Forest Health Monitoring in Transition: Evaluating Insect- Induced Disturbances in Forested Landscapes at Varying Spatial Scales

Total Page:16

File Type:pdf, Size:1020Kb

Forest Health Monitoring in Transition: Evaluating Insect- Induced Disturbances in Forested Landscapes at Varying Spatial Scales Dissertationes Forestales 278 Forest health monitoring in transition: Evaluating insect- induced disturbances in forested landscapes at varying spatial scales Tuula Kantola Department of Forest Sciences Faculty of Agriculture and Forestry University of Helsinki Academic dissertation To be presented with the permission of the Faculty of Agriculture and Forestry, University of Helsinki, for public criticism in Auditorium 105 (B6) of the B-building (Viikki Campus, Latokartanonkaari 7, Helsinki) on June 14th 2019, at 12 o’clock noon. 2 Title of dissertation: Forest health monitoring in transition: Evaluating insect-induced disturbances in forested landscapes at varying spatial scales Author: Tuula Kantola Dissertationes Forestales 278 https://doi.org/10.14214/df.278 Use licence CC BY-NC-ND 4.0 Thesis supervisors: Adjunct professor Päivi Lyytikäinen-Saarenmaa Department of Forest Sciences, University of Helsinki, Finland Professor Markus Holopainen Department of Forest Sciences, University of Helsinki, Finland Pre-examiners: Professor Olle Anderbrant Department of Biology, Lund University, Sweden Associate professor Tuuli Toivonen Department of Geography and Geosciences, University of Helsinki, Finland Opponent: Dr. (Docent) Tarmo Virtanen Department of Environmental Sciences, University of Helsinki, Finland ISSN 1795-7389 (online) ISBN 978-951-651-646-5 (pdf) ISSN 2323-9220 (print) ISBN 978-951-651-647-2 (paperback) Publishers: Finnish Society of Forest Science Faculty of Agriculture and Forestry of the University of Helsinki School of Forest Sciences of the University of Eastern Finland Editorial Office: The Finnish Society of Forest Science Viikinkaari 6, FI-00790 Helsinki, Finland http://www.dissertationesforestales.fi 3 Kantola T. (2019). Forest health monitoring in transition: Evaluating insect-induced disturbances in forested landscapes at varying spatial scales. Dissertationes Forestales 278. 146 p. https://doi.org/10.14214/df.278 ABSTRACT Climate change is amplifying forest disturbances, especially those by insect pests. In addition to native species, biological invasions by alien insects are threatening forest health, ecosystem sustainability, and economic return. Uncertainties related to insect pest infestations are increasing along the risk of high impacts. There is a high demand of accurate, efficient, and cost-effective methods for forest health monitoring to prevent, control, and mitigate the various negative impacts, as well as to support decision-making. Current needs for information for efficient forest management are complex and extensive. The required quality cannot be met with traditional forest inventory methods. Forest information should be up-to date and available across a range of spatial and temporal scales. Rapid development of methods for general forest inventory also support development of forest health monitoring and management. The continuously developing field of remote sensing and geographical information systems provide new means for various forest monitoring tasks. However, disturbance monitoring, especially by insect pests, gives an extra challenge and increased uncertainties compared to other forest monitoring tasks. With new approaches, however, valuable information on disturbances can be derived for evaluation of insect-induced forest disturbance at reasonable high accuracy and reduced amount of needed fieldwork. This dissertation aims towards improved forest health monitoring, particularly disturbances by defoliating insect pests. Insect-induced disturbances from single tree level to larger areas in Fennoscandia and eastern USA were evaluated in five sub-studies. The sixth and final sub-study comprises continental scale species distribution models in North America and East Asia. In these sub-studies, different remote sensing sensors and approaches, and ecological niche modeling for species potential distributions were employed in disturbance evaluation. Study species include native insect pests and an invasive alien species. In context of recent research and the included sub-studies, issues specific to insect disturbance monitoring are discussed. Pattern, frequency, scale, and intensity of insect infestations vary depending on the