Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations NOTE TO USERS This reproduction is the best copy available. UMT Landau States and Astrophysical Jets By Herve Guy A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science In Physics Carleton University Ottawa, Ontario © 2009, Herve Guy Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-68620-1 Our file Notre reference ISBN: 978-0-494-68620-1 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lntemet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. 14-1 Canada f Abstract Since the beginning of the twentieth century, astrophysical jets have been observed at all scales and with a wide range of parameters, in terms of jet sources, sizes, speeds and emit­ ted wavelengths. Several models that explained the origin of astrophysical jets have been created over time with varying degrees of success! Surprisingly, none of them have used Landau states to explain the origin of the astrophysical jets, which are always formed in the vicinity of a bizarre object, such as a black hole or a neutron star. Among the exotic properties shared by these, one in particular is that they often have an extremely strong magnetic field, which is precisely the environment where the Landau states are present. The purpose of this work is then to examine the role that Landau States could play in explaining the origin of astrophysical jets. After having determined how Landau states behave in uniform varying magnetic fields, two models will be proposed: 1) a Quasi-Realistic Astrophysical Jet Model that will try to explain how an astrophysical jet could be formed in the atmosphere of a neutron star, and 2) a Quasi-Realistic Jet Propulsion Mechanism that will try to explain how photons could be emitted when the density in the Landau states changes in the vicinity of a neutron stars surface and propelled via the astrophysical jets formed in the atmosphere of the neutron star. Please note: The original title page for this thesis has been removed due to formatting problems. All information has been transferred to the Carleton University standard title page template for theses. 11 Acknowledgements I would like to thank all the people who have helped and inspired me during my mas­ ter's study. I especially want to thank my advisor, Prof. Peter J. Watson, for his guidance during my research and study at Carleton University. He taught me my first course when I initi­ ated this crazy adventure. Once successfully completed, he was so generous in sharing me his thoughts about the potential role that Landau States could play in explaining the origin of astrophysical jets. In this regard, he showed me all roads that allowed me to complete this project. His perpetual energy and enthusiasm in research had always motivated me. In addition, he was always accessible and willing to help his students with their research. The generous support from my employer CANARIE Inc. is greatly appreciated. In retrospect, I am amazed by the confidence of managers and colleagues. Without their great patience and support, my ambition to study at part-time would hardly be realized. My deepest gratitude goes to my wonderful spouse, my two adorable sons, as well as my family, for their unflagging love and support throughout my life; this dissertation would have been simply impossible without them. Contents Abstract i Acknowledgements ii Table of Contents iii List of Tables vi List of Figures vii 1 Introduction 1 1.1 Jet phenomena 1 1.2 Purpose of this thesis 5 1.3 Structure of this document 6 1 Surveys of Exotic Objects 8 2 SS 433 9 2.1 Overall picture of the SS 433 system 9 2.2 The five-parameter kinematic model of the jet in SS 433 14 2.3 SS 433: A neutron star or black hole candidate? 15 CONTENTS iv 3 Neutron Stars and their Magnetic Fields 20 3.1 Overall picture of the neutron star 20 3.2 Extremely strong magnetic fields 23 3.3 Magnetic dipole model for rotating neutron stars 24 II Survey of the Landau States 29 4 Landau States in Constant Magnetic Fields 30 4.1 Non-Relativistic Solutions 30 4.2 Relativistic Solutions 39 5 Landau States in Varying Magnetic Fields 51 5.1 Magnetic Dipole 51 5.2 Non-Relativistic Solutions 55 5.3 Relativistic Solutions 59 III Toward the Jet Model via Landau States 64 6 The effective force in a varying magnetic field 65 6.1 From a classical approach to a quantized result 65 6.2 Motion of the charged particle given by the new force F (Bz (z), n) 68 7 The Quasi-Realistic Jet Model - preliminary version 70 7.1 The current density conservation principle 71 7.2 The 1-D kinematics of radial constant-acceleration 71 7.3 The quasi-realistic jet model in spherical coordinates - first version 74 CONTENTS v 8 The Quasi-Realistic Jet Propulsion Mechanism 85 8.1 Degeneracy of Landau Levels 85 8.2 The Landau-Fermi decay mechanism 90 8.3 First Quasi-Realistic Jet Propulsion Mechanism 97 9 The Quasi-Realistic Jet Model - final version 100 9.1 The quasi-realistic jet model in spherical coordinates - final version .... 