Transformation of Axes
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Analysis of a Hyperbolic Paraboloid Surface with Curved Edges
ANALYSIS,, OF A HYPERBOLIC PARABOLOID by Carlos Alberto Asturias Theai1 submitted to the Graduate Faculty of the Virginia Polytechnic Institute in candidacy for the degree of MASTER OF SCIENCE in Structural Engineering December 17, 1965 Blacksburg, Virginia · -2- TABLE OF CONTENTS Page I. INTRODUCTION ••••••••••••••••••••••••••••••••••• 5 11. OBJECTIVE •••••••••••••••••••••••••••••••••••••• 8 Ill. HISTORICAL BACKGROUND • ••••••••••••••••••••••••• 9 IV. NOTATION ••••••••••••••••••••••••••••••••••••••• 10 v. METHOD OF ANALYSIS • •••••••••••••••••••••••••••• 12 VI. FORMULATION OF THE METHOD • ••••••••••••••••••••• 15 VII. THEORETICAL INVESTIGATION • ••••••••••••••••••••• 24 A. DEVELOPMENT OF EQUATIONS • •••••••••••••• 24 B. ILLUSTRATIVE EXAMPLE • •••••••••••••••••• 37 VIII. EXPERIMENTAL WORK • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 50 A. DESCRIPTION OF THE MODEL ••••••••••••••• 50 B. TEST SET UP •••••••••••••••••••••••••••• 53 IX. TEST RESULTS AND CONCLUSIONS • •••••••••••••••••• 61 X. BIBLIOGRAPHY ••••••••••••••••••••••••••••••••••• 65 XI. ACKNOWLEDGMENT • •••••••••••••••••••••••••••••••• 67 XII. VITA • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 68 -3- LIST OF FIGURES Page FIGURE I. HYPERBOLIC PARABOLOID TYPES ••••••••••••• 7 FIGURE II. DIFFERENTIAL ELEMENT .................... 13 FIGURE III. AXES .................................... 36 FIGURE IV. DIMENSIONS •••••••••••••••••••••••••••••• 36 FIGURE v. STRESSES ., • 0 ••••••••••••••••••••••••••••• 44 FIGURE VI. STRESSES ••••••••••••••••••••••••••• -
General Theory of Conicoids 1
GENERAL THEORY OF CONICOIDS Structure 1.1 Introduction Objectives 1.2 What is a Conicoid? 1.3 Change of Axes 1.3.1 Translat~on of Axes 1.3.2 Projection L 1.3.3 Rotation of Axes 1.4 Reduction to Standard Form 1.5 Summary 1.6 Solutions and Answers I 1.1 INTRODUCTION You have seen in Block 7 that the general equation of second degree in two variables x and y represents a conic. In analogy with this we can ask: what will a general second degree equation in three variables represent? In Block 8 you have studied some particular forms of second degree equations in three variables, namely, those representing spheres, cones and cylinders. In this unit we study the most general form of a second degree equation in three variables. The surface generated by these equations are called quadrics or conicoids. This name is apt because, as you will see in Unit 8, they can be formed by revolving a conic about a line called an axis. Alexis Clairaut (17 13- 1765), a French mathematician, was one of the pioneers to study quadric surfaces. He specified that a surface, in .general, can be represented by an equation in three variables. He presented his ideas in his book 'Recherche Sur Les Courbes a Double Courbure' in which he gave the equations of several conicoids like the sphere, cylinder, hyperboloid and ellipsoid. We start this unit with a small section in which we define a conicoid: In the next section we discuss rigid body motions in a three-dimensional system. -
Vector Analysis: MS4613
Vector Analysis: MS4613 Prof. S.B.G. O’Brien Main Building, B3041. References Advanced engineering mathematics, Kreyszig. Mathematics applied to continuum mechanics, Segel. Mathematical methods for physicists, Arfken. Mathematics applied to the deterministic sciences, Lin and Segel. Vectors and cartesian tensors, Bourne and Kendall. Vector Analysis (Schaum series), Murray and Spiegel. GREEK ALPHABET For each Greek letter, we illustrate the form of the capital letter and the form of the lower case letter. In some cases, there is a popular variation of the lower case letter. Greek Greek English Greek Greek English letter name equivalent letter name equivalent A α Alpha a N ν Nu n B β Beta b Ξ ξ Xi x Γ γ Gamma g O o Omicron o ∆ δ Delta d Π π ̟ Pi p E ǫ ε Epsilon e P ρ ̺ Rho r Z ζ Zeta z Σ σ ς Sigma s H η Eta e T τ Tau t Θ θ ϑ Theta th Υ υ Upsilon u I ι Iota i Φ φ ϕ Phi ph K κ Kappa k X χ Chi ch Λ λ Lambda l Ψ φ Psi ps M µ Mu m Ω ω Omega o Exam Papers: http://www.ul.ie/portal/students Some papers are also available at: http://www.staff.ul.ie/obriens/index.html 1 1 Rectangular cartesian coordinates and rotation of axes 1.1 Rectangular cartesian coordinates We wish to be able to describe locations and directions in space. From a fixed point O, called the origin (of coordinates), draw three fixed lines Ox,Oy,Oz at right angles to each other as in fig.1.1 and forming a right handed system (rectangular cartesian axes) (use RH screw rule as in fig.1.2). -