insect pest and forested landscapes in question affecting disturbance detection and impact evaluation. Sensors, platform, and/or modeling methods have to be chosen accordingly. Environmental features, such as topography, and level of landscape fragmentation give restrictions to the method selection, as well as to the appropriate spatial resolution. Importance of varying information is also affected by the scale and resolution of investigation. Timing of data acquisition is crucial. Early detection and timely management operations are often the only way to control or mitigate insect outbreaks. Moreover, amount and accuracy of auxiliary information, including forest inventory data, and disturbance history, differ between countries and continents. Forest policies and practices differ depending on the region affecting further selection of usable data sets and methods. Information on potential ranges of insect pests and, to some extent, on future impacts of infestations can be obtained employing spatial modeling techniques, such as ecological niche modeling. These models are more frequently used at the regional and continental levels, however, smaller scale can be applied. Various modeling approaches can also be applied in 4 risk assessment, providing information for decision-making and forest health management operations. Models can be coupled with other techniques, including remote sensing. The feasibility of modeling is emphasized when predicting and projecting future events, especially those connected to the climate change related changes in insect population dynamics or adaptation to various forest management operations. Forest health monitoring should be included into forest monitoring systems, including accurate and timely disturbance detection, monitoring of infestations, and impact evaluation. Higher and lower spatial resolution remote sensing should be combined over varying spatial ranges and modeling techniques incorporated for flexible and cost-efficient monitoring over a gradient of different forest ecosystems, climatic conditions, and forest inventory and management practices. Open access remote sensing archives with high temporal resolution could facilitate continuous monitoring of wide forest areas. Developing satellite technology may respond to these needs. Plenty of valuable research on forest health monitoring exist. However, considerably more research is still needed before comprehensive monitoring systems can be adopted at the operational level. Development of remote sensing and modeling techniques, as well as improving computational power and databases facilitate continuous improvement of forest health management practices. Keywords: Ecological niche modeling, Forest disturbances, Forest health monitoring, Insect pests, Invasive species, Remote sensing 5 PREFACE My journey towards completing this dissertation has been long and colorful with many twists. The stepping-stones during the journey have been washed with tears and colored with laughter and joy. It has not been the easiest of the journeys, or the most straightforward, but surely worth of it, every single day. These years have been rich in so many ways. They have included work and living in Finland and Texas, various forest insect pests and forest environments, collaboration with a range of different people, teaching, and thesis supervision, travelling, fieldwork, etc. I have been blessed with so many great people beside me during this part of my life. I have also gain new friendships along the route, in Finland and abroad. I want to express my most sincere gratitude to my supervisors Adjunct prof. Päivi Lyytikäinen-Saaremaa and Prof. Markus Holopainen. This exiting part of my life started on the hallways of the Department of Forest Sciences. I met Päivi after a long while and we started a friendly chat. She suddenly dropped a straight question if I would like to start a dissertation under her supervision on monitoring insect pest disturbances. That just felt right; I didn’t even need time for consideration. Since then, a beautiful and complex world of insect pests on the forest environments have opened in front of me. Markus already had a big role during my master’s studies. He trusted me a lot in teaching. He enabled, e.g., several unforgettable summers in Hyytiälä field station as an assistant and later as a responsible teacher. My supervisors have provided me good working conditions facilitating independent work, development of my own ideas, and given me plenty of responsibilities from