100 9.2 Jet Model via the Landau States and SS 433 105 IV Conclusion 110 10 Conclusion 111 10.1 Results Ill 10.2 Suggestions for Further Research 112 V Bibliography 114 Bibliography 115 List of Tables 2.1 The five-parameter kinematic model of the jet in SS 433 15 8.1 Estimated Fermi energy with respect to the electron density from the neu­ 6 tron star's upper atmosphere to the bottom boundaries; for Tsf»3x 10 K and kBTs » 259 eV 94 9.1 Ep and related pairs of ni that give some identical initial current densities 105 List of Figures 1.1 Multifrequency images of M87 jet structure with arcsecond resolution in­ struments. [4] 2 1.2 (left) Visible [22] and (right) X-ray observation [1] of the Quasar 3C 273 with a jet 3 1.3 Artist's rendition of SS 433 and its Relativistic Jet [42] 4 1.4 SS 433: Optical and X-ray spectrums [23] 5 2.1 Location of SS 433 in constellation Aquila [39] 10 2.2 X-ray brightness distribution of the supernova remnant W 50 with its central object SS 433 [5] 11 2.3 The semidetached binary SS 433 showing the accretion disk around the primary /compact star. [6] 12 2.4 The X-ray lobes of SS 433 (W 50) [23] 14 2.5 The precession geometry of SS 433 [23] 16 3.1 Rotating dipole model [35] 26 3.2 Plot of period derivative P versus the period P for the presently known rotation pulsars. (Green) lines of constant Bs found in (3.11) and (violet) lines of constant characteristic age of pulsars are illustrated as well [19]. 27 LIST OF FIGURES viii 3.3 Resulting magnetic fields of a neutron star [2] 28 4.1 Classical Helical Motion of a positive charge in an uniform, constant mag­ netic field that points in the z direction [26] 37 4.2 Effect of varying the number of nodes n in the Schrodinger equation, when the Landau Gauge is applied 38 5.1 Magnetic dipole moment created by a loop of wire (area S, current I) [27]. 52 7.1 Evidence of the conserved current density when the particle is accelerated radially at a constant rate 73 7.2 The particle velocity v(r,9,riL) versus r for 9 = 0° to 5° and for nL = 0 (lowest red curve), TIL = 1 (blue curve), and ni — 2 (highest red curve); when m = q = h = JJL. = fid = ra = 1 77 7.3 The particle velocity v(r, 9, TIL) versus 9 for r = 1 to 8, UL = 0 (lowest red- to-blue series of curves), TIL = 1 (middle red-to-blue series of curves), TIL = 2 (highest red-to-violet series of curves); when m = q = h = Lt = Hd = rx = 1.
Recommended publications
  • HERD Proposal
    HERD proposal The Joint Working Team for the HERD collaboration O. Adriani1,2, G. Ambrosi3, Y. Bai4, B. Bertucci3,5, X. Bi6, J. Casaus7, I. De Mitri8,9, M. Dong10, Y. Dong6, I. Donnarumma11, F. Gargano12, E. Liang13, H. Liu13, C. Lyu10, G. Marsella14,15, M.N. Maziotta12, N. Mori2, M. Su16, A. Surdo14, L. Wang4, X. Wu17, Y. Yang10, Q. Yuan18, S. Zhang6, T. Zhang10, L. Zhao10, H. Zhong10, and K. Zhu6 ii 1University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence, Italy 2Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, I-50019 Sesto Fiorentino, Florence, Italy 3Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia, Italy 4Xi’an Institute of Optics and Precision Mechanics of CAS, 17 Xinxi Road, New Industrial Park, Xi’an Hi-Tech Industrial Development Zone, Xi’an, Shaanxi, China 5Dipartimento di Fisica e Geologia, Universita degli Studi di Perugia, I-06123 Perugia, Italy 6Institute of High Energy Physics, Chinese Academy of Sciences, No. 19B Yuquan Road, Shijingshan District, Beijing 100049, China 7Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, CIEMAT. Av. Complutense 40, Madrid E-28040, Spain 8Gran Sasso Science Institute (GSSI), Via Iacobucci 2, I-67100, L’Aquila, Italy 9INFN Laboratori Nazionali del Gran Sasso, Assergi, L’Aquila, Italy 10Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, 9 Dengzhuang South Rd., Haidian Dist., Beijing 100094, China 11Agenzia Spaziale Italiana (ASI), I-00133 Roma, Italy 12Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70125, Bari, Italy 13Guangxi University, 100 Daxue East Road, Nanning City, Guangxi, China 14Istituto Nazionale di Fisica Nucleare, Sezione di Lecce, I-73100, Lecce, Italy 15Universita del Salento - Dipartimento di Matematica e Fisica ”E.