APPENDIX E Rotation and the General Second-Degree Equation
APPENDIX E Rotation and the General Second-Degree Equation Rotation of Axes • Invariants Under Rotation y y′ Rotation of Axes In Section 9.1, you learned that equations of conics with axes parallel to one of the coordinate axes can be written in the general form 2 1 2 1 1 1 5 x′ Ax Cy Dx Ey F 0. Horizontal or vertical axes θ Here you will study the equations of conics whose axes are rotated so that they are not x parallel to the x-axis or the y-axis. The general equation for such conics contains an xy-term. Ax2 1 Bxy 1 Cy2 1 Dx 1 Ey 1 F 5 0 Equation in xy-plane To eliminate this xy-term, you can use a procedure called rotation of axes. You want to rotate the x- and y-axes until they are parallel to the axes of the conic. (The rotated axes are denoted as the x9-axis and the y9-axis, as shown in Figure E.1.) After the After rotation of the x- and y-axes counter- rotation has been accomplished, the equation of the conic in the new x9y9-plane will clockwise through an angle u, the rotated have the form axes are denoted as the x9-axis and y9-axis. A9sx9d2 1 C9sy9d2 1 D9x9 1 E9y9 1 F9 5 0. Equation in x9y9-plane Figure E.1 Because this equation has no x9y9-term, you can obtain a standard form by complet- ing the square. The following theorem identifies how much to rotate the axes to eliminate an xy-term and also the equations for determining the new coefficients A9, C9, D9, E9, and F9. -
C:\Book\Booktex\C1s3.DVI
65 §1.3 SPECIAL TENSORS Knowing how tensors are defined and recognizing a tensor when it pops up in front of you are two different things. Some quantities, which are tensors, frequently arise in applied problems and you should learn to recognize these special tensors when they occur. In this section some important tensor quantities are defined. We also consider how these special tensors can in turn be used to define other tensors. Metric Tensor Define yi,i=1,...,N as independent coordinates in an N dimensional orthogonal Cartesian coordinate system. The distance squared between two points yi and yi + dyi,i=1,...,N is defined by the expression ds2 = dymdym =(dy1)2 +(dy2)2 + ···+(dyN )2. (1.3.1) Assume that the coordinates yi are related to a set of independent generalized coordinates xi,i=1,...,N by a set of transformation equations yi = yi(x1,x2,...,xN ),i=1,...,N. (1.3.2) To emphasize that each yi depends upon the x coordinates we sometimes use the notation yi = yi(x), for i =1,...,N. The differential of each coordinate can be written as ∂ym dym = dxj ,m=1,...,N, (1.3.3) ∂xj and consequently in the x-generalized coordinates the distance squared, found from the equation (1.3.1), becomes a quadratic form. Substituting equation (1.3.3) into equation (1.3.1) we find ∂ym ∂ym ds2 = dxidxj = g dxidxj (1.3.4) ∂xi ∂xj ij where ∂ym ∂ym g = ,i,j=1,...,N (1.3.5) ij ∂xi ∂xj i are called the metrices of the space defined by the coordinates x ,i=1,...,N. -
Rotation of Axes
ROTATION OF AXES ■■ For a discussion of conic sections, see In precalculus or calculus you may have studied conic sections with equations of the form Calculus, Early Transcendentals, Sixth Edition, Section 10.5. Ax2 ϩ Cy2 ϩ Dx ϩ Ey ϩ F 0 Here we show that the general second-degree equation 1 Ax2 ϩ Bxy ϩ Cy2 ϩ Dx ϩ Ey ϩ F 0 can be analyzed by rotating the axes so as to eliminate the term Bxy. In Figure 1 the x and y axes have been rotated about the origin through an acute angle to produce the X and Y axes. Thus, a given point P has coordinates ͑x, y͒ in the first coor- dinate system and ͑X, Y͒ in the new coordinate system. To see how X and Y are related to x and y we observe from Figure 2 that X r cos Y r sin x r cos͑ ϩ ͒ y r sin͑ ϩ ͒ y y Y P(x, y) Y P(X, Y) P X Y X r y ˙ ¨ ¨ 0 x 0 x X x FIGURE 1 FIGURE 2 The addition formula for the cosine function then gives x r cos͑ ϩ ͒ r͑cos cos Ϫ sin sin ͒ ͑r cos ͒ cos Ϫ ͑r sin ͒ sin ⌾ cos Ϫ Y sin A similar computation gives y in terms of X and Y and so we have the following formulas: 2 x X cos Ϫ Y sin y X sin ϩ Y cos By solving Equations 2 for X and Y we obtain 3 X x cos ϩ y sin Y Ϫx sin ϩ y cos EXAMPLE 1 If the axes are rotated through 60Њ, find the XY-coordinates of the point whose xy-coordinates are ͑2, 6͒. -
Kaifangfa and Translation of Coordinate Axes 開方法과 座標軸의 平行移動