the start. They have been compassionate and understanding through the rough patches and encouraging during the whole journey. Further, it has always been so much fun to brainstorm and plan for the future! I spent over four years at the Knowledge Engineering Laboratory, in Texas A&M University. I am extremely grateful to Prof. Robert N. Coulson for enabling these experiences and kindly supervising me throughout these years and beyond. In addition to providing me an opportunity to learn about insect outbreaks in the landscape context, he also gave me an opportunity to see the world outside the much-loved forests inviting me later to work in the project on the amazing monarch butterfly. I can also attribute my immensely improved English skills to these time periods in Texas and to Prof. Coulson’s untiring
Recommended publications
  • Supplementmaterial S2.Pdf
    Mitt. Münch. Ent. Ges. 106 Suppl. S2 1-10 München, 15.02.2016 Systematische, revidierte und kommentierte Checkliste der Schmetterlinge Bayerns (Insecta: Lepidoptera) Alfred HASLBERGER & Andreas H. SEGERER Supplementmaterial S2 Zusammenstellung der in vorliegender Arbeit publizierten regionalen Neu- und Wiederfunde. S2.1 Neufunde für die Bayerischen Alpen und/oder das Alpenvorland (AVA) Nr. FauEu Überfamilie Familie Art 0016 431725 Eriocranioidea Eriocraniidae Dyseriocrania subpurpurella (HAWORTH, 1828) 0026 431739 Eriocranioidea Eriocraniidae Eriocrania semipurpurella (STEPHENS, 1835) 0058 431808 Nepticuloidea Nepticulidae Stigmella aceris (FREY, 1857) 0080 431900 Nepticuloidea Nepticulidae Stigmella myrtillella (STAINTON, 1857) 0089 431932 Nepticuloidea Nepticulidae Stigmella splendidissimella (HERRICH-SCHÄFFER, 1855) 0125 432021 Nepticuloidea Nepticulidae Ectoedemia decentella (HERRICH-SCHÄFFER, 1855) 0133 432060 Nepticuloidea Nepticulidae Ectoedemia hannoverella (GLITZ, 1872) 0158 432282 Adeloidea Heliozelidae Heliozela resplendella (STAINTON, 1851) 0182 432335 Adeloidea Adelidae Adela cuprella (DENIS & SCHIFFERMÜLLER, 1775) 0202 432387 Adeloidea Incurvariidae Incurvaria pectinea HAWORTH, 1828 0230 432437 Tischerioidea Tischeriidae Coptotriche marginea (HAWORTH, 1828) 0331 433122 Tineoidea Tineidae Nemapogon granella (LINNAEUS, 1758) 0355 432916 Tineoidea Tineidae Monopis weaverella (SCOTT, 1858) 0371 433010 Tineoidea Tineidae Tinea columbariella WOCKE, 1877 0373 433015 Tineoidea Tineidae Tinea trinotella THUNBERG, 1794 0394 433489
    [Show full text]
  • Motyle (Lepidoptera) Parku Krajobrazowego Cysterskie Kompozycje Krajobrazowe Rud Wielkich
    ROCZNIK MUZEUM GÓRNOŚLĄSKIEGO W BYTOMIU PRZYRODA Vol. 26 (online 001): 1–40 ISSN 0068-466X, eISSN 2451-0467 (online) Bytom, 10.04.2020 Jacek Maroń1, Adam Larysz2 Motyle (Lepidoptera) Parku Krajobrazowego Cysterskie Kompozycje Krajobrazowe Rud Wielkich http://doi.org/10.5281/zenodo.3747209 1 ul. Kuglera 9, 44-207 Rybnik, Polska, e-mail: [email protected] 2 Dział Przyrody, Muzeum Górnośląskie w Bytomu, pl. Jana III Sobieskiego 2, 41-902 Bytom, Polska, e-mail: [email protected] Abstract: The Butterflies and Moths (Lepidoptera) of the Cysterskie Kompozycje Krajobrazowe Rud Wielkich Landscape Park. The paper presents the research on Lepidoptera in Cysterskie Kompozycje Krajobrazowe Rud Wielkich Landscape Park between 1982 and 2019. The material was collected at nine selected sites, mainly in various forest environments. Overall, 1162 species in 66 families were recorded and listed, including 26 species new to the Province of Silesia. Key words: Lepidoptera, list of species, Cysterskie Kompozycje Krajobrazowe Rud Wielkich Landscape Park, biodiversity. WSTĘP Park Krajobrazowy Cysterskie Kompozycje Krajobrazowe Rud Wielkich (PK CKKRW) położony jest w południowo-zachodniej części województwa śląskiego i zajmuje wschodnią część Kotliny Raciborskiej oraz północne fragmenty Płaskowyżu Rybnickiego. Powstał na mocy Rozporządzenia Wojewody Katowickiego Nr 181/93 z dnia 23 listopada 1993 roku. Powierzchnia Parku wynosi 493,87 km², a strefa ochronna to obszar 140,10 km². Dominują tu drzewostany sosnowe, rosnące na siedliskach borowych, wykształconych na glebach bielicowych, a także wprowadzone sztucznie na siedliska żyznych lasów liściastych. Najbogatszym przyrodniczo terenem w obrębie Parku jest kompleks leśno-stawowy Łężczok w okolicach Raciborza, będący jedynym rezerwatem w granicach Parku. MATERIAŁ I METODY PROWADZENIA BADAŃ Stopień poznania entomofauny PK CKKRW jest niezadawalający, a dane dotyczące występowania poszczególnych gatunków są fragmentaryczne i rozproszone.