    [Show full text]
  • Journal Reprints-Astronomy/Download/8526
    SPACE PATTERNS AND PAINTINGS (published in the "Engineer" magazine No. 8-9, 2012) Sagredo. - If the end of the pen, which was on the ship during my entire voyage from Venice to Alexandretta, were able to leave a visible trace of its entire path, then what kind of trace, what mark, what line would it leave? Simplicio. - I would leave a line stretching from Venice to the final place, not completely straight, or rather, extended in the form of an arc of a circle, but more or less wavy, depending on how much the ship swayed along the way ... Sagredo. - If, therefore, the artist, upon leaving the harbor, began to draw with this pen on a sheet of paper and continued drawing until Alexandretta, he could get from his movement a whole picture of figures ... at least a trace left ... by the end of the pen would be nothing more than a very long and simple line. G. Galileo "Dialogue on the two main systems of the world" Space has been giving astronomers surprise after surprise lately. A number of mysterious space objects were discovered that were not predicted by astrophysics and contradicted it. The more advanced observation methods become, the more such surprises. At one time, I. Shklovsky argued that the discovery of such "cosmic wonders" would confirm the reality of extraterrestrial intelligence, its enormous technical capabilities. But in reality, the "cosmic miracles" showed the backwardness of terrestrial science, which the opium of relativism smiled so much that now it cannot clearly explain ordinary cosmic phenomena caused by natural causes.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
    LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • International Astronomical Union Commission 42 BIBLIOGRAPHY of CLOSE BINARIES No. 93
    International Astronomical Union Commission 42 BIBLIOGRAPHY OF CLOSE BINARIES No. 93 Editor-in-Chief: C.D. Scarfe Editors: H. Drechsel D.R. Faulkner E. Kilpio E. Lapasset Y. Nakamura P.G. Niarchos R.G. Samec E. Tamajo W. Van Hamme M. Wolf Material published by September 15, 2011 BCB issues are available via URL: http://www.konkoly.hu/IAUC42/bcb.html, http://www.sternwarte.uni-erlangen.de/pub/bcb or http://www.astro.uvic.ca/∼robb/bcb/comm42bcb.html The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j. Mass loss and mass exchange k. Rotational velocities 6. Catalogues, discoveries, charts a.