Journal for History of Mathematics http://dx.doi.org/10.14477/jhm.2014.27.6.387 Vol. 27 No. 6 (Dec. 2014), 387–394 Kaifangfa and Translation of Coordinate Axes 開方法과 座標軸의 平行移動 Hong Sung Sa 홍성사 Hong Young Hee 홍영희 Chang Hyewon* 장혜원 Since ancient civilization, solving equations has become one of the most impor- tant subjects in mathematics and mathematics education. The extractions of square roots and cube roots were first dealt in Jiuzhang Suanshu in the setting ofsub- divisions. Extending these, Shisuo Kaifangfa and Zengcheng Kaifangfa were in- troduced in the 11th century and the subsequent development became one of the most important contributions to mathematics in the East Asian mathematics. The translation of coordinate axes plays an important role in school mathematics. Con- necting the translation and Kaifangfa, we find strong didactical implications for improving students’ understanding the history of Kaifangfa together with the trans- lation itself although the latter is irrelevant to the former’s historical development. Keywords: Shisuo Kaifangfa, Zengcheng Kaifangfa, Translation of coordinate axes, Fanji, Yiji; 釋鎖開方法, 增乘開方法, 座標軸의 平行移動, 飜積, 益積. MSC: 01A25, 12-03, 12E12, 97A30, 97G70, 97H30, 97N50 1 Introduction It is well known that the theory of equations is one of the most important subjects in the history of mathematics. It divides into two parts, namely, constructing equa- tions and solving them [3]. In this paper, our main concern is how to solve poly- nomial equations so that we will not discuss the former part. As also well known, the first attempt to solve equations was how to extract square roots and cube roots. -
Rotation of Axes 1 Rotation of Axes
Rotation of Axes 1 Rotation of Axes At the beginning of Chapter 5 we stated that all equations of the form Ax2 + Bxy + Cy2 + Dx + Ey + F =0 represented a conic section, which might possibly be degenerate. We saw in Section 5.2 that the graph of the quadratic equation Ax2 + Cy2 + Dx + Ey + F =0 is a parabola when A =0orC = 0, that is, when AC = 0. In Section 5.3 we found that the graph is an ellipse if AC > 0, and in Section 5.4 we saw that the graph is a hyperbola when AC < 0. So we have classified the situation when B = 0. Degenerate situations can occur; for example, the quadratic equation x2 + y2 + 1 = 0 has no solutions, and the graph of x2 − y2 = 0 is not a hyperbola, but the pair of lines with equations y = x. But excepting this type of situation, we have categorized the graphs of all the quadratic equations with B =0. When B =6 0, a rotation can be performed to bring the conic into a form that will allow us to compare it with one that is in standard position. To set up the discussion, letusfirstsupposethatasetofxy-coordinate axes has been rotated about the origin by an angle θ, where 0 <θ<π=2, to form a new set ofx ^y^-axes, as shown in Figure 1(a). We would like to determine the coordinates for a point P in the plane relative to the two coordinate systems. y y yˆ yˆ P(x, y) P(xˆˆ, y) P(x, y) P(xˆˆ, y) r xˆ r xˆ B f B u u A x A x (a) (b) Figure 1 2 CHAPTER 5 Conic Sections, Polar Coordinates, and Parametric Equations First introduce a new pair of variables r and φ to represent, respectively, the distance from P to the origin and the angle formed by thex ^-axis and the line connecting the origin to P , as shown in Figure 1(b). -
Rotation of Axes
ROTATION OF AXES ■■ For a discussion of conic sections, see In precalculus or calculus you may have studied conic sections with equations of the form Review of Conic Sections. Ax2 ϩ Cy2 ϩ Dx ϩ Ey ϩ F 0 Here we show that the general second-degree equation 1 Ax2 ϩ Bxy ϩ Cy2 ϩ Dx ϩ Ey ϩ F 0 can be analyzed by rotating the axes so as to eliminate the term Bxy. In Figure 1 the x and y axes have been rotated about the origin through an acute angle to produce the X and Y axes. Thus, a given point P has coordinates ͑x, y͒ in the first coor- dinate system and ͑X, Y͒ in the new coordinate system. To see how X and Y are related to x and y we observe from Figure 2 that X r cos Y r sin x r cos͑ ϩ ͒ y r sin͑ ϩ ͒ y y Y P(x, y) Y P(X, Y) P X Y X r y ˙ ¨ ¨ 0 x 0 x X x FIGURE 1 FIGURE 2 The addition formula for the cosine function then gives x r cos͑ ϩ ͒ r͑cos cos Ϫ sin sin ͒ ͑r cos ͒ cos Ϫ ͑r sin ͒ sin ⌾ cos Ϫ Y sin A similar computation gives y in terms of X and Y and so we have the following formulas: 2 x X cos Ϫ Y sin y X sin ϩ Y cos By solving Equations 2 for X and Y we obtain 3 X x cos ϩ y sin Y Ϫx sin ϩ y cos EXAMPLE 1 If the axes are rotated through 60Њ, find the XY-coordinates of the point whose xy-coordinates are ͑2, 6͒. -