    [Show full text]
  • Chapter 15. Central and Eastern Africa: Overview
    Chapter 15 Chapter 15 CENTRAL AND EASTERN AFRICA: OVERVIEW The region as treated here is comprised mainly of Angola, Cameroon, Central African Republic, Congo (Brazzaville), Congo (Kinshasa) (formerly Zaire), Kenya, Malawi, Tanzania, Uganda, and Zambia. The wide variety of insects eaten includes at least 163 species, 121 genera, 34 families and 10 orders. Of this group the specific identity is known for 128 species, only the generic identity for another 21, only the family identity of another 12 and only the order identity of one. Gomez et al (1961) estimated that insects furnished 10% of the animal proteins produced annually in Congo (Kinshasa). Yet, in this region, as in others, insect use has been greatly under-reported and under-studied. Until recently, for example, the specific identity was known for fewer than twenty species of insects used in Congo (Kinshasa), but, in a careful study confined only to caterpillars and only to the southern part of the country, Malaisse and Parent (1980) distinguished 35 species of caterpillars used as food. The extent of insect use throughout the region is probably similar to that in Congo (Kinshasa) and Zambia, the best-studied countries. Research is needed. Caterpillars and termites are the most widely marketed insects in the region, but many others are also important from the food standpoint, nutritionally, economically or ecologically. As stated by this author (DeFoliart 1989): "One can't help but wonder what the ecological and nutritional maps of Africa might look like today if more effort had been directed toward developing some of these caterpillar, termite, and other food insect resources." The inclusion of food insects in the Africa-wide Exhibition on Indigenous Food Technologies held in Nairobi, Kenya, in 1995 is indicative of the resurgence of interest in this resource by the scientific community of the continent.
    [Show full text]
  • Chapter 13 SOUTHERN AFRICA
    Chapter 13 Zimbabwe Chapter 13 SOUTHERN AFRICA: ZIMBABWE Taxonomic Inventory Taxa and life stages consumed Coleoptera Buprestidae (metallic woodborers) Sternocera funebris (author?), adult Sternocera orissa Buquet, adult Scarabaeidae (scarab beetles) Lepidiota (= Eulepida) anatine (author?), adult Lepidiota (= Eulepida) masnona (author?), adult Lepidiota (= Eulepida)nitidicollis (author?), adult Miscellaneous Coleoptera Scientific name(s) unreported Hemiptera Pentatomidae (stink bugs) Euchosternum (= Haplosterna; = Encosternum) delegorguei (Spinola) (= delagorguei), adult Pentascelis remipes (author?), adult Pentascelis wahlbergi (author?), adult Miscellaneous Hemiptera Scientific name(s) unreported Homoptera Cicadidae (cicadas) Loba leopardina (author?) Hymenoptera Apidae (honey bees) Trigona spp., larvae Formicidae (ants) Carebara vidua Sm., winged adult Isoptera Termitidae Macrotermes falciger Gerstacker (= goliath), winged adult, soldier, queen Macrotermes natalensis Haviland Lepidoptera Lasiocampidae (eggar moths, lappets) Lasiocampid sp., larva Limacodidae (slug caterpillars) Limacodid sp. Notodontidae (prominents) Anaphe panda (Boisdv.), larva Saturniidae (giant silkworm moths) Bunaea (= Bunea) alcinoe (Stoll), larva Bunaea sp., larva Cirina forda (Westwood), larva 1 of 12 9/20/2012 2:02 PM Chapter 13 Zimbabwe Gonimbrasia belina Westwood, larva Goodia kuntzei Dewitz (?), larva Gynanisa sp. (?), larva Imbrasia epimethea Drury, larva Imbrasia ertli Rebel, larva Lobobunaea sp., larva Microgone sp., (?), larva Pseudobunaea sp. (?),
    [Show full text]
  • Additions, Deletions and Corrections to An
    Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe.