    [Show full text]
  • Observational Evidence for Tidal Interaction in Close Binary Systems, Including Short-Period Extrasolar Planets
    Tidal effects in stars, planets and disks M.-J. Goupil and J.-P. Zahn EAS Publications Series, Vol. ?, 2018 OBSERVATIONAL EVIDENCE FOR TIDAL INTERACTION IN CLOSE BINARY SYSTEMS Tsevi Mazeh1 Abstract. This paper reviews the rich corpus of observational evidence for tidal effects, mostly based on photometric and radial-velocity mea- surements. This is done in a period when the study of binaries is being revolutionized by large-scaled photometric surveys that are detecting many thousands of new binaries and tens of extrasolar planets. We begin by examining the short-term effects, such as ellipsoidal variability and apsidal motion. We next turn to the long-term effects, of which circularization was studied the most: a transition period be- tween circular and eccentric orbits has been derived for eight coeval samples of binaries. The study of synchronization and spin-orbit align- ment is less advanced. As binaries are supposed to reach synchroniza- tion before circularization, one can expect finding eccentric binaries in pseudo-synchronization state, the evidence for which is reviewed. We also discuss synchronization in PMS and young stars, and compare the emerging timescale with the circularization timescale. We next examine the tidal interaction in close binaries that are orbited by a third distant companion, and review the effect of pumping the binary eccentricity by the third star. We elaborate on the impact of the pumped eccentricity on the tidal evolution of close binaries residing in triple systems, which may shrink the binary separation. Finally we consider the extrasolar planets and the observational evidence for tidal interaction with their parent stars.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • IAU Symp 269, POST MEETING REPORTS
    IAU Symp 269, POST MEETING REPORTS C.Barbieri, University of Padua, Italy Content (i) a copy of the final scientific program, listing invited review speakers and session chairs; (ii) a list of participants, including their distribution on gender (iii) a list of recipients of IAU grants, stating amount, country, and gender; (iv) receipts signed by the recipients of IAU Grants (done); (v) a report to the IAU EC summarizing the scientific highlights of the meeting (1-2 pages). (vi) a form for "Women in Astronomy" statistics. (i) Final program Conference: Galileo's Medicean Moons: their Impact on 400 years of Discovery (IAU Symposium 269) Padova, Jan 6-9, 201 Program Wednesday 6, location: Centro San Gaetano, via Altinate 16.0 0 – 18.00 meeting of Scientific Committee (last details on the Symp 269; information on the IYA closing ceremony program) 18.00 – 20.00 welcome reception Thursday 7, morning: Aula Magna University 8:30 – late registrations 09.00 – 09.30 Welcome Addresses (Rector of University, President of COSPAR, Representative of ESA, President of IAU, Mayor of Padova, Barbieri) Session 1, The discovery of the Medicean Moons, the history, the influence on human sciences Chair: R. Williams Speaker Title 09.30 – 09.55 (1) G. Coyne Galileo's telescopic observations: the marvel and meaning of discovery 09.55 – 10.20 (2) D. Sobel Popular Perceptions of Galileo 10.20 – 10.45 (3) T. Owen The slow growth of human humility (read by Scott Bolton) 10.45 – 11.10 (4) G. Peruzzi A new Physics to support the Copernican system. Gleanings from Galileo's works 11.10 – 11.35 Coffee break Session 1b Chair: T.
    [Show full text]
  • Orion® Intelliscope® Computerized Object Locator
    INSTRUCTION MANUAL Orion® IntelliScope® Computerized Object Locator #7880 Providing Exceptional Consumer Optical Products Since 1975 Customer Support (800) 676-1343 E-mail: [email protected] Corporate Offices (831) 763-7000 89 Hangar Way, Watsonville, CA 95076 IN 229 Rev. G 01/09 Congratulations on your purchase of the Orion IntelliScope™ Com­ pu ter ized Object Locator. When used with any of the SkyQuest IntelliScope XT Dobsonians, the object locator (controller) will provide quick, easy access to thousands of celestial objects for viewing with your telescope. Coil cable jack The controller’s user-friendly keypad combined with its database of more than 14,000 RS-232 jack celestial objects put the night sky literally at your fingertips. You just select an object to view, press Enter, then move the telescope manually following the guide arrows on the liquid crystal display (LCD) screen. In seconds, the IntelliScope’s high-resolution, 9,216- step digital encoders pinpoint the object, placing it smack-dab in the telescope’s field of Backlit liquid-crystal display view! Easy! Compared to motor-dependent computerized telescopes systems, IntelliScope is faster, quieter, easier, and more power efficient. And IntelliScope Dobs eschew the complex initialization, data entry, or “drive training” procedures required by most other computer- ized telescopes. Instead, the IntelliScope setup involves simply pointing the scope to two bright stars and pressing the Enter key. That’s it — then you’re ready for action! These instructions will help you set up and properly operate your Intelli Scope Com pu ter- ized Object Locator. Please read them thoroughly. Table of Contents 1.
