<<

of Axes

The point P is the same in both the xy and xy coordinate systems.

The point can be represented in the xy plane as xr cos   and yrsin   The point can be represented in the xy plane as xr  cos and yr  sin

Using the sum of angles identities from trigonometry gives us ... xrcos yrsin rrcos cos sin sin rrcos sin sin cos xycos sin xysin cos

Substituting x and y into the general form Ax22 Bxy Cy Dx Ey F 0 gives: Axcos y sin2 Bx  cos   y sin x sin  y cos  Cxsin y cos2 Dx  cos   y sin Ex  sin  y cos F 0

Expanding the factors gives: Ax 22cos 2 xy cos sin y 22 sin  B x2222cos sin xy cos xy sin y cos sin  Cx22sin 2 xy cos sin y 2 cos 2 Dxcos y sin Ex  sin   y cos   F 0

Collecting the terms yields: xA22 cos B cos sin C sin 2 xy Bcos22 sin 2 A C cos  sin  yA22sin B cos sin C cos 2 xDcos E sin y D sin  E cos  F 0 The double angle identities cos 2  cos22 sin and sin 2  2cos sin allow us to rewrite the xy term. xA22 cos B cos sin C sin 2 xy Bcos2 A C sin 2  yA22sin B cos sin C cos 2 xDcos E sin y D sin  E cos  F 0

The general form can be written as Ax 22 Bxy  Cy  Dx  Ey  F  0 where AA cos22 B cos sin  C sin  BB cos 2 AC sin 2 CA sin22 B cos sin  C cos  DD cos E sin ED sin  E cos FF 

The goal is to find the angle of rotation Some people will find it easier to use  such that B  0 . 1 1 B BACcos2  sin 2  0   tan  BACcos2 sin 2 2 A  C cos 2 AC We don't because it is possible that A  C  and you might get division by zero. sin 2 B A  C cot 2  We can avoid this by using the inverse B cotangent function. We know that B will 1 AC 2cot   never be zero since the whole point is to B eliminate the xy term. 1 1 A  C Also, the range of the inverse cotangent is   cot   2  B  between 0E and 180E, so 02180   , which means that 090   .

While it is possible to get an angle using this formula, it is usually easier to draw a triangle with 2θ as the angle and use the half-angle identities to find the values for sin θ and cos θ. 1cos2  1cos2  cos2   and sin2   2 2 The discriminant, BAC2  4 , can be used to determine the type of . The discriminant is not affected by the rotation, so you can use the original coefficients or the new ones after the rotation. The discriminant does not detect the degenerate cases. If BAC2 40 , the conic is a circle or an . If BAC2 40 , the conic is a . If BAC2 40 , the conic is a .

Example Problem 27xxyy22 270 57 282 25 x 285 22 y 287 0 2 The discriminant is BAC2 4 2 70 4 2 7 5 7  280 280 0 Since the discriminant is 0, this is going to be a parabola.

AC27 57 37 3 cot 2    B 270 270210 1210 If you need to know the angle, then   tan1  32.31153324 23 But you don't need to know the angle to get rid of the xy term. 3 Draw a triangle so that cot 2  and use it to determine the 210 values for the cosine and sine using the half angle identities. Use the positive values for cos and sin since  is an acute angle. 1cos2 13/75 5 cos2  cos  227 7 1cos2 13/72 2 sin2  sin  227 7

Make the substitutions into the formulas above. A 2755 270221  57 1020100 7777     7   310210 B 270 777  27  57    6  6  0 C 2 7221 2 7055  5 7 4 20 25 49 7777     77  5 2 D 28 2  2 5 77  28 5  2 2  2810  10  10  4  392 77 E  28 2  2 52  28 5  2 2 5    77    282 2 10  5 2 10 196 77 F 28 7 The new equation in the xy plane is 00xxyy22 49 392 x  196 y  2870 . 777 7 Multiplying everything by gives yxy2  8440 . 49 Notice that the discriminant is still zero. Graph before rotation. BAC22404010  

If you put general equation into standard form by completing the square, you get yyx2 484 yy2 44844 x yx282  1 2 yx2421  Same graph after rotation by   32.3 . This is a parabola with a vertex at 1, 2  , opening along the positive x axis, with a focal length of 2. That puts the focus at 1, 2  and the directrix at x  3 .

sin 2 7 2 Use tan   to get the correct cos 57 5 angle on the rotated axes.  tan1 2 5 32.3