    [Show full text]
  • Protein Quality of Commonly Consumed Edible Insects in Zimbabwe
    Afr. J. Food Agric. Nutr. Dev. 2019; 19(3): 14674-14689 DOI: 10.18697/ajfand.86.17645 PROTEIN QUALITY OF COMMONLY CONSUMED EDIBLE INSECTS IN ZIMBABWE Chagwena DT1, 2*, Matanhire GT1, 3, Jombo TZ3 and CC Maponga2 Chagwena Dexter *Corresponding author email: [email protected] or [email protected] 1Nutri@ctive Zimbabwe, 96 Golden Stairs Rd, Mt. Pleasant, Harare, Zimbabwe 2School of Pharmacy, College of Health Sciences, University of Zimbabwe, Harare, Zimbabwe 3Department of Food and Nutrition Sciences, Midlands State University, Gweru, Zimbabwe DOI: 10.18697/ajfand.86.17645 14674 ABSTRACT Consumption of edible insects as alternative animal protein-source is a potential long- term solution to curb protein deficiency in resource-limited communities where diets lacking in protein are predominant. Entomophagy has been expressed in both developed and developing countries, and previous studies have proven that edible insects are high in protein. However, there is paucity of information on protein quality of edible insects to adequately guide populations on their utilization as good alternative protein sources. The aim of this study was to evaluate protein quality of three edible insects commonly consumed in most regions of Zimbabwe, namely Imbrasia belina (mopane worms), Locusta migratoria (locust) and Encosternum delegorguei (stinkbug). Kjeldahl method was used to evaluate crude protein of edible insects and a 20-day mice-feeding trial was conducted to evaluate protein efficiency ratio and protein digestibility in comparison to a control protein (casein). Crude protein was higher in Locusta migratoria (71.2%) compared to Imbrasia belina (57.7%) and Encosternum delegorguei (31.3%). Protein efficiency ratio was lower in insect samples L.
    [Show full text]
  • Predicting Forest Insect Disturbance Under Climate Change
    PREDICTING FOREST INSECT DISTURBANCE UNDER CLIMATE CHANGE Allan L. Carroll University of British Columbia Department of Forest Sciences 2424 Main Mall, Vancouver, BC Canada V6T 1Z4 Tel: 1-604-822-3360 Fax: 1-604-822-9102 Email: [email protected] 1 ABSTRACT This paper comprises a review of literature regarding climate change impacts to forest insect disturbances. Its primary objectives were three-fold. First, commonalities were sought among systems regarding the effects associated with altered temperature and/or precipitation patterns on forest insect herbivores, the proximate and ultimate form of the response by the insects, and the outcome in terms of forest disturbance. Second, a general framework within which to assess future disturbances to temperate and boreal forests by insect herbivores was constructed. Finally, uncertainty regarding predictions of the extent/severity of forest insect disturbances under climate change into the future was discussed. 2 INTRODUCTION There is now ample evidence that recent climatic changes have affected a broad range of organisms in a manner consistent with expectations from a warming environment (reviewed by Walther et al. 2002, Parmesan and Yohe 2003, Root et al. 2003, Hickling et al. 2006, Post et al. 2009, Robinet and Roques 2010, Wolken et al. 2011). In fact, evidence has accumulated indicating direct effects of anthropogenic climate change on every continent, in every ocean and in most major taxonomic groups (Parmesan 2006). Among the major taxonomic groups in which impacts of global warming have been most frequently documented are the insects. Terrestrial insects are sensitive indicators of changes to the condition of abiotic and biotic systems (McGeoch 1998).