    [Show full text]
  • A Census of High-Energy Observations of Galactic Supernova
    A Census of High-Energy Observations of Galactic Supernova Remnants Gilles Ferrand1,∗, Samar Safi-Harb2 Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada http://www.physics.umanitoba.ca/snr Abstract We present the first public database of high-energy observations of all known Galactic supernova remnants (SNRs). In section 1 we introduce the rationale for this work motivated primarily by studying particle acceleration in SNRs, and which aims at bridging the already existing census of Galac- tic SNRs (primarily made at radio wavelengths) with the ever-growing but diverse observations of these objects at high-energies (in the X-ray and γ- ray regimes). In section 2 we show how users can browse the database using a dedicated web front-end (http://www.physics.umanitoba.ca/snr/SNRcat). In section 3 we give some basic statistics about the records we have collected so far, which provides a summary of our current view of Galactic SNRs. Finally, in section 4, we discuss some possible extensions of this work. We believe that this catalogue will be useful to both observers and theorists, and timely with the synergy in radio/high-energy SNR studies as well as the upcoming new high-energy missions. A feedback form provided on the website will allow users to provide comments or input, thus helping us keep the database up-to-date with the latest observations. arXiv:1202.0245v1 [astro-ph.HE] 1 Feb 2012 Keywords: supernova remnants; high-energy observations ∗Corresponding author Email addresses: [email protected] (Gilles Ferrand), [email protected] (Samar Safi-Harb) 1CITA National Fellow 2Canada Research Chair Preprint submitted to Advances in Space Research February 2, 2012 1.
    [Show full text]
  • A Search for Gamma-Ray Emission from the Galactic Plane in the Longitude Range Between 37◦ and 43◦
    A&A 375, 1008–1017 (2001) Astronomy DOI: 10.1051/0004-6361:20010898 & c ESO 2001 Astrophysics A search for gamma-ray emission from the Galactic plane in the longitude range between 37◦ and 43◦ F. A. Aharonian1,A.G.Akhperjanian7,J.A.Barrio2,3, K. Bernl¨ohr1, O. Bolz1,H.B¨orst5,H.Bojahr6, J. L. Contreras3,J.Cortina2, S. Denninghoff2, V. Fonseca3,J.C.Gonzalez3,N.G¨otting4, G. Heinzelmann4,G.Hermann1, A. Heusler1,W.Hofmann1,D.Horns4, A. Ibarra3, C. Iserlohe6, I. Jung1, R. Kankanyan1,7,M.Kestel2, J. Kettler1,A.Kohnle1, A. Konopelko1,H.Kornmeyer2, D. Kranich2, H. Krawczynski1,%,H.Lampeitl1,E.Lorenz2, F. Lucarelli3, N. Magnussen6, O. Mang5,H.Meyer6, R. Mirzoyan2, A. Moralejo3, L. Padilla3,M.Panter1, R. Plaga2, A. Plyasheshnikov1,§, J. Prahl4, G. P¨uhlhofer1,W.Rhode6,A.R¨ohring4,G.P.Rowell1,V.Sahakian7,M.Samorski5, M. Schilling5, F. Schr¨oder6,M.Siems5,W.Stamm5, M. Tluczykont4,H.J.V¨olk1,C.A.Wiedner1, and W. Wittek2 1 Max-Planck-Institut f¨ur Kernphysik, Postfach 103980, 69029 Heidelberg, Germany 2 Max-Planck-Institut f¨ur Physik, F¨ohringer Ring 6, 80805 M¨unchen, Germany 3 Universidad Complutense, Facultad de Ciencias F´ısicas, Ciudad Universitaria, 28040 Madrid, Spain 4 Universit¨at Hamburg, II. Institut f¨ur Experimentalphysik, Luruper Chaussee 149, 22761 Hamburg, Germany 5 Universit¨at Kiel, Institut f¨ur Experimentelle und Angewandte Physik, Leibnizstraße 15-19, 24118 Kiel, Germany 6 Universit¨at Wuppertal, Fachbereich Physik, Gaußstr. 20, 42097 Wuppertal, Germany 7 Yerevan Physics Institute, Alikhanian Br. 2, 375036 Yerevan, Armenia § On leave from Altai State University, Dimitrov Street 66, 656099 Barnaul, Russia % Now at Yale University, PO Box 208101, New Haven, CT 06520-8101, USA Received 4 January 2001 / Accepted 18 June 2001 Abstract.
    [Show full text]