, Origin, Evolution, Cambrian. ABSTRACT - The morphological series composed of large xenusiids of the Chengjiang fauna of China and the basal anomalocaridids Pambdelurion and Kerygmachela from the Sirius Passet fauna of Greenland is supplemented with another xenusiid lobopodian, Siberion lenaicus gen. et sp. nov., from the Early Cambrian Sinsk Formation of central Siberia. Reduction and ventral bending of the proboscis in Siberion and the Chengjiang Megadictyon and Jianshanopodia may be a synapomorphy uniting these representatives with the anomalocaridids. Throughout the series, the raptorial appendages became larger and more sclerotised, while the gill-like structures on the trunk appendages were transformed from their originally tubular shape into a pinnate form and may eventually have given rise to the wide anomalocaridid flaps. Such a tendency can be rooted in the Aysheaia-like xenusians, that have raptorial appendages associated with a prominent proboscis. This results in a scenario of almost complete transition from early lobopodians to ancestral arthropods within the xenusian-anomalocaridid segment of the phylogenetic tree. RIASSUNTO - [Il passaggio evolutivo da xenusiidi ad anomalocarididi all’interno dei lobopodi] - La sequenza morfologica costituita dai grandi xenusiidi presenti nella fauna cinese di Chengjiang e dai primi anomalocarididi appartenenti ai generi Pambdelurion e Kerygmachela presenti nella fauna del Sirius Passet della Groenlandia viene integrata da un altro lobopode xenusiide, Siberion lenaicus gen. -
Phylogenetic Position of Diania Challenged
Mounce, R. C. P. and Wills, M. A. (2011) Phylogenetic position of Diania challenged. Nature, 476 (7359). E1-E4. ISSN 0028-0836 Link to official URL (if available): http://dx.doi.org/10.1038/nature10266 Opus: University of Bath Online Publication Store http://opus.bath.ac.uk/ This version is made available in accordance with publisher policies. Please cite only the published version using the reference above. See http://opus.bath.ac.uk/ for usage policies. Please scroll down to view the document. BRIEF COMMUNICATIONS ARISING ; Phylogenetic position of Diania challenged ARISING FROM J. Liu et al. Nature 470, 526–530 (2011) Liu et al.1 describe a new and remarkable fossil, Diania cactiformis. absent. For example, character 6 (position of frontal appendage) can This animal apparently combined the soft trunk of lobopodians (a only be coded in taxa that possess a frontal appendage (character 5) in group including the extant velvet worms in addition to many the first instance (such that a ‘‘0’’ for character 5 necessitates a ‘‘-’’ for Palaeozoic genera) with the jointed limbs that typify arthropods. character 6). In morphological analyses such as this, inapplicable They go on to promote Diania as the immediate sister group to the states are usually assumed to have no bearing on the analysis, being arthropods, and conjecture that sclerotized and jointed limbs may reconstructed passively in the light of known states. In analyses of therefore have evolved before articulated trunk tergites in the imme- nucleotide data, by contrast, gaps may alternatively be construed as a diate arthropod stem. The data published by Liu et al.1 do not un- fifth and novel state, because shared deletions from some ancestral ambiguously support these conclusions; rather, we believe that Diania sequence may actually be informative.