    [Show full text]
  • Abt]Ndaiyce in Norih.Easiern Botswaiva. By
    THE NATIIRAL HISTORY Oß Imbrøsíø belína (lVestwood) (LEPIDOPTERA: SATIIRIUDAE), AND SOME Ì'ACTORS AFT'ECTING ITS ABT]NDAIYCE IN NORIH.EASIERN BOTSWAIVA. BY MARKS K. DITLHOCIO A Thesis Submitted to the Faculty of Graduate Studies in Partial Fulfillment ofthe Requirements for the Degree of DOCTOR OF PHILOSOPHY Department ofZoology Universþ ofManitoba Winnipeg, Manitoba (c) January, 1996 \flonarLibrarv Bibliothèque nationale l*l du Canada Acquisitions and Direction des acquisitions et Bibliographic Services Branch des services bibliographiques 395 Wellington Street 395, rue Wellington Ottawa, Ontario Ottawa (Ontario) K1A ON4 K1A ON4 Yout l¡le Volrc élércnce Ou l¡le Nolrc rélérence The author has granted an L'auteur a accordé une licence irrevocable non-exclus¡ve licence irrévocable et non exclus¡ve allowing the National Library of permettant à la Bibliothèque Canada to reproduce, loan, nationale du Canada de distribute or sell cop¡es of reproduire, prêter, distribuer ou his/her thesis by any means and vendre des copies de sa thèse in any form or format, making de quelque manière et sous this thesis available to interested quelque forme que ce soit pour persons. mettre des exemplaires de cette thèse à la disposition des person nes intéressées. The author retains ownership of L'auteur conserve la propriété du the copyright in his/her thesis. droit d'auteur qu¡ protège sa Neither the thesis nor substantial thèse. Ni la thèse ni des extraits extracts from it may be printed or substantiels de celle-ci ne otherwise reproduced without doivent être imprimés ou his/her perm¡ss¡on. autrement reproduits sans son autorisation.
    [Show full text]
  • Vorarlbergs (Österreich) - Erkenntnisse Und Rückschlüsse : Supplement 2 1-29 Huemer, P
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Inatura Forschung online Jahr/Year: 2015 Band/Volume: 15_Supp2 Autor(en)/Author(s): Huemer Peter, Hebert Paul D. N. Artikel/Article: DNA-Barcoding der Schmetterlinge (Lepidoptera) Vorarlbergs (Österreich) - Erkenntnisse und Rückschlüsse : Supplement 2 1-29 Huemer, P. & Hebert, P.D.N. (2015): «DNA-Barcoding der Schmetterlinge (Lepidoptera) Vorarlbergs (Österreich) - Erkenntnisse und Rückschlüsse». inatura – Forschung online, Nr. 15, Suppl. 2: 29 S. DNA-Barcoding der Schmetterlinge (Lepidoptera) Nr. 15 - 2015 Vorarlbergs (Österreich) - Erkenntnisse und Suppl. 2 Rückschlüsse : Supplement 2 Peter Huemer1 & Paul D. N. Hebert2 1 Dr. Peter Huemer, Naturwissenschaftliche Sammlungen, Tiroler Landesmuseen Betriebsges.m.b.H., Feldstr. 11a, A-6020 Innsbruck. E-Mail: [email protected] 2 Prof. Dr. Paul D. N. Hebert, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, N1G 2W1, Canada. Anhangstabelle 2 Minimale genetische Distanzen zum jeweils Nächsten Nachbarn für 1497 Schmetterlingsarten aus Vorarlberg Familie Art Nächster Nachbar (NN) Distanz NN Adelidae Adela albicinctella Adela cuprella 2,51 Adelidae Adela cuprella Adela albicinctella 2,51 Adelidae Adela reaumurella Adela cuprella 7,15 Adelidae Cauchas rufimitrella Adela reaumurella 9,91 Adelidae Nematopogon metaxella Nematopogon schwarziellus 7,78 Adelidae Nematopogon pilella Nematopogon robertella 8,1 Adelidae Nematopogon
    [Show full text]
  • Copyrighted Material
    9781444330366_4_001.qxd 11/28/09 14:11 Page 1 Chapter 1 THE IMPORTANCE, DIVERSITY, AND CONSERVATION OF INSECTS COPYRIGHTED MATERIAL Charles Darwin inspecting beetles collected during the voyage of the Beagle. (After various sources, especially Huxley & Kettlewell 1965 and Futuyma 1986.) 9781444330366_4_001.qxd 11/28/09 14:11 Page 2 2 Importance, diversity, and conservation Curiosity alone concerning the identities and lifestyles feature is that the study organisms are insects. Biologists of the fellow inhabitants of our planet justifies the study work with insects for many reasons: ease of culturing of insects. Some of us have used insects as totems and in a laboratory, rapid population turnover, and avail- symbols in spiritual life, and we portray them in art and ability of many individuals are important factors. The music. If we consider economic factors, the effects of minimal ethical concerns regarding responsible experi- insects are enormous. Few human societies lack honey, mental use of insects, as compared with vertebrates, provided by bees (or specialized ants). Insects pollinate are a significant consideration. our crops. Many insects share our houses, agriculture, Modern entomological study commenced in the early and food stores. Others live on us, on our domestic 18th century when a combination of the rediscovery of pets or our livestock, and yet more visit to feed on us the classical literature, the spread of rationalism, and where they may transmit disease. Clearly, we should the availability of ground-glass optics made the study of understand these pervasive animals. insects acceptable for the thoughtful privately wealthy. Although there are millions of kinds of insects, we do Although people working with insects hold profes- not know exactly (or even approximately) how many.
    [Show full text]
  • Climate Change Effects on Eruptive Forest Insects: a R Eview and Synthesis of Empirical Evidence
    CLIMATE CHANGE EFFECTS ON ERUPTIVE FOREST INSECTS: A REVIEW AND SYNTHESIS OF EMPIRICAL EVIDENCE FRST 498 AMBERLY MARCINIAK ABSTRACT Global climate change is affecting ecosystems through warming temperatures, changing precipitation, and increasing climatic variability. One of the major impacts is the alteration of forest disturbance regimes, including forest insect outbreaks that cause landscape-scale tree mortality and significantly affect the composition, function, and socioeconomic value of forests. Many studies have been conducted and models created to predict how future climate change may affect forest insects, but it may also be useful to determine how insects have already responded in order to detect where knowledge may be lacking and which species may be of most concern in future forest management. For this thesis, research papers providing empirical evidence to show a definitive climate change effect on an eruptive forest insect were identified and reviewed. The selected papers were then synthesized into a predictive framework for the likely responses of specific forest insect groups or species to changes in temperature or precipitation. Bark beetles and defoliators were the two functional groups for which evidence was found. All evidence pointed to bark beetle species responding positively to warming temperatures and decreasing precipitation through range expansion and increases in outbreak extent and severity. Evidence was less straightforward for defoliators, as some species, but not all, showed a negative response to warmer
    [Show full text]
  • THE EMPEROR MOTHS of EASTERN AFRICA the Purpose Of
    THE EMPEROR MOTHS OF EASTERN AFRICA By E. C. G. Pinhey. (The National Museum, Bulawayo.) The purpose of this article on Emperor Moths is to introduce people, in East and Central Africa, to this spectacular family and to give them some means of identifying the species. It is unfortunate that we cannot afford colour plates. Mr. Bally has aided in the production of half-tone photo• graphs, which should help considerably in the recognition of species, if not with the same facility as with colour plates. There is, of course, available, at a price, volume XIV of Seitz' Macrole• pidoptera, which includes coloured illustrations of most of the African Emperors. In tropical countries Emperor Moths and Hawk Moths are the most popular families of the moths among amateurs, the former largely for their size and colourfulness, the latter more perhaps for their streamlined elegance and rapidity of flight. Furthermore, compared to some other families, both these groups are reasonably small in number of species and, despite their bulk, they can be incorporated in a moderately limited space if not too many examples of each species are retained. Admittedly some of the larger Emperors take up a disproportionate amount of room and it is advisable to make them overlap in the collection. If we consider, however, that the amateur is concentrating on this family to the exclusion of other moth groups, the position is not too alarming. There are somewhat over a hundred species of Emperors in East Africa. What are Emperor Moths? Some people call them Silk moths, because the caterpillars of some species spin silk cocoons.
    [Show full text]